Analog－switching MOS FET Relays with DPST－NC Contact．

General－purpose Models Added．
－Switches minute analog signals．
－Switching AC and DC．
－General－purpose models（models with high ON resis－ tance）added to the series．

Note：The actual product is marked differently from the image shown here．

Application Examples

－Electronic automatic exchange systems
－Security systems
－Datacom（modem）systems
－FA systems
－Measurement devices

List of Models

Contact form	Terminals	Load voltage（peak value）	Model	Number per stick	Number per tape
DPST－NC	PCB terminals	350 VAC	G3VM－354C	50	－－－
			G3VM－354C1		
	Surface－mounting termi－ nals		G3VM－354F		
			G3VM－354F1		
			G3VM－354F（TR）	－－－	1，500
			G3VM－354F1（TR）		

Dimensions
Note：All units are in millimeters unless otherwise indicated．

Terminal Arrangement／Internal Connections（Top View）

G3VM－354C／C1

PCB Dimensions（Bottom View）
G3VM－354C／C1

G3VM－354F／F1

■ Actual Mounting Pad Dimensions （Recommended Value，Top View） G3VM－354F／F1

■ Absolute Maximum Ratings ($\mathbf{T a}=25^{\circ} \mathrm{C}$)

Item		Symbol	Rating	Unit	Measurement Conditions
Input	LED forward current	I_{F}	50	mA	
	Repetitive peak LED forward current	I_{FP}	1	A	$100 \mu \mathrm{~s}$ pulses, 100 pps
	LED forward current reduction rate	$\Delta \mathrm{I}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$	-0.5	$\mathrm{~mA} /{ }^{\circ} \mathrm{C}$	$\mathrm{Ta} \geq 25^{\circ} \mathrm{C}$
	LED reverse voltage	V_{R}	5	V	
	Connection temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$	
	Output dielectric strength	$\mathrm{V}_{\mathrm{OFF}}$	350	V	
	Continuous load current	I_{O}	$150(100)$	mA	
	ON current reduction rate	$\Delta \mathrm{I}_{\mathrm{ON}} /{ }^{\circ} \mathrm{C}$	$-1.5(-1)$	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$	$\mathrm{Ta} \geq 25^{\circ} \mathrm{C}$
	Connection temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$	
Dielectric strength between input and output (See note 1.)	$\mathrm{V}_{\mathrm{I}} \mathrm{O}$	2,500	Vrms	AC for 1 min	
Operating temperature	T_{a}	-40 to +85	${ }^{\circ} \mathrm{C}$	With no icing or condensation	
Storage temperature	$\mathrm{T}_{\mathrm{Stg}}$	-55 to +125	${ }^{\circ} \mathrm{C}$	With no icing or condensation	
Soldering temperature (10 s)	---	260	${ }^{\circ} \mathrm{C}$	10 s	

Note: 1. The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

Values in parentheses are for the G3VM-354C1/F1.
Electrical Characteristics ($\mathrm{Ta}=\mathbf{2 5}^{\circ} \mathrm{C}$)

Item		Symbol	Minimum	Typical	Maximum	Unit	Measurement conditions
Input	LED forward voltage	V_{F}	1.0	1.15	1.3	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
	Reverse current	I_{R}	---	---	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$
	Capacity between terminals	$\mathrm{C}_{\text {T }}$	---	30	---	pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$
	Trigger LED forward current	$\mathrm{I}_{\text {FT }}$	---	1	3	mA	$\mathrm{I}_{\text {OFF }}=10 \mu \mathrm{~A}$
Output	Maximum resistance with output ON	$\mathrm{R}_{\text {ON }}$	---	15 (30)	25 (50)	Ω	$\mathrm{I}_{\mathrm{O}}=150 \mathrm{~mA}$
	Current leakage when the relay is open	${ }_{\text {LEAK }}$	---	---	1.0	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\text {OFF }}=350 \mathrm{~V}$
Capacity between I/O terminals		$\mathrm{Cl}_{\text {-O }}$	---	0.8	---	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{Vs}=0 \mathrm{~V}$
Insulation resistance		$\mathrm{R}_{1-\mathrm{O}}$	1,000	---	---	$\mathrm{M} \Omega$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}-\mathrm{O}}=500 \mathrm{VDC}, \\ & \mathrm{RoH} \leq 60 \% \end{aligned}$
Turn-ON time		tON	---	$\begin{array}{\|l\|} \hline 0.1 \\ (0.25) \\ \hline \end{array}$	1.0 (0.5)	ms	$\begin{aligned} & I_{F}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=200 \Omega, \\ & \mathrm{~V}_{\mathrm{DD}}=20 \mathrm{~V} \text { (See note 2.) } \end{aligned}$
Turn-OFF time		tOFF	---	1.0 (0.5)	3.0 (1)	ms	

Note: 2. Turn-ON and Turn-OFF Times

Values in parentheses are for the G3VM-354C1/F1.

Recommended Operating Conditions

Use the G3VM under the following conditions so that the Relay will operate properly.

Item	Symbol	Minimum	Typical	Maximum	Unit
Output dielectric strength	V_{DD}	---	---	280	V
Operating LED forward current	I_{F}	5	--	25	mA
Continuous load current	I_{O}	--	--	$150(100)$	mA
Operating temperature	T_{a}	-20	--	65	${ }^{\circ} \mathrm{C}$

Values in parentheses are for the G3VM-354C1/F1.

Engineering Data

Load Current vs. Ambient Temperature

G3VM-354C(F)
G3VM-354C1/F1

Common Precautions

- \triangle WARNING

Be sure to turn OFF the power when wiring the Relay, otherwise an electric shock may be received.

- 1 WARNING

Do not touch the charged terminals of the SSR, otherwise an electric shock may be received.

Caution

Do not apply overvoltage or overcurrent to the I/O circuits of the SSR, otherwise the SSR may malfunction or burn.

- \triangle Caution

Be sure to wire and solder the Relay under the proper soldering conditions, otherwise the Relay in operation may generate excessive heat and the Relay may burn.

Typical Relay Driving Circuit Examples

Use the following formula to obtain the LED current limiting resistance value to assure that the relay operates accurately.

$$
R_{1}=\frac{V_{c c}-V_{o L}-V_{F}(O N)}{5 \text { to } 20 m A}
$$

Use the following formula to obtain the LED forward voltage value to assure that the relay releases accurately.

$$
\mathrm{V}_{\mathrm{F}(\mathrm{OFF})}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{OH}}<0.8 \mathrm{~V}
$$

Protection from Surge Voltage on the Input Terminals

If any reversed surge voltage is imposed on the input terminals, insert a diode in parallel to the input terminals as shown in the following circuit diagram and do not impose a reversed voltage value of 3 V or more.

Surge Voltage Protection Circuit Example

Protection from Spike Voltage on the Output Terminals

If a spike voltage exceeding the absolute maximum rated value is generated between the output terminals, insert a C-R snubber or clamping diode in parallel to the load as shown in the following circuit diagram to limit the spike voltage.
Spike Voltage Protection Circuit Example

Unused Terminals (6-pin models only)

Terminal 3 is connected to the internal circuit. Do not connect anything to terminal 3 externally.

Pin Strength for Automatic Mounting

In order to maintain the characteristics of the relay, the force imposed on any pin of the relay for automatic mounting must not exceed the following.

In direction A: 1.96 N In direction B: 1.96 N

Load Connection

Do not short-circuit the input and output terminals while the relay is operating or the relay may malfunction.

AC Connection

DC Single Connection

DC Parallel Connection

Solder Mounting

Perform solder mounting under the following recommended conditions to prevent the temperature of the Relays from rising.
<Flow Soldering>
Through-hole Mounting (Once Only)

Solder type	Preheating	Soldering
Lead solder	$150^{\circ} \mathrm{C}$	230 to $260^{\circ} \mathrm{C}$
SnPb	60 to 120 s	10 s max.
Lead-free solder	$150^{\circ} \mathrm{C}$	245 to $260^{\circ} \mathrm{C}$
SnAgCu	60 to 120 s	10 s max.

Note: We recommend that the suitability of solder mounting be verified under actual conditions.
<Reflow Soldering>
Surface Mounting DIP or SOP Packages (Twice Max.)

Solder type	Preheating	Soldering	
Lead solder	$140 \rightarrow 160^{\circ} \mathrm{C}$	$210^{\circ} \mathrm{C}$	Peak
SnPb	60 to 120 s	30 s max.	$240^{\circ} \mathrm{C}$ max.
Lead-free solder	$180 \rightarrow 190^{\circ} \mathrm{C}$	$230^{\circ} \mathrm{C}$	Peak
SnAgCu	60 to 120 s	30 to 50 s	$260^{\circ} \mathrm{C}$ max.

Surface Mounting SSOP Packages (Twice Max.)

Solder type	Preheating	Soldering	
Lead solder	$140 \rightarrow 160^{\circ} \mathrm{C}$	$210^{\circ} \mathrm{C}$	Peak
SnPb	60 to 120 s	30 s max.	$240^{\circ} \mathrm{C}$ max.
Lead-free solder	$150 \rightarrow 180^{\circ} \mathrm{C}$	$230^{\circ} \mathrm{C}$	Peak
SnAgCu	120 s max.	30 s max.	$250^{\circ} \mathrm{C}$ max.

Note: 1. We recommend that the suitability of solder mounting be verified under actual conditions.
2. Tape cut SSOPs are packaged without humidity resistance. Use manual soldering to mount them.

Manual Soldering (Once Only)

Manually solder at $350^{\circ} \mathrm{C}$ for 3 s or less or at $260^{\circ} \mathrm{C}$ for 10 s or less.

SSOP Handling Precautions

<Humidity-resistant Packaging>

Component packages can crack if surface-mounted components that have absorbed moisture are subjected to thermal stress when mounting. To prevent this, observe the following precautions.

1. Unopened components can be stored in the packaging at 5 to $30^{\circ} \mathrm{C}$ and a humidity of 90% max., but they should be used within 12 months.
2. After the packaging has been opened, components can be stored at 5 to $30^{\circ} \mathrm{C}$ and a humidity of 60% max., but they should be mounted within 168 hours.
3. If, after opening the packaging, the humidity indicator turns pink to the 30% mark or the expiration data is exceeded, bake the components while they are still on the taping reel, and use them within 72 hours. Do not bake the same components more than once.

Baking conditions: $60 \pm 5^{\circ} \mathrm{C}, 64$ to 72 h
Expiration date: 12 months from the seal date (given on the label)
4. If the same components are baked repeatedly, the tape detachment strength will change, causing problems when mounting. When mounting using dehumidifying measures, always take countermeasures against component damage from static electricity.
5. Do not throw or drop components. If the laminated packaging material is damaged, airtightness will be lost.
6. Tape cut SSOPs are packaged without humidity resistance. Use manual soldering to mount them.

