Film Capacitors EMI Suppression Capacitors (MKP) Series/Type: B32911*3 ... B32916*3 Date: September 2019 #### X1/330 V AC ### **Typical applications** - X1 class for interference suppression - "Across the line" applications #### Climatic - Max. operating temperature: 110 °C - Climatic category (IEC 60068-1:2013): 40/110/56 #### Construction - Dielectric: polypropylene (MKP) - Plastic case (UL 94 V-0) - Epoxy resin sealing (UL 94 V-0) #### **Features** - Very small dimensions - Good self-healing properties - High voltage capability - RoHS-compatible - Halogen-free capacitors available on request #### **Terminals** - Parallel wire leads, lead-free tinned - Special lead lengths available on request ### Marking Manufacturer's logo, lot number, date code, rated capacitance (coded), capacitance tolerance (code letter), rated AC voltage (IEC), series number, sub-class (X1), dielectric code (MKP), climatic category, passive flammability category, approvals. ### **Delivery mode** Bulk (untaped) Taped (Ammo pack or reel) For taping details, refer to chapter "Taping and packing". #### **Dimensional drawing** Dimensions in mm | Lead
spacing
• ±0.4 | Lead
diameter
d ₁ ±0.05 | Туре | |---------------------------|--|-------------------| | 10 | 0.6 | B32911*3 | | 15 27.5 | 0.8 | B32912*3 B32914*3 | | 37.5 | 1.0 | B32916*3 | # Marking examples (position of marks may vary): ### **Approvals** | Approval
marks | Standards | Certificate | |-------------------|--|--| | 3 10 | EN 60384-14:2014
IEC 60384-14:2013 | 40032766 (approved by VDE) (C ≤ 10 μF) | | TA | UL 1414:2000
UL 1283:2005 | E97863 / E157153 | | c 7/1 | CSA C22.2 No.1:2004
CSA C22.2 No.8:2013 | E97863 / E157153 (approved by UL) | | c 71 Lus | UL 60384-14:2014
CSA E60384-14:2013 | E97863 (approved by UL) | Notes: Effective January 2014, only for EMI supression capacitors: - UL 60384-14:2014 certification replaces both UL 1414:2000 and UL 1283:2005 standards. - CSA C22.2 No.1.2004 and CSA C22.2 No.8:2013 are replaced by CSA E60384-14:2013. - References like 1414, 1283 are removed from the capacitor marking. Capacitors under UL 1414:2000, UL 1283:2005 produced during or before 2013, are accepted under UL scope. Capacitors under CSA C22.2 No.1:2004 / CSA C22.2 No.8:2013 produced during or before 2013, are accepted under cUL scope. ### B32911*3 ... B32916*3 X1/330 V AC ### Overview of available types | Lead spacing | 10 mm | 15 mm | 22.5 mm | 27.5 mm | 37.5 mm | |---------------------|----------|----------|----------|----------|----------| | Туре | B32911*3 | B32912*3 | B32913*3 | B32914*3 | B32916*3 | | C _R (μF) | | | | | | | 0.010 | | | | | | | 0.022 | | | | | | | 0.033 | | | | | | | 0.047 | | | | | | | 0.068 | | | | | | | 0.10 | | | | | | | 0.15 | | | | | | | 0.22 | | | | | 5. | | 0.33 | | | | | | | 0.47 | | | | | | | 0.68 | | | | | | | 1.0 | | | | | | | 1.5 | | | | | | | 2.2 | | | | | | | 3.3 | | | | | | | 4.7 | | | | | | | 6.8 | | | | | | X1/330 V AC ### Ordering codes and packing units | Lead spacing | CR | Max. dimensions | Ordering code | Ammo | Reel | Untaped | |--------------|-------|--------------------------------|------------------|----------|----------|----------| | | | $w \times h \times l$ | (composition see | pack | | 100 | | mm | μF | mm | below) | pcs./MOQ | pcs./MOQ | pcs./MOQ | | 10 | 0.010 | $4.0 \times 9.0 \times 13.0$ | B32911A3103+*** | 4000 | 6800 | 4000 | | | 0.022 | $5.0 \times 11.0 \times 13.0$ | B32911B3223+*** | 3320 | 5200 | 4000 | | | 0.033 | $6.0 \times 12.0 \times 13.0$ | B32911A3333M*** | 2720 | 4400 | 4000 | | 15 | 0.022 | $5.0 \times 10.5 \times 18.0$ | B32912A3223+*** | 4680 | 5200 | 4000 | | | 0.033 | $5.0 \times 10.5 \times 18.0$ | B32912A3333+*** | 4680 | 5200 | 4000 | | | 0.047 | $5.0 \times 10.5 \times 18.0$ | B32912A3473+*** | 4680 | 5200 | 4000 | | | 0.068 | $6.0 \times 11.0 \times 18.0$ | B32912A3683+*** | 3840 | 4400 | 4000 | | | 0.10 | $7.0 \times 12.5 \times 18.0$ | B32912A3104+*** | 3320 | 3600 | 4000 | | | 0.15 | $7.0 \times 12.5 \times 18.0$ | B32912B3154M*** | 3320 | 3600 | 4000 | | | 0.15 | $8.5 \times 14.5 \times 18.0$ | B32912A3154+*** | 2720 | 2800 | 2000 | | | 0.22 | $8.5 \times 14.5 \times 18.0$ | B32912B3224M*** | 2720 | 2800 | 2000 | | | 0.22 | $9.0 \times 17.5 \times 18.0$ | B32912A3224+*** | 2560 | 2800 | 2000 | | | 0.33 | $9.0 \times 17.5 \times 18.0$ | B32912B3334M*** | 2560 | 2800 | 2000 | | 22.5 | 0.15 | $6.0 \times 15.0 \times 26.5$ | B32913A3154+*** | 2720 | 2800 | 2880 | | | 0.22 | $7.0 \times 16.0 \times 26.5$ | B32913A3224+*** | 2320 | 2400 | 2520 | | | 0.33 | $8.5 \times 16.5 \times 26.5$ | B32913A3334M*** | 1920 | 2000 | 2040 | | | 0.47 | $10.5 \times 18.5 \times 26.5$ | B32913A3474M*** | 1560 | 1600 | 2160 | MOQ = Minimum Order Quantity, consisting of 4 packing units. Further intermediate capacitance values on request. ### Composition of ordering code += Capacitance tolerance code: $M = \pm 20\%$ $K = \pm 10\%$ *** = Packaging code: 289 = Straight terminals, Ammo pack 189 = Straight terminals, Reel 003 = Straight terminals, untaped (lead length 3.2 ±0.3 mm) 000 = Straight terminals, untaped (lead length 6 -1 mm) ### X1/330 V AC ### Ordering codes and packing units | Lead spacing | CR | Max. dimensions | Ordering code | Ammo | Reel | Untaped | |--------------|------|--------------------------------|------------------|----------|----------|----------| | | | $w \times h \times l$ | (composition see | pack | | | | mm | μF | mm | below) | pcs./MOQ | pcs./MOQ | pcs./MOQ | | 27.5 | 0.47 | 11.0 × 21.0 × 31.5 | B32914A3474+*** | - | 1400 | 1280 | | | 0.68 | $11.0 \times 21.0 \times 31.5$ | B32914B3684+*** | _ | 1400 | 1280 | | | 1.0 | $13.5 \times 23.0 \times 31.5$ | B32914A3105+*** | _ | 1000 | 1040 | | | 1.5 | $18.0 \times 27.5 \times 31.5$ | B32914A3155+*** | _ | _ | 800 | | | 2.2 | $19.0 \times 30.0 \times 31.5$ | B32914A3225M*** | _ | _ | 720 | | 37.5 | 3.3 | 18.0 × 32.5 × 41.5 | B32916A3335M*** | = | _ | 720 | | | 4.7 | $20.0 \times 39.5 \times 42.0$ | B32916A3475M*** | _ | _ | 640 | | | 6.8 | $28.0 \times 42.5 \times 42.0$ | B32916A3685M*** | _ | _ | 440 | MOQ = Minimum Order Quantity, consisting of 4 packing units. Further intermediate capacitance values on request. #### Composition of ordering code += Capacitance tolerance code: $M = \pm 20\%$ $K = \pm 10\%$ *** = Packaging code: 289 = Straight terminals, Ammo pack 189 = Straight terminals, Reel 003 = Straight terminals, untaped (lead length 3.2 ±0.3 mm) 000 =Straight terminals, untaped (lead length 6 -1 mm) X1/330 V AC #### Technical data Reference standard: IEC 60384-14:2013 / UL 60384-14:2014. All data given at T = 20 °C, unless otherwise specified. | Rated AC voltage | 330 V (50/60 Hz) | |--|------------------| | (IEC 60384-14:2013) | | | Maximum continuous DC voltage V _{DC} | 760 V | | Max. operating temperature T _{op,max} | +110 °C | | DC test voltage | 2500 V, 2 s | The repetition of this DC voltage test may damage the capacitor. Special care must be taken in case of use several capacitors in a parallel configuration. | Dissipation factor $\tan \delta$ (in 10 ⁻³) | at | $C_R \le 2.2 \mu\text{F}$ | C _R > 2.2 μF | |---|----------------------|---------------------------|-------------------------| | at 20 °C (upper limit values) | 1 kHz | 1 | 2 | | Insulation resistance R _{ins} or time constant | $C_R \le 0.33 \mu F$ | | $C_R > 0.33 \mu F$ | | $\tau = C_R \cdot R_{ins}$ at 100 V DC, 20 °C, | 100 000 MΩ | | 30 000 s | | rel. humidity \leq 65% and for 60 s | | | | | (minimum as-delivered values) | | | | | Passive flammability category | В | | | | Capacitance tolerances (measured at 1 kHz) | ±10% (K), ±2 | 20% (M) | | ### Pulse handling capability "dV/dt" represents the maximum permissible voltage change per unit of time for non-sinusoidal voltages, expressed in $V/\mu s$. " k_0 " represents the maximum permissible pulse characteristic of the waveform applied to the capacitor, expressed in $V^2/\mu s$. #### Note: The values of dV/dt and k_0 provided below must not be exceeded in order to avoid damaging the capacitor. ### dV/dt and ko values | Lead spacing | 10 mm | 15 mm | 22.5 mm | 27.5 mm | 37.5 mm | |---------------|---------|---------|---------|---------|---------| | dV/dt in V/μs | 550 | 400 | 200 | 150 | 100 | | k₀ in V²/μs | 473 000 | 344 000 | 172 000 | 129 000 | 86 000 | ### X1/330 V AC ### **Testing and Standards** | Test | Reference | Conditions of test | | Performance requirements | |------------------------------------|--|--|-------------|---| | Electrical
parameters | IEC
60384-14:2013 | Between terminals, 4.3 V _R , 1 min. Terminals and enclosure: 2 V _R + 1500 V AC Insulation resistance, R _{ins} Capacitance, C | | Within specified limits | | Robustness
of termina-
tions | IEC
60068-2-21:2006 | | | Capacitance and tan δ within specified limits | | Resistance
to soldering
heat | IEC
60068-2-20:2008,
test Tb,
method 1A | Solder bath temperature at 260 ±5 °C, immersion for 10 seconds | | $\Delta C/C_0 \le 5\%$ tan δ within specified limits | | Rapid change of temperature | IEC
60384-14:2013 | T_A = lower category
T_B = upper category
Five cycles, duratio | temperature | No visible damage $ \Delta C/C_o \leq 5\%$ tan δ within specified limits | | Vibration | IEC
60384-14:2013 | Test F _c : vibration sinusoidal Displacement: 0.75 mm Accleration: 98 m/s ² Frequency: 10 Hz 500 Hz Test duration: 3 orthogonal axes, 2 hours each axe | | No visible damage | | Bump | IEC
60384-14:2013 | Test Eb: Total 4000 bumps with 400 m/s ² mounted on PCB 6 ms duration | | No visible damage $ \Delta C/C_o \leq 5\%$ tan δ within specified limits | | Climatic
sequence | IEC
60384-14:2013 | 6 ms duration Dry heat Tb / 16 h Damp heat cyclic, 1st cycle +55 °C / 24 h / 95% 100% RH Cold Ta / 2 h Damp heat cyclic, 5 cycles +55 °C / 24 h / 95% 100% RH | | No visible damage $\begin{split} \Delta C/C_o &\leq 5\% \\ \Delta \tan \delta &\leq 0.008 \text{ for } C \leq 1 \mu\text{F} \\ \Delta \tan \delta &\leq 0.005 \text{ for } C > 1 \mu\text{F} \\ \text{Voltage proof} \\ R_{\text{ins}} &\geq 50\% \text{ of initial limit} \end{split}$ | ### X1/330 V AC | Test | Reference | Conditions of test | Performance requirements | |--------------|---------------|--|--| | Damp heat, | IEC | Test Ca | No visible damage | | steady | 60384-14:2013 | 40 °C / 93% RH / 56 days | $ \Delta C/C_o \le 5\%$ | | state | | | $ \Delta \tan \delta \le 0.008$ for $C \le 1 \mu F$ | | | | | $ \Delta \tan \delta \le 0.005 \text{ for C} > 1 \mu\text{F}$ | | | | | Voltage proof | | | | | R _{ins} ≥ 50% of initial limit | | Impulse | IEC | 3 impulses | No visible damage | | test | 60384-14:2013 | Tb / 1.25 V _R / 1000 hours, | $ \Delta C/C_o \le 10\%$ | | Endurance | | 1000 V _{RMS} for 0.1 s every hour | $ \Delta \tan \delta \le 0.008$ for $C \le 1 \mu F$ | | | | | $ \Delta \tan \delta \le 0.005 \text{ for C} > 1 \mu\text{F}$ | | | | | Voltage proof | | | | | R _{ins} ≥ 50% of initial limit | | Passive | IEC | Flame applied for a period of | В | | flammability | 60384-14:2013 | time depending on capacitor | | | | | volume | | | Active | IEC | 20 discharges at 2.5 kV + V _R | The cheesecloth shall not | | flammability | 60384-14:2013 | NOS 000 | burn with a flame | ### Mounting guidelines ### 1 Soldering ### 1.1 Solderability of leads The solderability of terminal leads is tested to IEC 60068-2-20, test Ta, method 1. Before a solderability test is carried out, terminals are subjected to accelerated ageing (to IEC 60068-2-2, test Ba: 4 h exposure to dry heat at $155\,^{\circ}$ C). Since the ageing temperature is far higher than the upper category temperature of the capacitors, the terminal wires should be cut off from the capacitor before the ageing procedure to prevent the solderability being impaired by the products of any capacitor decomposition that might occur. | Solder bath temperature | 235 ±5 °C | |-------------------------|---| | Soldering time | 2.0 ±0.5 s | | Immersion depth | 2.0 + 0/-0.5 mm from capacitor body or seating plane | | Evaluation criteria: | | | Visual inspection | Wetting of wire surface by new solder ≥90%, free-flowing solder | ### X1/330 V AC ### 1.2 Resistance to soldering heat Resistance to soldering heat is tested to IEC 60068-2-20, test Tb, method 1. Conditions: | Serie | s | Solder bath temperature | Soldering time | |------------|--|-------------------------|---| | MKT | boxed (except 2.5 × 6.5 × 7.2 mm) coated uncoated (lead spacing >10 mm) | 260 ±5 °C | 10 ±1 s | | MFP | | | | | MKP | (lead spacing >7.5 mm) | | | | MKT | boxed (case $2.5 \times 6.5 \times 7.2$ mm) | | 5 ±1 s | | MKP
MKT | (lead spacing ≤7.5 mm)
uncoated (lead spacing ≤10 mm)
insulated (B32559) | | <4 s recommended soldering profile for MKT uncoated (lead spacing ≤ 10 mm) and insulated (B32559) | | Immersion depth | 2.0 + 0/-0.5 mm from capacitor body or seating plane | | |----------------------|---|--| | Shield | Heat-absorbing board, (1.5 ±0.5) mm thick, between capacitor body and liquid solder | | | Evaluation criteria: | | | | Visual inspection | etion No visible damage | | | $\Delta C/C_0$ | 2% for MKT/MKP/MFP
5% for EMI suppression capacitors | | | $tan \delta$ | As specified in sectional specification | | X1/330 V AC #### 1.3 General notes on soldering Permissible heat exposure loads on film capacitors are primarily characterized by the upper category temperature T_{max} . Long exposure to temperatures above this type-related temperature limit can lead to changes in the plastic dielectric and thus change irreversibly a capacitor's electrical characteristics. For short exposures (as in practical soldering processes) the heat load (and thus the possible effects on a capacitor) will also depend on other factors like: - Pre-heating temperature and time - Forced cooling immediately after soldering - Terminal characteristics: diameter, length, thermal resistance, special configurations (e.g. crimping) - Height of capacitor above solder bath - Shadowing by neighboring components - Additional heating due to heat dissipation by neighboring components - Use of solder-resist coatings The overheating associated with some of these factors can usually be reduced by suitable countermeasures. For example, if a pre-heating step cannot be avoided, an additional or reinforced cooling process may possibly have to be included. #### Recommendations As a reference, the recommended wave soldering profile for our film capacitors is as follows: Ts: Capacitor body maximum temperature at wave soldering T_n: Capacitor body maximum temperature at pre-heating #### X1/330 V AC Body temperature should follow the description below: ■ MKP capacitor During pre-heating: $T_p \le 110 \, ^{\circ}\text{C}$ During soldering: $T_s \le 120 \, ^{\circ}\text{C}$, $t_s \le 45 \, \text{s}$ ■ MKT capacitor During pre-heating: $T_p \le 125 \, ^{\circ}C$ During soldering: $T_s \le 160 \, ^{\circ}C$, $t_s \le 45 \, s$ When SMD components are used together with leaded ones, the film capacitors should not pass into the SMD adhesive curing oven. The leaded components should be assembled after the SMD curing step. Leaded film capacitors are not suitable for reflow soldering. In order to ensure proper conditions for manual or selective soldering, the body temperature of the capacitor (T_s) must be \leq 120 °C. One recommended condition for manual soldering is that the tip of the soldering iron should be <360 °C and the soldering contact time should be no longer than 3 seconds. For uncoated MKT capacitors with lead spacings ≤10 mm (B32560/B32561) the following measures are recommended: - pre-heating to not more than 110 °C in the preheater phase - rapid cooling after soldering Please refer to our Film Capacitors Data Book in case more details are needed. X1/330 V AC #### Application note for the different possible X1 / X2 positions # In series with the powerline (i.e. capacitive power supply) Typical Applications: - Power meters - ECUs for white goods and household appliances - Different sensor applications - Severe ambient conditions #### Basic circuit #### Required features - High capacitance stability over the lifetime - Narrow tolerances for a controlled current supply ### Recommended product series - B3293* (305 V AC) heavy duty with EN approval for X2 (UL Q1/2010) - B3265* MKP series standard MKP capacitor without safety approvals - B3267*L MKP series standard MKP capacitor without safety approvals - B3292*H/J (305 V AC), severe ambient condition, approved as X2 #### In parallel with the powerline Typical Applications: Standard X2 are used parallel over the mains for reducing electromagnetic interferences coming from the grid. For such purposes they must meet the applicable EMC directives and standards. #### Basic circuit #### Required features - Standard safety approvals (ENEC, UL, CSA, CQC) - High pulse load capability - Withstand surge voltages ### Recommended product series - B3292*C/D (305 V AC) standard series, approved as X2 - B3291* (330 V AC), approved as X1 - B3291* (530 V AC), approved as X1 - B3291* (550 V AC), approved as X1 - B3292*H/J (305 V AC), severe ambient condition, approved as X2 #### X1/330 V AC ### Cautions and warnings - Do not exceed the upper category temperature (UCT). - Do not apply any mechanical stress to the capacitor terminals. - Avoid any compressive, tensile or flexural stress. - Do not move the capacitor after it has been soldered to the PC board. - Do not pick up the PC board by the soldered capacitor. - Do not place the capacitor on a PC board whose PTH hole spacing differs from the specified lead spacing. - Do not exceed the specified time or temperature limits during soldering. - Avoid external energy inputs, such as fire or electricity. - Avoid overload of the capacitors. - Consult us if application is with severe temperature and humidity condition. - There are no serviceable or repairable parts inside the capacitor. Opening the capacitor or any attempts to open or repair the capacitor will void the warranty and liability of TDK Electronics. - Please note that the standards referred to in this publication may have been revised in the meantime. The table below summarizes the safety instructions that must always be observed. A detailed description can be found in the relevant sections of the chapters "General technical information" and "Mounting guidelines". | Topic | Safety information | Reference chapter "General technical information" | |--------------------|---|---| | Storage conditions | Make sure that capacitors are stored within the specified range of time, temperature and humidity | 4.5 "Storage conditions" | | | conditions. | | | Flammability | Avoid external energy, such as fire or electricity | 5.3 | | | (passive flammability), avoid overload of the capacitors | "Flammability" | | | (active flammability) and consider the flammability of materials. | | | Resistance to | Do not exceed the tested ability to withstand vibration. | 5.2 | | vibration | The capacitors are tested to IEC 60068-2-6:2007. | "Resistance to | | | TDK Electronics offers film capacitors specially | vibration" | | | designed for operation under more severe vibration | | | | regimes such as those found in automotive | | | | applications. Consult our catalog "Film Capacitors for | | | | Automotive Electronics". | | | Topic | Safety information | Reference chapter "Mounting guidelines" | |---|---|--| | Soldering | Do not exceed the specified time or temperature limits during soldering. | 1 "Soldering" | | Cleaning | Use only suitable solvents for cleaning capacitors. | 2 "Cleaning" | | Embedding of
capacitors in
finished
assemblies | When embedding finished circuit assemblies in plastic resins, chemical and thermal influences must be taken into account. Caution: Consult us first, if you also wish to embed other uncoated component types! | 3 "Embedding of capacitors in finished assemblies" | #### Design of our capacitors Our EMI capacitors use polypropylene (PP) film metalized with a thin layer of Zinc (Zn). The following key points have made this design suitable to IEC/UL testing, holding a minimum size. - Overvoltage AC capability with very high temperature Endurance test of IEC 60384-14:2013 (4th edition) / UL 60384-14:2014 (2th edition) must be performed at 1.25 × V_R at maximum temperature, during 1000 hours, with a capacitance drift less than 10%. - Higher breakdown voltage withstanding if compared to other film metallizations, like Aluminum. IEC 60384-14:2013 (4th edition) / UL 60384-14:2014 (2nd edition) establishes high voltage tests performed at $4.3 \times V_R 1$ minute, impulse testing at 2500 V for C = 1 μ F and active flammability tests. - Damp heat steady state: 40 °C/ 93% RH / 56 days. (without voltage or current load) #### Effect of humidity on capacitance stability Long contact of a film capacitor with humidity can produce irreversible effects. Direct contact with liquid water or excess exposure to high ambient humidity or dew will eventually remove the film metallization and thus destroy the capacitor. Plastic boxed capacitors must be properly tested in the final application at the worst expected conditions of temperature and humidity in order to check if any parameter drift may provoke a circuit malfunction. In case of penetration of humidity through the film, the layer of Zinc can be degraded, specially under AC operation (change of polarity), accelerated by the temperature, provoking an increment of the serial resistance of the electrode and eventually a reduction of the capacitance value. For DC operation, the parameter drift is much less. Plastic boxes and resins can not protect 100% against humidity. Metal enclosures, resin potting or coatings or similar measures by customers in their applications will offer additional protection against humidity penetration. #### Display of ordering codes for TDK Electronics products The ordering code for one and the same product can be represented differently in data sheets, data books, other publications, on the company website, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the order- B32911*3 ... B32916*3 X1/330 V AC ing codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under www.tdk-electronics.tdk.com/orderingcodes. ### Symbols and terms | Symbol | English | German | | |-----------------------|---|---|--| | α | Heat transfer coefficient | Wärmeübergangszahl | | | α_{C} | Temperature coefficient of capacitance | Temperaturkoeffizient der Kapazität | | | Α | Capacitor surface area | Kondensatoroberfläche | | | β_{C} | Humidity coefficient of capacitance | Feuchtekoeffizient der Kapazität | | | C | Capacitance | Kapazität | | | C_R | Rated capacitance | Nennkapazität | | | ΔC | Absolute capacitance change | Absolute Kapazitätsänderung | | | ΔC/C | Relative capacitance change (relative deviation of actual value) | Relative Kapazitätsänderung (relative Abweichung vom lst-Wert) | | | $\Delta C/C_R$ | Capacitance tolerance (relative deviation from rated capacitance) | Kapazitätstoleranz (relative Abweichung vom Nennwert) | | | dt | Time differential | Differentielle Zeit | | | Δt | Time interval | Zeitintervall | | | ΔΤ | Absolute temperature change (self-heating) | Absolute Temperaturänderung (Selbsterwärmung) | | | ∆tan δ | Absolute change of dissipation factor | Absolute Änderung des Verlustfaktors | | | ΔV | Absolute voltage change | Absolute Spannungsänderung | | | dV/dt | Time differential of voltage function (rate of voltage rise) | Differentielle Spannungsänderung (Spannungsflankensteilheit) | | | ΔV/Δt | Voltage change per time interval | Spannungsänderung pro Zeitintervall | | | E | Activation energy for diffusion | Aktivierungsenergie zur Diffusion | | | ESL | Self-inductance | Eigeninduktivität | | | ESR | Equivalent series resistance | Ersatz-Serienwiderstand | | | f | Frequency | Frequenz | | | f ₁ | Frequency limit for reducing permissible AC voltage due to thermal limits | Grenzfrequenz für thermisch bedingte
Reduzierung der zulässigen
Wechselspannung | | | f ₂ | Frequency limit for reducing permissible AC voltage due to current limit | Grenzfrequenz für strombedingte
Reduzierung der zulässigen
Wechselspannung | | | f _r | Resonant frequency | Resonanzfrequenz | | | F _D | Thermal acceleration factor for diffusion | Therm. Beschleunigungsfaktor zur Diffusion | | | F_{T} | Derating factor | Deratingfaktor | | | i | Current (peak) | Stromspitze | | | I _C | Category current (max. continuous current) | Kategoriestrom (max. Dauerstrom) | | ### X1/330 V AC | Symbol | English | German | | |-------------------------------------|--|---|--| | I _{RMS} | (Sinusoidal) alternating current, | (Sinusförmiger) Wechselstrom | | | | root-mean-square value | | | | İz | Capacitance drift | Inkonstanz der Kapazität | | | k_o | Pulse characteristic | Impulskennwert | | | L _s | Series inductance | Serieninduktivität | | | λ | Failure rate | Ausfallrate | | | $\lambda_{ m o}$ | Constant failure rate during useful | Konstante Ausfallrate in der | | | | service life | Nutzungsphase | | | $\lambda_{ m test}$ | Failure rate, determined by tests | Experimentell ermittelte Ausfallrate | | | P_{diss} | Dissipated power | Abgegebene Verlustleistung | | | P_{gen} | Generated power | Erzeugte Verlustleistung | | | Q | Heat energy | Wärmeenergie | | | ρ | Density of water vapor in air | Dichte von Wasserdampf in Luft | | | R | Universal molar constant for gases | Allg. Molarkonstante für Gas | | | R | Ohmic resistance of discharge circuit | Ohmscher Widerstand des | | | | | Entladekreises | | | R_i | Internal resistance | Innenwiderstand | | | R _{ins} | Insulation resistance | Isolationswiderstand | | | R_P | Parallel resistance | Parallelwiderstand | | | R_s | Series resistance | Serienwiderstand | | | S | severity (humidity test) | Schärfegrad (Feuchtetest) | | | t | Time | Zeit | | | Т | Temperature | Temperatur | | | τ | Time constant | Zeitkonstante | | | $tan \delta$ | Dissipation factor | Verlustfaktor | | | $ an \delta_{\scriptscriptstyle D}$ | Dielectric component of dissipation factor | Dielektrischer Anteil des Verlustfaktors | | | $ an \delta_{\scriptscriptstyle P}$ | Parallel component of dissipation factor | Parallelanteil des Verlfustfaktors | | | tan $\delta_{ m S}$ | Series component of dissipation factor | Serienanteil des Verlustfaktors | | | T_A | Temperature of the air surrounding the component | Temperatur der Luft, die das Bauteil umgibt | | | T_{max} | Upper category temperature | Obere Kategorietemperatur | | | T _{min} | Lower category temperature | Untere Kategorietemperatur | | | toL | Operating life at operating temperature | Betriebszeit bei Betriebstemperatur und | | | т | and voltage | -spannung | | | Т _{ор} | Operating temperature, $T_A + \Delta T$
Rated temperature | Beriebstemperatur, $T_A + \Delta T$ | | | T _R | | Nenntemperatur | | | T _{ref} | Reference temperature | Referenztemperatur | | | t _{sl} | Reference service life | Referenz-Lebensdauer | | | Symbol | English | German | |---------------------|-----------------------------------|---------------------------------------| | $\overline{V_{AC}}$ | AC voltage | Wechselspannung | | $V_{\rm C}$ | Category voltage | Kategoriespannung | | $V_{C,RMS}$ | Category AC voltage | (Sinusförmige) | | | 100 | Kategorie-Wechselspannung | | V_{CD} | Corona-discharge onset voltage | Teilentlade-Einsatzspannung | | V_{ch} | Charging voltage | Ladespannung | | V_{DC} | DC voltage | Gleichspannung | | V_{FB} | Fly-back capacitor voltage | Spannung (Flyback) | | V_i | Input voltage | Eingangsspannung | | V_{o} | Output voltage | Ausgangssspannung | | V_{op} | Operating voltage | Betriebsspannung | | V_p | Peak pulse voltage | Impuls-Spitzenspannung | | V_{pp} | Peak-to-peak voltage Impedance | Spannungshub | | V_R | Rated voltage | Nennspannung | | ŶR | Amplitude of rated AC voltage | Amplitude der Nenn-Wechselspannung | | V_{RMS} | (Sinusoidal) alternating voltage, | (Sinusförmige) Wechselspannung | | | root-mean-square value | | | V_{SC} | S-correction voltage | Spannung bei Anwendung "S-correction" | | V_{sn} | Snubber capacitor voltage | Spannung bei Anwendung | | | | "Beschaltung" | | Z | Impedance | Scheinwiderstand | | е | Lead spacing | Rastermaß | #### Important notes The following applies to all products named in this publication: - 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, we are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether a product with the properties described in the product specification is suitable for use in a particular customer application. - 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component. - 3. The warnings, cautions and product-specific notes must be observed. - 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.tdk-electronics.tdk.com/material). Should you have any more detailed questions, please contact our sales offices. - 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products. - 6. Unless otherwise agreed in individual contracts, all orders are subject to our General Terms and Conditions of Supply. #### Important notes - 7. Our manufacturing sites serving the automotive business apply the IATF 16949 standard. The IATF certifications confirm our compliance with requirements regarding the quality management system in the automotive industry. Referring to customer requirements and customer specific requirements ("CSR") TDK always has and will continue to have the policy of respecting individual agreements. Even if IATF 16949 may appear to support the acceptance of unilateral requirements, we hereby like to emphasize that only requirements mutually agreed upon can and will be implemented in our Quality Management System. For clarification purposes we like to point out that obligations from IATF 16949 shall only become legally binding if individually agreed upon. - 8. The trade names EPCOS, CeraCharge, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CTVS, DeltaCap, DigiSiMic, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PowerHap, PQSine, PQvar, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.tdk-electronics.tdk.com/trademarks.