omROn

MOS FET Relays

New Series of Analog－switching MOS FET Relays with Dielectric Strength of 2.5 kVAC between I／O Using Optical Isolation
－Switches minute analog signals．
－Leakage current of $1 \mu \mathrm{~A}$ max．when output relay is open．
－Upgraded G3VM－4N Series．

Application Examples
－Electronic automatic exchange systems
－Measurement devices
－FA systems

7

Note：The actual product is marked differently from the image shown here．

List of Models

Contact form	Terminals	Load voltage（peak value）	Model	Number per stick	Number per tape
SPST－NO	PCB terminals	400 VAC	G3VM－401B	50	---
		Surface－mounting terminals		G3VM－401E	
		G3VM－401E（TR）	---	1,500	

Dimensions

Note：All units are in millimeters unless otherwise indicated．
G3VM－401B

G3VM－401E

Terminal Arrangement／Internal Connections（Top View）

G3VM－401B

PCB Dimensions（Bottom View）
G3VM－401B

G3VM－401E

Actual Mounting Pad Dimensions （Recommended Value，Top View）
G3VM－401E

■ Absolute Maximum Ratings（ $\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ ）

Item			Symbol	Rating	Unit	Measurement Conditions
Input	LED forward current		I_{F}	50	mA	
	Repetitive peak LED forward current		I_{FP}	1	A	100μ s pulses， 100 pps
	LED forward current reduction rate		$\Delta I_{F} /{ }^{\circ} \mathrm{C}$	－0．5	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$	$\mathrm{Ta} \geq 25^{\circ} \mathrm{C}$
	LED reverse voltage		V_{R}	5	V	
	Connection temperature		T_{j}	125	${ }^{\circ} \mathrm{C}$	
Output	Output dielectric strength		$\mathrm{V}_{\text {OFF }}$	400	V	
	Continuous load current	Connection A	Io	120	mA	
		Connection B		120		
		Connection C		240		
	ON current reduction rate	Connection A	$\triangle \mathrm{ION}^{1} \mathrm{C}$	－1．2	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$	$\mathrm{Ta} \geq 25^{\circ} \mathrm{C}$
		Connection B		－1．2		
		Connection C		－2．4		
	Connection temperature		T_{j}	125	${ }^{\circ} \mathrm{C}$	
Dielectric strength between input and output（See note 1．）			$\mathrm{V}_{\text {I－O }}$	2，500	Vrms	AC for 1 min
Operating temperature			T_{a}	-40 to +85	${ }^{\circ} \mathrm{C}$	With no icing or condensation
Storage temperature			$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$	With no icing or condensation
Soldering temperature（10 s）			－－－	260	${ }^{\circ} \mathrm{C}$	10 s

Note：1．The dielectric strength between the input and output was checked by applying voltage be－ tween all pins as a group on the LED side and all pins as a group on the light－receiving side．
Connection Diagram

Connection A	
Connection B	
Connection C	

■Electrical Characteristics（ $\mathrm{Ta}=25^{\circ} \mathrm{C}$ ）

Item			Symbol	Mini－ mum	Typical	Maxi－ mum	Unit	Measurement conditions
Input	LED forward voltage		V_{F}	1.0	1.15	1.3	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
	Reverse current		I_{R}	－－－	－－－	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$
	Capacity between terminals		$\mathrm{C}_{\text {T }}$	－－－	30	－－－	pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$
	Trigger LED forward current		I_{FT}	－－－	1	3	mA	$\mathrm{I}_{\mathrm{O}}=120 \mathrm{~mA}$
Output	Maximum resistance with output ON	Connection A	R_{ON}	－－－	17	35	Ω	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{O}}=120 \mathrm{~mA} \end{aligned}$
		Connection B		－－－	11	20	Ω	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{O}}=120 \mathrm{~mA} \end{aligned}$
		Connection C		－－－	6	10	Ω	$\begin{aligned} & I_{F}=5 \mathrm{~mA}, \\ & I_{O}=240 \mathrm{~mA} \end{aligned}$
	Current leakage when the relay is open		$\mathrm{I}_{\text {LEAK }}$	－－－	－－－	1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OFF }}=350 \mathrm{~V}$
Capacity between I／O terminals			$\mathrm{Cl}_{1-\mathrm{O}}$	－－－	0.8	－－－	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{Vs}=0 \mathrm{~V}$
Insulation resistance			$\mathrm{R}_{1-\mathrm{O}}$	1，000	－－－	－－－	$\mathrm{M} \Omega$	$\begin{aligned} & \mathrm{V}_{\mathrm{V}-\mathrm{O}}=500 \mathrm{VDC}, \\ & \mathrm{RoH} \leq 60 \% \end{aligned}$
Turn－ON time			tON	－－－	0.3	1.0	ms	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=200 \Omega$ ，
Turn－OFF time			tOFF	－－－	0.1	1.0	ms	20 V （See note 2．）

Note：2．Turn－ON and Turn－OFF Times

Recommended Operating Conditions

Use the G3VM under the following conditions so that the Relay will operate properly．

Item	Symbol	Minimum	Typical	Maximum	Unit
Output dielectric strength	V_{DD}	---	--	320	V
Operating LED forward current	I_{F}	5	7.5	25	mA
Continuous load current	I_{O}	---	--	120	mA
Operating temperature	T_{a}	-20	--	65	${ }^{\circ} \mathrm{C}$

Engineering Data

Load Current vs．Ambient Temperature G3VM－401B（E）

Safety Precautions

Refer to page 6 for precautions common to all G3VM models．

