
# Single-in-Line SIL/SIP Reed Relays

# Series 116

- 10 W, 0.5 A switching
- 1 Form A (SPST) or 2 Form A (DPST) N.O.
- 1 Form A stacks on 0.15 x 0.27 inches pitch
- Instrumentation grade switches with sputtered ruthenium contacts making them ideal for low level or "cold" switching applications
- Plastic package with internal mu-metal magnetic screen
- Take up minimum board area of only **0.15 x 0.27** inches; making it possible to increase the functionality of existing designs without increasing the size of PCB
- Insulation resistance >10<sup>12</sup> Ω
- 3, 5 or 12 V coils with optional internal back E.M.F suppression diode
- Additional build options are available
- Many benefits compared to industry standard relays (see last page)
- Suitable for high density instrumentation applications such as A.T.E. switching matrices or multiplexers.

The relays feature an internal mu-metal magnetic screen. Mu-metal has the advantage of a high permeability and low magnetic remanence and eliminates problems that would otherwise occur due to magnetic interaction. Interaction is usually measured as a percentage increase in the voltage required to operate a relay when additional relays, stacked each side, are themselves operated. An unscreened device mounted on this pitch would have an interaction figure of around 40 percent. Relays of this size without magnetic screening would therefore be totally unsuitable for applications where dense packing is required. To learn more visit: pickeringrelay.com/magnetic-interaction



# Example of Packing Density - Actual Size

| RELAY |
|-------|-------|-------|-------|-------|-------|-------|-------|
| RELAY |
| RELAY |
| RELAY |
| RELAY |
| RELAY |
| RELAY |
| RELAY |

In this small area of only 2.16 x 1.2 inches (5.48 x 3.05 cm), it is possible to construct an 8 x 8 matrix - 64, 1 Form A relays.

# Switch Ratings - Dry Switches

| 1 Form A (energize to make) | 2 Form A (energize to make) |
|-----------------------------|-----------------------------|
| 10 W at 200 V               | 10 W at 200 V               |



Http://www.100y.com.tw



#### Series 116 switch ratings - contact ratings for each switch type

| Switch<br>No | Switch<br>form | Power<br>rating | Max.<br>switch<br>current | Max.<br>carry<br>current | Max.<br>switching<br>volts | Life<br>expectancy<br>ops typical<br>(see Note <sup>1</sup> ) | Operate<br>time inc<br>bounce<br>(max) | Release<br>time | Special<br>features |
|--------------|----------------|-----------------|---------------------------|--------------------------|----------------------------|---------------------------------------------------------------|----------------------------------------|-----------------|---------------------|
| 2            | А              | 10 W            | 0.5 A                     | 0.5 A                    | 200 V                      | 10 <sup>8</sup>                                               | 0.5 ms                                 | 0.2 ms          | All applications    |

The reed switch in the Series 116 is suitable for low level or 'cold' switching. In accordance with Pickering convention, this switch is referred to as type number 2. There is no general purpose switch (type number 1) currently available in this series, but the type 2 is suitable for all applications if it is used within its specified ratings.

#### Note<sup>1</sup>: Life Expectancy

The life of a reed relay depends upon the switch load and end of life criteria. For example, for an 'end of life' contact resistance specification of 1  $\Omega$ , switching low loads (10 V at 10 mA resistive) or when 'cold' switching, typical life is approx 2.5 x 10<sup>8</sup> ops. At the maximum load (resistive), typical life is 10 x 10<sup>6</sup> ops. In the event of abusive conditions, e.g. high currents due to capacitive inrushes, this figure reduces considerably. Pickering will be pleased to perform life testing with any particular load condition.

# **Operating Voltages**

| Coil voltage - nominal | Must operate voltage - maximum at 25°C | Must release voltage - minimum at 25°C |
|------------------------|----------------------------------------|----------------------------------------|
| 3 V                    | 2.25 V                                 | 0.3 V                                  |
| 5 V                    | 3.75 V                                 | 0.5 V                                  |
| 12 V                   | 9 V                                    | 1.2 V                                  |

# Environmental Specification/Mechanical Characteristics

In the table below, the upper temperature limit can be extended to +125 °C if the coil drive voltage is increased to accommodate the resistance/temperature coefficient of the copper coil winding. This is approximately 0.4% per °C. This means that at 125 °C the coil drive voltage will need to be increased by approximately 40 x 0.4 =16% to maintain the required magnetic drive level. Please contact sales@pickeringrelay.com for assistance.

| Operating Temperature Range                        | -20°C to +85°C    |
|----------------------------------------------------|-------------------|
| Storage Temperature Range                          | -35 °C to +100 °C |
| Shock Resistance                                   | 50 g              |
| Vibration Resistance (10 - 2000 Hz)                | 20 g              |
| Soldering Temperature (max) (10 s max)             | 270 °C            |
| Washability (Proper drying process is recommended) | Fully Sealed      |

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw



#### Dry Relay: Series 116 Coil data and type numbers

|                                             | Type Number                   | Coil    | Coil           | Max.<br>contact         | (minimum           | resistance<br>n at 25 °C)<br>Note⁴) | Capacitance<br>(typical)<br>(see Note <sup>2, 3</sup> ) |                          |
|---------------------------------------------|-------------------------------|---------|----------------|-------------------------|--------------------|-------------------------------------|---------------------------------------------------------|--------------------------|
| Device Type                                 | rype Number                   | (V)     | resistance     | resistance<br>(initial) | Switch<br>to coil  | Across<br>switch                    | Closed<br>switch<br>to coil                             | Across<br>open<br>switch |
| 1 Form A                                    | 116-1-A-3/2D                  | 3       | 250 Ω          |                         |                    |                                     |                                                         |                          |
| Switch No. 2                                | 116-1-A-5/2D                  | 5       | 500 Ω          | 0.12 Ω                  | 10 <sup>12</sup> Ω | 10 <sup>12</sup> Ω                  | 2.1 pF                                                  | 0.2 pF                   |
| Package Type 1                              | 116-1-A-12/2D                 | 12      | 750 Ω          |                         |                    |                                     |                                                         |                          |
| 2 Form A,<br>Switch No. 2<br>Package Type 2 | 116-2-A-5/2D<br>116-2-A-12/2D | 5<br>12 | 375 Ω<br>750 Ω | 0.12 Ω                  | 10 <sup>12</sup> Ω | 10 <sup>12</sup> Ω                  | 2.1 pF                                                  | 0.2 pF                   |

When an internal diode is required, the suffix D is added to the part number as shown in the table.

#### Note<sup>2</sup>: Switch to Coil Capacitance

Due to the asymmetrical internal construction of the relay, the capacitance to the coil from one switch connection is approximately half the capacitance of the other switch connection, pin 3 is lower. In some applications this feature may be used to advantage for example, in a multiplexer where it is desirable to minimize the capacitance of the common connection to maximize bandwidth.

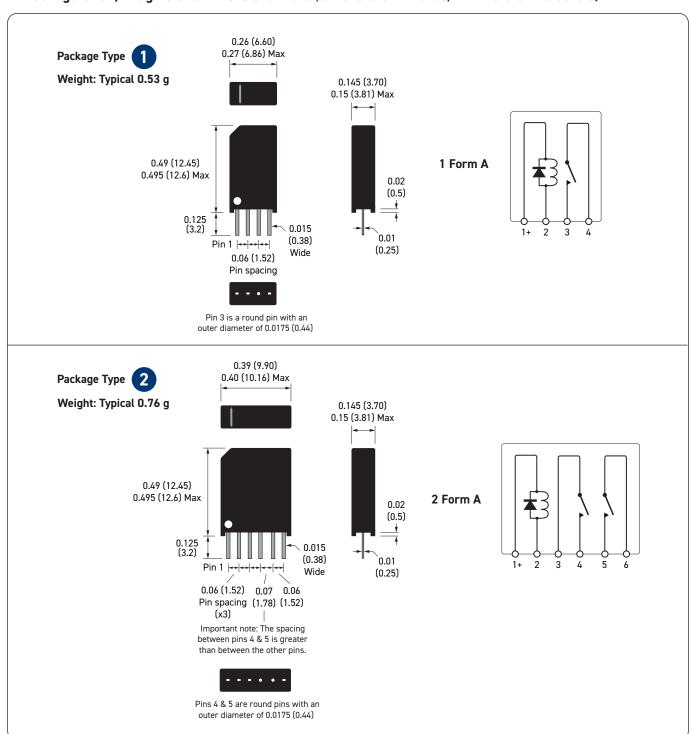
#### Note<sup>3</sup>: Capacitance across open switch

The capacitance across the open switch was measured with other connections guarded.

#### Note<sup>4</sup>: Insulation resistance

Insulation resistance will reduce at higher temperatures. For more information on temperature effects **click here**, or **contact Pickering** for more in depth guidance.

The technical information shown in this data sheet could contain inaccuracies or typographical errors. This information may be periodically changed or updated and these changes will be included in future versions of this data sheet.


For different values, latest specifications and product details, please contact your local Pickering sales office.

For FREE evaluation samples go to: pickeringrelay.com/samples

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw



Specification



Pin Configuration, Weights and Dimensional Data (dimensions in inches, millimeters in brackets)

**Important:** Where the optional internal diode is fitted the correct coil polarity must be observed, as shown by the + symbol on the schematics.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw



# Similar Relays Comparison

If the Series 116 is unsuitable for your application, Pickering also manufactures two other series of reed relays with similar characteristics, but in different package sizes.

| Series Name                       | 117-1-A                                   | 117-2-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 116-1-A         | 116-1-A 116-2-A 115               |           | -1-A                                | 115       | -2-A                       |
|-----------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------|-----------|-------------------------------------|-----------|----------------------------|
| Physical Outline                  | PROCESSING<br>PROCESSING<br>THIN ARE SHOT | PICKERNO<br>ERGINA<br>PICKERNO<br>ERGINA<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERNO<br>PICKERO | CREATED COLOR   | PICCERING<br>Expand<br>16-3-A 520 |           | Priceshve<br>Brander<br>Hisk-hadrid |           | KERING<br>Gund<br>Ar 12/00 |
| Depth                             | 3.7 (0.145))                              | 3.7 (0.145)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.7 (0.145))    | 3.7 (0.145)                       | 3.7 (0    | 0.145)                              | 3.7 (0    | .145)                      |
| Width (inches)                    | 6.6 (0.26)                                | 9.9 (0.39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.6 (0.26)      | 9.9 (0.39)                        | 6.6 (     | 0.26)                               | 9.9 (     | 0.39)                      |
| Height                            | 9.52 (0.375)                              | 9.52 (0.375)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.45 (0.49)    | 12.45 (0.49)                      | 15.5      | (0.61)                              | 15.5      | (0.61)                     |
| Package Volume<br>( <b>mm³</b> )  | 233                                       | 349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>1</b><br>304 | <b>2</b><br>456                   | 31        | 79                                  | 56        | 58                         |
| Typical Weights ( <b>g</b> )      | 0.38                                      | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.53            | 0.76                              | 0.66      |                                     | 0.91      |                            |
| Contact<br>Configuration          | 1-A<br>(SPST)                             | 2-A<br>(DPST)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-A<br>(SPST)   | 2-A<br>(DPST)                     | 1.<br>(SP | -A<br>IST)                          | 2-<br>(DP |                            |
| Reed Switch Type                  | Dry                                       | Dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dry             | Dry                               | Dry       | Dry                                 | Dry       |                            |
| Stand-off Voltage<br>( <b>V</b> ) | -                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -               | -                                 | -         | -                                   |           | -                          |
| Switching Voltage<br>( <b>V</b> ) | 170                                       | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200             | 200                               | 200       | 200                                 | 200       | 200                        |
| Switching Current<br>( <b>A</b> ) | 0.5                                       | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5             | 0.5                               | 1.0       | 0.5                                 | 1.0       | 0.5                        |
| Carry Current<br>( <b>A</b> )     | 0.5                                       | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5             | 0.5                               | 2.0       | 1.2                                 | 1.2       | 1.2                        |
| Switch Power<br>( <b>W</b> )      | 10                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10              | 10                                | 20/15     | 10                                  | 15        | 10                         |

# **Reed Relay Selection Tool**

Because Pickering offer the largest range of high-quality reed relays, sometimes it can be difficult to find the right reed relay you require. That is why we created the Reed Relay Selector, this tool will help you narrow down our offering to get you the correct reed relay for your application. To try the tool today go to: pickeringrelay.com/reed-relay-selector-tool

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

# **Standard Build Options**

The Series 116 Reed Relays are available with a number of standard build options to tailor them to your specific application. These options are detailed in the table below. If you decide to go ahead and specify one, or more, of these options you will be allocated a unique part number suffix.

| Mechanical Build Options                              | Electrical Build Options                                       |
|-------------------------------------------------------|----------------------------------------------------------------|
| Special pin configurations or pin lengths             | Different coil resistance                                      |
| Special print with customer's own part number or logo | Operate or de-operate time                                     |
| Custom packaging possibility                          | Pulse capability                                               |
|                                                       | Enhanced specifications                                        |
| 勝特力材料 886-3-5753170                                   | Non-standard coil voltages and resistance figures              |
| 胜特力电子(上海) 86-21-34970699<br>胜特力电子(深圳) 86-755-83298787 | Special Life testing under customer's specific load conditions |
| Http://www.100y.com.tw                                | Specific environmental requirements                            |
|                                                       | Controlled thermal EMF possibility                             |

#### Customization

If your specific requirements are not met by standard relay, or any of the standard build options, please speak to us to discuss producing a customized reed relay to service your specific application: pickeringrelay.com/contact

#### **3D Models**

Interactive 3D models of the complete range of Pickering relay products in STEP, IGS and SLDPRT formats can be downloaded from the website: pickeringrelay.com/3d-models

| Part Number Description:             |               | - A-  |  |  |
|--------------------------------------|---------------|-------|--|--|
| Series                               |               |       |  |  |
| Number of reeds                      |               |       |  |  |
| Switch form                          |               |       |  |  |
| Coil voltage ————                    |               |       |  |  |
| Switch number (only Type 2 avail     | able) ——      |       |  |  |
| Diode if fitted (omit if not require | d) ——— (b     |       |  |  |
| Unique suffix (if standard build o   | otion selecte | d) —— |  |  |

# Help

If you need any technical advice or other help, please do not hesitate to contact our Technical Sales Department. We will always be pleased to discuss Pickering relays with you. email: techsales@pickeringrelay.com

# **Contact Us**

| UK Headquarters - email: sales@pickeringrelay.com   Tel. +44 1255 428141                  |
|-------------------------------------------------------------------------------------------|
| USA - email: ussales@pickeringrelay.com   Tel. +1 781 897 1710                            |
| Germany - email: desales@pickeringtest.com   Tel. +49 89 125 953 160                      |
| France - email: frsales@pickeringtest.com Tel. +33 9 72 58 77 00 25+1                     |
| Nordic - email: ndsales@pickeringtest.com   Tel. +46 340 69 06 69                         |
| Czech Republic: czsales@pickeringtest.com   Tel. +420 558-987-613                         |
| China - email: chinasales@pickeringtest.com   Tel. +86 4008 799 765                       |
| For a full list of agents, distributors and representatives visit: pickeringrelay.com/age |



nts

# 10 Key Benefits of Pickering Reed Relays

| Key Benefit                                                | Pickering Reed Relays                                                                                                                                                                                                                                                                     | Typical Industry Reed Relays                                                                                                                                                                                                                                                                                                             |                                                                  |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| 1<br>Instrumentation Grade<br>Reed Switches                | Instrumentation Grade Reed Switches<br>with vacuum sputtered Ruthenium<br>plating to ensure stable, long life up to<br>5x10E9 operations.                                                                                                                                                 | Often low grade Reed Switches with<br>electroplated Rhodium plating resulting<br>in higher, less stable contact resistance.                                                                                                                                                                                                              |                                                                  |
| 2<br>Formerless Coil<br>Construction                       | Formerless coil construction increases<br>the coil winding volume, maximizing<br>magnetic efficiency, allowing the use of<br>less sensitive reed switches resulting in<br>optimal switching action and extended<br>lifetime at operational extremes.                                      | Use of bobbins decreases the coil<br>winding volume, resulting in having<br>less magnetic drive and a need to use<br>more sensitive reed switches which<br>are inherently less stable with greatly<br>reduced restoring forces.                                                                                                          | Pickering former-less coil Typical industry coil wound on bobbin |
| 3<br>Magnetic Screening                                    | Mu-metal magnetic screening (either<br>external or internal), enables ultra-high<br>PCB side-by-side packing densities with<br>minimal magnetic interaction, saving<br>significant cost and space. <b>Pickering</b><br><b>Mu-Metal magnetic screen - interaction</b><br><b>approx. 5%</b> | Lower cost reed relays have minimal<br>or no magnetic screening, resulting in<br>magnetic interaction issues causing<br>changes in operating and release<br>voltages, timing and contact resistance,<br>causing switches to not operate at their<br>nominal voltages. <b>Typical industry</b><br><b>screen - interaction approx. 30%</b> | X-Ray of Pickering<br>mu-metal<br>magnetic screen                |
| <b>④</b><br>SoftCenter™<br>Technology                      | <b>SoftCenter</b> <sup>™</sup> technology, provides maximum cushioned protection of the reed switch, minimising internal lifetime stresses and extending the working life and contact stability.                                                                                          | Transfer moulded reed relays (produced<br>using high temperature/pressure),<br>result in significant stresses to the glass<br>reed switch which can cause the switch<br>blades to deflect or misalign leading to<br>changes in the operating characteristics,<br>contact resistance stability and operating<br>lifetime.                 | Pickering<br>soft center<br>protection of<br>the reed switch     |
| 5<br>100% Dynamic<br>Testing                               | 100% testing for all operating<br>parameters including dynamic contact<br>wave-shape analysis with full data<br>scrutiny to maintain consistency.                                                                                                                                         | Simple dc testing or just batch testing<br>which may result in non-operational<br>devices being supplied.                                                                                                                                                                                                                                | Dynamic Contact Resistance Test                                  |
| 6<br>100% Inspection<br>at Every Stage of<br>Manufacturing | Inspection at every stage of manufacturing maintaining high levels of quality.                                                                                                                                                                                                            | Often limited batch inspection.                                                                                                                                                                                                                                                                                                          |                                                                  |
| 7<br>100% Thermal<br>Cycling                               | Stress testing of the manufacturing<br>processes, from -20°C to +85°C to -20°C,<br>repeated 3 times.                                                                                                                                                                                      | Rarely included resulting in field failures.                                                                                                                                                                                                                                                                                             | +85°C                                                            |
| 8<br>Flexible<br>Manufacturing<br>Process                  | Flexible manufacturing processes allow<br>quick-turn manufacturing of small<br>batches.                                                                                                                                                                                                   | Mass production: Usually large<br>batch sizes and with no quick-turn<br>manufacturing.                                                                                                                                                                                                                                                   | EASI                                                             |
| 9<br>Custom Reed Relays                                    | Our reed relays can be customized<br>easily, e.g. special pin configurations,<br>enhanced specifications, non-standard<br>coil or resistance figures, special life<br>testing, low capacitance, and more.                                                                                 | Limited ability to customize.                                                                                                                                                                                                                                                                                                            |                                                                  |
| D<br>Product Longevity                                     | Pickering are committed to product<br>longevity; our reed relays are<br>manufactured and supported for<br>more than 25 years from introduction,<br>typically much longer.                                                                                                                 | Most other manufacturers discontinue<br>parts when they reach a low sales<br>threshold; costing purchasing and R&D<br>a great deal of unnecessary time and<br>money to redesign and maintain supply.                                                                                                                                     | Product<br>25+Years<br>Longevity                                 |

7

For more information go to: pickeringrelay.com/10-key-benefits

