

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

April 2015

MCT5210M, MCT5211M 6-Pin DIP Low Input Current Phototransistor Optocouplers

Features

- High CTR_{CE(SAT)} Comparable to Darlingtons
- High Common Mode Transient Rejection: 5 kV/µs
- Data Rates Up to 150 kbits/s (NRZ)
- Safety and Regulatory Approvals:
 - UL1577, 4,170 VAC_{RMS} for 1 Minute
 - DIN-EN/IEC60747-5-5, 850 V Peak Working Insulation Voltage

Applications

- CMOS to CMOS/LSTTL Logic Isolation
- LSTTL to CMOS/LSTTL Logic Isolation
- RS-232 Line Receiver
- Telephone Ring Detector
- AC Line Voltage Sensing
- Switching Power Supply

Description

The MCT5210M and MCT5211M devices consist of a high-efficiency AlGaAs infrared emitting diode coupled with an NPN phototransistor in a six-pin dual-in-line package.

The devices are well suited for CMOS to LSTT/TTL interfaces, offering 250% CTR_{CE(SAT)} with 1 mA of LED input current. With an LED input current of 1.6 mA, data rates to 20K bits/s are possible.

Both can easily interface LSTTL to LSTTL/TTL, and with use of an external base-to-emitter resistor data rates of 100K bits/s can be achieved.

Schematic

ANODE 1 6 BASE CATHODE 2 5 COLLECTOR 4 EMITTER

Figure 1. Schematic

Package Outlines

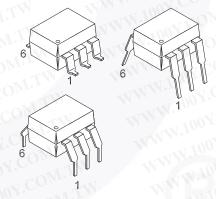


Figure 2. Package Outlines

Safety and Insulation Ratings

As per DIN EN/IEC 60747-5-5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Parameter	Characteristics	
Installation Classifications per DIN VDE	< 150 V _{RMS}	I–IV
0110/1.89 Table 1, For Rated Mains Voltage	< 300 V _{RMS}	I–IV
Climatic Classification	55/100/21	
Pollution Degree (DIN VDE 0110/1.89)	2	
Comparative Tracking Index	TW 1100Y.C	175

Symbol	Parameter	Value	Unit
N.COM	Input-to-Output Test Voltage, Method A, $V_{IORM} \times 1.6 = V_{PR}$, Type and Sample Test with $t_m = 10$ s, Partial Discharge < 5 pC	1360	V _{peak}
V _{PR}	Input-to-Output Test Voltage, Method B, V _{IORM} x 1.875 = V _{PR} , 100% Production Test with t _m = 1 s, Partial Discharge < 5 pC	1594	V _{peak}
V _{IORM}	Maximum Working Insulation Voltage	850	V _{peak}
V _{IOTM}	Highest Allowable Over-Voltage	6000	V _{peak}
Anny!	External Creepage	27	mm
Witne	External Clearance	≥7	mm
MM.Ino	External Clearance (for Option TV, 0.4" Lead Spacing)	≥ 10	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥ 0.5	mm
T _S	Case Temperature ⁽¹⁾	175	°C
I _{S,INPUT}	Input Current ⁽¹⁾	350	mA
P _{S,OUTPUT}	Output Power ⁽¹⁾	800	mW
R _{IO}	Insulation Resistance at T _S , V _{IO} = 500 V ⁽¹⁾	> 10 ⁹	Ω

Note:

1. Safety limit values – maximum values allowed in the event of a failure.

WWW.1001

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Parameters	Value	Unit
/ICE WWW. COMMENT WWW.COMMENT	WTY	
Storage Temperature	-40 to +125	°C
Operating Temperature	-40 to +100	°C
Junction Temperature	-40 to +125	°C
Lead Solder Temperature	260 for 10 seconds	°C
Total Device Power Dissipation @ 25°C (LED plus detector)	225	mW
Derate Linearly From 25°C	3.5	mW/°C
TW WWW. 100Y. CO. TW WWW.	1001. OM.TV	
Continuous Forward Current	50	mA
Reverse Input Voltage	6 7	V
Forward Current – Peak (1 µs pulse, 300 pps)	3.0	Α
LED Power Dissipation @ 25°C	75	mW
Derate Linearly From 25°C	1.0	mW/°C
CONTAIN MATERIAL CONTAIN	W.100 COM.	-X1
Continuous Collector Current	150	mA
Detector Power Dissipation @ 25°C	150	mW
Derate Linearly From 25°C	2.0	mW/°C
	Storage Temperature Operating Temperature Junction Temperature Lead Solder Temperature Total Device Power Dissipation @ 25°C (LED plus detector) Derate Linearly From 25°C Continuous Forward Current Reverse Input Voltage Forward Current — Peak (1 µs pulse, 300 pps) LED Power Dissipation @ 25°C Derate Linearly From 25°C R Continuous Collector Current Detector Power Dissipation @ 25°C	Storage Temperature Storage Temperature -40 to +125 Operating Temperature -40 to +100 Junction Temperature -40 to +125 Lead Solder Temperature 260 for 10 seconds Total Device Power Dissipation @ 25°C (LED plus detector) Derate Linearly From 25°C 3.5 Continuous Forward Current 50 Reverse Input Voltage 6 Forward Current — Peak (1 µs pulse, 300 pps) LED Power Dissipation @ 25°C Derate Linearly From 25°C 75 Derate Linearly From 25°C 1.0 Continuous Collector Current 150 Detector Power Dissipation @ 25°C 150

WWW.1001

Electrical Characteristics

Individual Component Characteristics

Symbol	Parameters	Test Conditions	Min.	Тур.	Max.	Unit
EMITTER	MMM. 100 Y. COM.	M. M.M. TOON CO.	WT			
V _F	Input Forward Voltage	I _F = 5 mA	Mr.	1.25	1.50	V
$\frac{\Delta V_F}{\Delta T_A}$	Forward Voltage Temperature Coefficient	I _F = 2 mA	$O_{M,1}$	1.75		mV/°C
V_{R}	Reverse Voltage	Ι _R = 10 μΑ	6	LA		V
CJ	Junction Capacitance	V _F = 0 V, f = 1.0 MHz		18		pF
DETECTO	R W WWW.	TW WWW.100	Y.CO	WILL	•	•
BV _{CEO}	Breakdown Voltage, Collector-to-Emitter	I _C = 1.0 mA, I _F = 0	30	100	J	V
BV _{CBO}	Breakdown Voltage, Collector-to-Base	$I_C = 10 \mu A, I_F = 0$	30	120	W	V
BV _{EBO}	Breakdown Voltage, Emitter-to-Base	$I_E = 10 \mu A, I_F = 0$	5	10	TW	V
I _{CER}	Dark Current, Collector-to-Emitter	$V_{CE} = 10 \text{ V}, I_F = 0, R_{BE} = 1 \text{ M}\Omega$	M.Ton	100	100	nA
C _{CE}	Capacitance, Collector-to-Emitter	V _{CE} = 0, f = 1 MHz	VV.100	10	$M_{\perp I_{\perp I_{\perp}}}$	pF
C _{CB}	Capacitance, Collector-to-Base	V _{CB} = 0, f = 1 MHz	-TVI 1	80	MITY	pF
C _{EB}	Capacitance, Emitter-to-Base	V _{EB} = 0, f = 1 MHz	VV 1 1	15	TIMO	pF

WWW.100Y.COM.TW

WWW.100X.

<u>10</u>0Y.COM.TW

WWW.100Y.COM.T

W.100Y.COM.TW

WWW.100Y.COM

WWW.1001

Electrical Characteristics (Continued)

 $T_A = 25$ °C unless otherwise specified.

Transfer Characteristics

Symbol	Characteristics	Test Condition	ns 100Y	Device	Min.	Тур.	Max.	Unit
DC CHARA	CTERISTICS	COM TW	N 43. 1003	COMITY				1
M.	Saturated Current	$I_F = 3.0 \text{ mA}, V_{CE} = 0.4 \text{ V}$	WW. 100	MCT5210M	60			%
CTR _{CE(SAT)}	Transfer Ratio	I _F = 1.6 mA, V _{CE} = 0.4 V		MCT5211M	100			%
	Collector-to-Emitter ⁽²⁾	I _F = 1.0 mA, V _{CE} = 0.4 V			75			%
CTR _(CE) Current Transfer Ratio Collector-to-Emitter ⁽²⁾	$I_F = 3.0 \text{ mA}, V_{CE} = 5.0 \text{ V}$		MCT5210M	70			%	
	I _F = 1.6 mA, V _{CE} = 5.0 V		MCT5211M	150	J		%	
	$I_F = 1.0 \text{ mA}, V_{CE} = 5.0 \text{ V}$	The state of the s	IVICTOZITIVI	110	· - < 1		%	
O.Y.Co.		$I_F = 3.0 \text{ mA}, V_{CE} = 4.3 \text{ V}$		MCT5210M	0.2	1		%
CTR _(CB)	CTR _(CB) Current Transfer Ratio Collector-to-Base ⁽³⁾	I _F = 1.6 mA, V _{CE} = 4.3 V		MCTE 211M	0.3	LIN		%
Collector-to-base	I _F = 1.0 mA, V _{CE} = 4.3 V		MCT5211M	0.25	TW		%	
VAN CO	Caturation Valtage	$I_F = 3.0 \text{ mA}, I_{CE} = 1.8 \text{ mA}$	W	MCT5210M	Cor	WILL	0.4	V
VCE(SAT)	$V_{CE(SAT)}$ Saturation Voltage $I_F = 1.6 \text{ mA}, I_{CE} = 1.$		N	MCT5211M	V.CO		0.4	V
AC CHARAC	CTERISTICS	TWW. June X COM.	N X	MANITOR	V.C)Mr.	W	
W.1001.	M.100X COM.LA	$R_L = 330 \Omega$, $R_{BE} = \infty$	$I_{\rm F} = 3.0 {\rm mA},$	MCT5210M -	av C	10		μs
		$R_L = 3.3 \text{ k}\Omega, R_{BE} = 39 \text{ k}\Omega$	$V_{CC} = 5.0 \text{ V}$		JU -	7	I	μs
A 100	Propagation Delay	$R_L = 750 \Omega$, $R_{BE} = \infty$	I _F = 1.6 mA,	- MCT5211M -	700 7.	14	L'ILA	μs
T _{PHL}	HIGH-to-LOW ⁽⁴⁾	$R_L = 4.7 \text{ k}\Omega, R_{BE} = 91 \text{ k}\Omega$	$V_{CC} = 5.0 \text{ V}$		1700	15	WIIN	μs
		$R_L = 1.5 \text{ k}\Omega, R_{BE} = \infty$	$I_{\rm F} = 1.0 {\rm mA},$		100	17	M.T	μs
		$R_L = 10 \text{ k}\Omega, R_{BE} = 160 \text{ k}\Omega$	$V_{CC} = 5.0 \text{ V}$		10	24	-N.T	μs
WWW	Propagation Delay LOW-to-HIGH ⁽⁵⁾	$R_L = 330 \Omega$, $R_{BE} = \infty$	$I_F = 3.0 \text{ mA},$ $V_{CC} = 5.0 \text{ V}$	MCT5210M		0.4	OF	μs
WWW		$R_L = 3.3 \text{ k}\Omega, R_{BE} = 39 \text{ k}\Omega$			WW.	8	$C_{O_{2a}}$	μs
		$R_L = 750 \Omega$, $R_{BE} = \infty$	I _F = 1.6 mA, V _{CC} = 5.0 V	MCT5211M -		2.5	I.COD	μs
T _{PLH}		$R_L = 4.7 \text{ k}\Omega, R_{BE} = 91 \text{ k}\Omega$				V-11	~ CO	μs
	W.100Y. COM.	$R_L = 1.5 \text{ k}\Omega, R_{BE} = \infty$	$I_F = 1.0 \text{ mA},$		77	7.0	-1 C	μs
	WALL TOOK CO.	$R_L = 10 \text{ k}\Omega, R_{BE} = 160 \text{ k}\Omega$	$V_{CC} = 5.0 \text{ V}$		MA	16	10 x.	μs

Notes:

- 2. DC Current Transfer Ratio (CTR_{CE}) is defined as the transistor collector current (I_{CE}) divided by the input LED current (I_F) x 100%, at a specified voltage between the collector and emitter (V_{CE}).
- The collector base Current Transfer Ratio (CTR_{CB}) is defined as the transistor collector base photocurrent (I_{CB}) divided by the input LED current (I_F) time 100%.
- 4. Referring to Figure 16 the T_{PHL} propagation delay is measured from the 50% point of the rising edge of the data input pulse to the 1.3 V point on the falling edge of the output pulse.
- 5. Referring to Figure 16 the T_{PLH} propagation delay is measured from the 50% point of the falling edge of data input pulse to the 1.3 V point on the rising edge of the output pulse.

Electrical Characteristics (Continued)

Isolation Characteristics

Electrical Characteristics (Continued)						
solation Symbol	Characteristics Characteristic	Test Conditions	Min.	√ Тур.	Max.	Unit
V _{ISO}	Input-Output Isolation Voltage ⁽⁶⁾	t = 1 Minute	4170	W		VAC _{RMS}
R _{ISO}	Isolation Resistance ⁽⁶⁾	V _{I-O} = ±500 VDC, T _A = 25°C	10 ¹¹	17.4		Ω
C _{ISO}	Isolation Capacitance ⁽⁷⁾	V _{I-O} = 0 V, f = 1 MHz	V.C	0.4	0.6	pF
CM _H	Common Mode Transient Rejection – Output HIGH	$V_{CM} = 50 V_{P-P}, R_L = 750 \Omega, I_F = 0$	ON.CO	5000		V/µs
CML	Common Mode Transient Rejection – Output LOW	$V_{CM} = 50 V_{P-P}, R_L = 750 \Omega, I_F = 1.6 \text{ mA}$	100X.C	5000	N	V/µs

100Y.COM.T

WWW.100Y.COM.

Notes:

- 6. Device considered a two terminal device: pins 1, 2, and 3 shorted together and pins 5, 6 and 7 are shorted together.
- 7. C_{ISO} is the capacitance between the input (pins 1, 2, 3 connected) and the output (pin 4, 5, 6 connected).

W.100Y.COM.TV

WWW.100Y.COM

WWW.1001

Typical Performance Curves

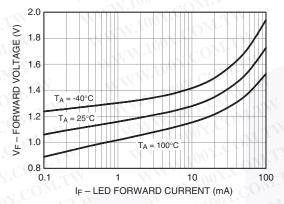


Figure 3. LED Forward Voltage vs. Forward Current

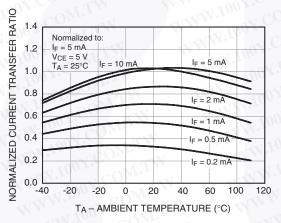


Figure 5. Normalized CTR vs. Temperature

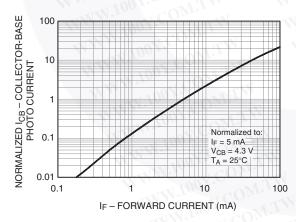


Figure 7. Normalized Collector Base Photocurrent Ratio vs. Forward Current

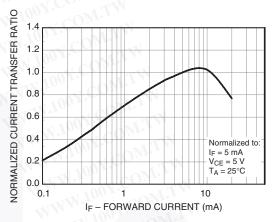


Figure 4. Normalized Current Transfer Ratio vs. Forward Current

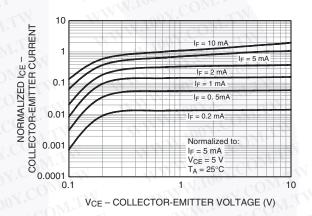


Figure 6. Normalized Collector vs. Collector-Emitter Voltage

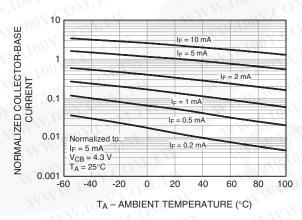


Figure 8. Normalized Collector-Base Current vs. Temperature

Typical Performance Curves (Continued)

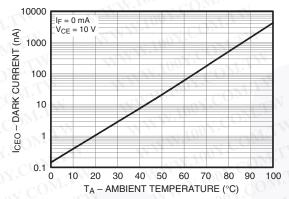


Figure 9. Collector-Emitter Dark Current vs. Ambient Temperature

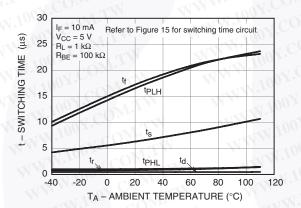


Figure 11. Switching Time vs. Ambient Temperature

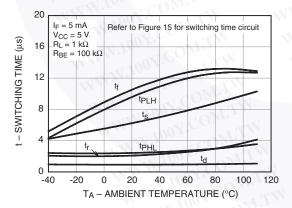


Figure 13. Switching Time vs.

Ambient Temperature

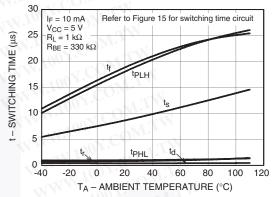


Figure 10. Switching Time vs. Ambient Temperature

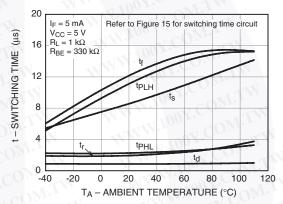


Figure 12. Switching Time vs. Ambient Temperature

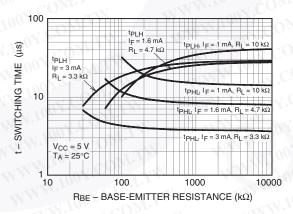


Figure 14. Switching Time vs. Base-Emitter Resistance

Switching Time Test Circuits and Waveforms

T_A = 25°C unless otherwise specified.

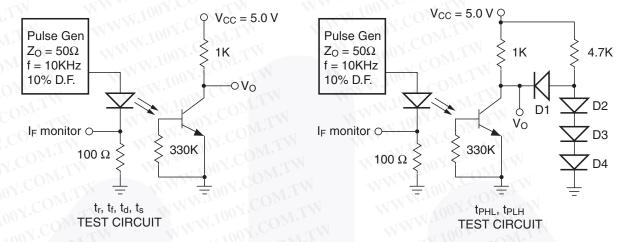


Figure 15. Switching Time Test Circuits

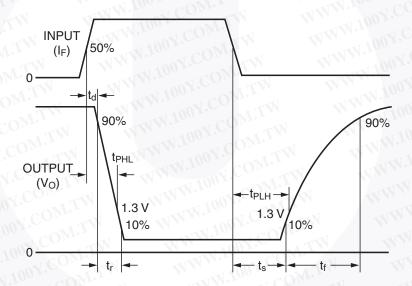
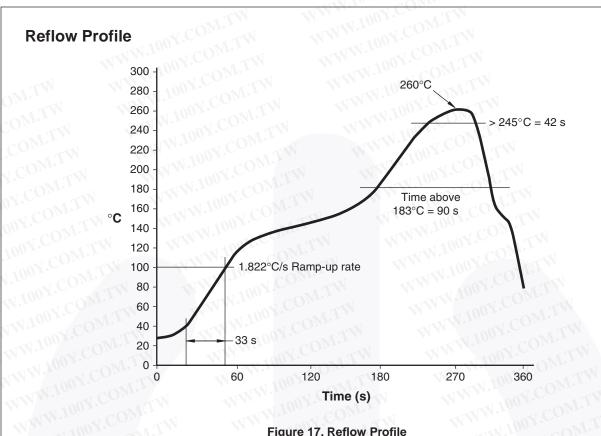



Figure 16. Switching Time Waveforms

100Y.COM.TV

Figure 17. Reflow Profile

W.100Y.COM.TW

WWW.100Y.CON

WWW.1007

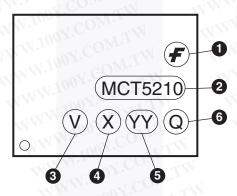
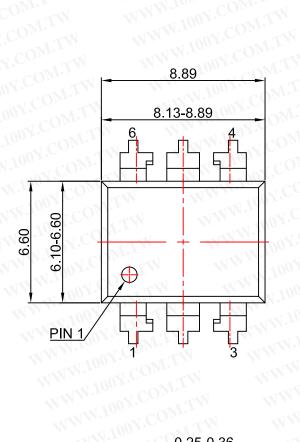
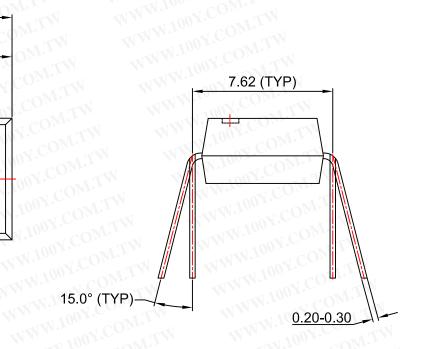
Ordering Information

Part Number	Package	Packing Method
MCT5210M	DIP 6-Pin	Tube (50 Units)
MCT5210SM	SMT 6-Pin (Lead Bend)	Tube (50 Units)
MCT5210SR2M	SMT 6-Pin (Lead Bend)	Tape and Reel (1000 Units)
MCT5210VM	DIP 6-Pin, DIN EN/IEC60747-5-5 Option	Tube (50 Units)
MCT5210SVM	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	Tube (50 Units)
MCT5210SR2VM	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	Tape and Reel (1000 Units)
MCT5210TVM	DIP 6-Pin, 0.4" Lead Spacing, DIN EN/IEC60747-5-5 Option	Tube (50 Units)

Note:

8. The product orderable part number system listed in this table also applies to the MCT5211M device.

Marking Information

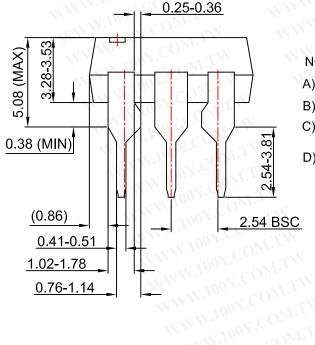
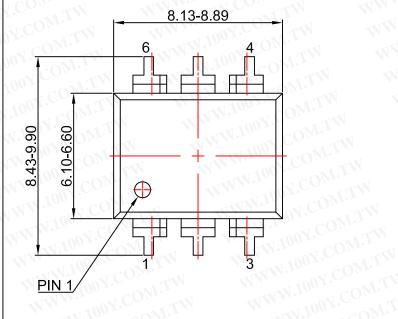

Figure 18. Top Mark

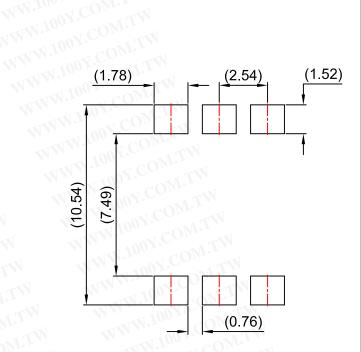
Table 1. Top Mark Definitions

1	Fairchild Logo
2	Device Number
3	DIN EN/IEC60747-5-5 Option (only appears on component ordered with this option)
4	One-Digit Year Code, e.g., "5"
5	Digit Work Week, Ranging from "01" to "53"
6	Assembly Package Code

NOTES:

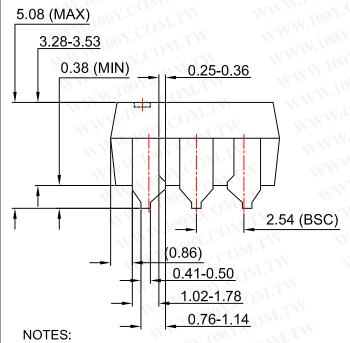
WW.100Y.COM.TW

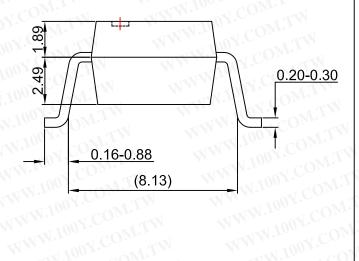

WWW.1007.CC


OOY.COM.TW

WWW.100X.COM.

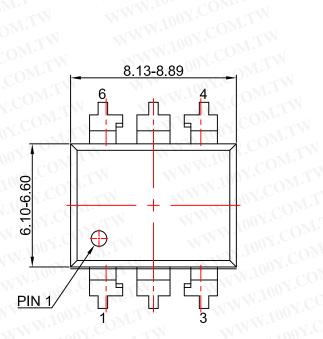
- A) NO STANDARD APPLIES TO THIS PACKAGE.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION
- D) DRAWING FILENAME AND REVSION: MKT-N06BREV4.

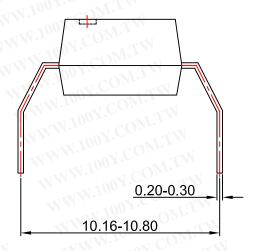


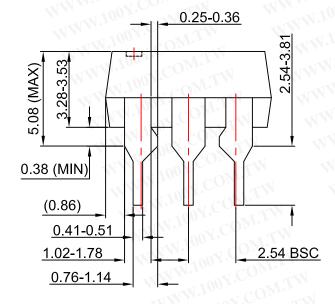


WWW.100X.CON

WWW.I


LAND PATTERN RECOMMENDATION





- A) NO STANDARD APPLIES TO THIS PACKAGE.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION
- D) DRAWING FILENAME AND REVSION: MKT-N06CREV4.

NOTES:

WWW.100X

WWW.100Y.COM.T

- A) NO STANDARD APPLIES TO THIS PACKAGE.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS. MOLD FLASH, AND TIE BAR EXTRUSION
- D) DRAWING FILENAME AND REVSION: MKT-N06Drev4

料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw