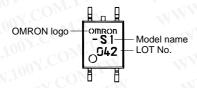


MOS FET Relay

G3VM-S1

MOS FET Relay for Switching Minute and Analog Signals in Low-profile Case (2.1 mm in height)


■ Switches minute signals and analog signals.

■ Switches AC and DC.

■ Low ON-resistance: 2 Ω.
■ UL/CS^ ~ ■ UL/CSA approval pending. WWW.100Y.COM.TW

Appearance

Note: "G3VM" is not printed on the actual product.

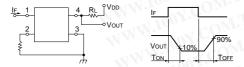
Ordering Information

Contact form	Terminals	Load voltage (peak value)	Model	Number per stick	Taping quantity
SPST-NO	Surface-mounting terminals	60 VAC	G3VM-S1	100	TV.COM
			G3VM-S1(TR)	1	2,500

Application Examples

- Electronic automatic exchange systems
- WWW.100Y.COM.TW Measuring control systems WWW.100Y.COM.TW
- Datacoms

Specifications


■ Absolute Maximum Ratings (Ta = 25°C)

	Item	Symbol	Rating	Conditions
	LED forward current	I _F	50 mA	En. IN
Input	LED forward current reduction rate	ΔI _F /°C	-0.5 mA/°C	Ta ≥ 25°C
	Repetitive peak LED forward current	I _{FP}	1 A (1)	100-µs pulses, 100 pps
	LED reverse voltage	V_{R}	5 V	T. OM.TW
	Permissible loss	Pin	50 mW	W.Co.
	Connection temperature	TJ	125°C	V.COM
I.COM	Load voltage	V _{OFF}	60 V	AC peak value
	Continuous load current	Io	300 mA	700 r. CONT. J.
Output	Peak load current	I _{peak}	0.9 A	
	Output loss	P _{out}	180 mW	- 00X:CO, CAM
	ON current reduction rate	ΔI _{ON} /°C	−3 mA/°C	Ta ≥ 25°C
Total pe	rmissible loss	P _T	230 mW	M. M. Too COM
Dielectri	ic strength between I/O terminals (See note.)	V_{I-O}	1,500 Vrms	AC, 1 min
Insulatio	on resistance	R _{I-O}	$5 \times 10^{10} \Omega$	V _S = 500 V, ambient operating humidity ≤ 60%
Storage temperature		Tstg	−55 to 100°C	WW.100X CONTA
Ambient	t operating temperature	Ta	-40 to 85°C	41 100 YOU THE

Note The dielectric strength between I/O terminals was measured with voltage applied to all of the input pins and all of the output pins.

■ Electrical Performance (Ta = 25°C)

11	Item	Symbol	Minimum	Standard	Maximum	Conditions
MW	LED forward current	V_{F}	1.0 V	1.15 V	1.3 V	I _F = 10 mA
Input	Reverse current	I _R	Tony.ce	TW	10 μΑ	V _R = 5 V
	Capacity between terminals	C _T	V.E. C	30 pF		V = 0, f = 1 MHz
O. stanisti	Maximum resistance with output ON	R _{ON}	W.100	1.4 Ω	2Ω	I _{ON} = 300 mA, I _F = 5 mA
Output	Current leakage when the relay is closed	I _{LEAK}	1 100 Y	COM	1 μΑ	V _{OFF} = 60 V
Turn-ON	l time	T _{ON}	1 100	0.9 ms	2 ms	$R_L = 200 \Omega$
Turn-OF	F time	T _{OFF}	WW.10	0.1 ms	1 ms	(See note.) $V_{DD} = 20 \text{ V},$ $I_F = 5 \text{ mA}$
Floating	capacity between I/O terminals	C _{I–O}	W As 1	0.8 pF	77.77	$V_S = 0 \text{ V}, f = 1 \text{ MHz}$

■ Recommended Operating Conditions

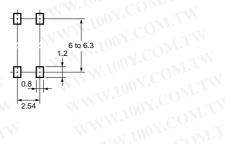
Item	Symbol	Minimum	Standard	Maximum
Operating voltage	V_{DD}	1/1/1/1	ON.TW	48 V
Forward current	F.COM	5 mA	7.5 mA	25 mA
Continuous load current	I _O CO	WWW.	-V.COM	300 mA
Operating temperature	Topr	-20°C	7100 COM.	65°C

W.100Y.COM.TW

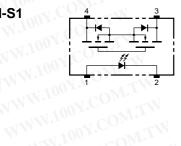

WWW.100Y.COM.

Dimensions

WWW.100Y.CC All units are in millimeters unless otherwise indicated.


G3VM-S1

WW.100Y.COM.TW WWW.100Y.COM.TV Actual Mounting Pad Dimensions (Recommended Value, Top View) WWW.100Y.COM


G3VM-S1 WWW.100Y.COM

Installation

■ Terminal Arrangement/Internal Connection (Top View)

G3VM-S1

Precautions

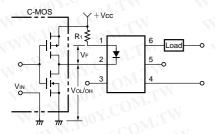
—! WARNING

Be sure to turn OFF the power when wiring the Relay, otherwise an electric shock may be received.

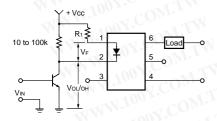
—! WARNING

Do not touch the charged terminals of the SSR, otherwise an electric shock may be received.

—! Caution


Do not apply overvoltage or overcurrent to the I/O circuits of the SSR, otherwise the SSR may malfunction or burn.

! Caution


Be sure to wire and solder the Relay under the proper soldering conditins, otherwise the Relay in operation may generate excessive heat and the Relay may burn.

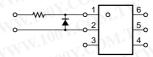
■ Correct Use

Typical Relat Driving Circuit Examples c-mos

Transistor

Use the following formula to obtain the LED current limiting resis tance value to assure that the relay operates accurately.

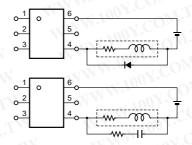
$$R_1 = \frac{V_{CC} - V_{OL} - V_F (ON)}{5 \text{ to 20 mA}}$$


Use the following formula to obtain the LED forward voltage value to assure that the relay releases accurately.

$$V_{\text{F (OFF)}} = V_{\text{CC}} - V_{\text{OH}} < 0.8 \text{ V}$$

Protection from Surge Voltage on the Input Terminals

If any reversed surge voltage is imposed on the input terminals, insert a diode in parallel to the input terminals as shown in the following circuit diagram and do not impose a reversed voltage value of 3 V or more.


Surge Voltage Protection Circuit Example

Protection from Spike Voltage on the Output Terminals

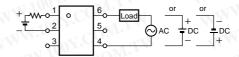
If a spike voltage exceeding the absolute maximum rated value is generated between the output terminals, insert a C-R snubber or clamping diode in parallel to the load as shown in the following circuit diagram to limit the spike voltage.

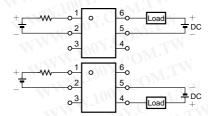
Spike Voltage Protection Circuit Example

Unused Terminals (6-pin only)

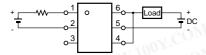
Terminal 3 is connected to the internal circuit. Do not connect anything to terminal 3 externally.

Pin Strength for Automatic Mounting

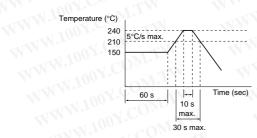

In order to maintain the characteristics of the relay, the force imposed on any pin of the relay for automatic mounting must not exceed the following.


Load Connection

Do not short-circuit the input and output terminals while the relay is operating or the relay may malfunction.


AC Connection

DC Single Connection


DC Parallel Connection

Solder Mounting

Maintain the following conditions during manual or reflow soldering of the relays in order to prevent the temperature of the relays from rising

- 1. Pin Soldering Solder each pin at a maximum temperature of 260°C within 10 s.
- 2. Reflow Soldering
 - a. Solder each pin at a maximum temperature of 260°C within 10 s.
 - b. Make sure that the ambient temperature on the surface of the resin casing is 240°C max. for 10 s maximum.
 - c. The following temperature changes are recommendable for soldering.

WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

Cat. No. K116-E1-1 In the interest of product improvement, specifications are subject to change without notice. WWW.100Y.COM.TV

OMRON Corporation

Electronics Components Company

Electronic & Mechanical Components Division H.Q. looy.COM.TW Low Signal Relay Division WWW.100Y.COM.TW 2-1, 2-chome, Nishikusatsu, Kusatsu-city, Shiga-pref., 525-0035 Japan WWW.100Y.COM.TW

Phone: (81)77-565-5481 Fax: (81)77-565-5581

Printed in Japan 0201-2M (0201) (A)

WWW.100

WI.MO: