
Vishay Dale

特力材料886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Wirewound Resistors, **Precision Power, Surface Mount**

FEATURES

- All welded construction
- Molded encapsulation
- · Wraparound terminations
- Excellent stability at different environmental
- High power ratings (up to 3 W)
- Superior surge capability
- Available in non-inductive styles with Aryton-Perry winding (WSN in lieu of WSC, maximum resistance is one-half WSC range)
- Compliant to RoHS directive 2002/95/EC

RoHS* COMPLIANT

GLOBAL MODEL	HISTORICAL MODEL	SIZE	POWER RATING P _{70 °C}	TOLERANCE ± %	RESISTANCE RANGE	ENCAPSULATION
WSC01/2	WSC-1/2	2012	0.5	0.5, 1, 5	0.1 to 4.99	Epoxy
WSC0001	WSC-1	2515	1.0	0.5, 1, 5	0.1 to 2.77K	Thermoplastic (2)
WSC2515	WSC2515	2515	1.0	0.5, 1, 5 ⁽¹⁾	0.1 to 2.5K	Thermoplastic
WSC0002	WSC-2	4527	2.0	0.5, 1, 5	0.1 to 4.92K	Thermoplastic (2)
WSC4527	WSC4527	4527	2.0	0.5, 1, 5	0.1 to 4.92K	Thermoplastic
WSC6927	WSC6927	6927	3.0	0.5, 1, 5	0.1 to 8K	Thermoplastic

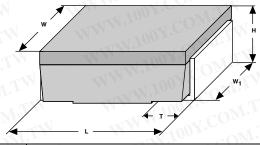
Part marking: 1/2 W - DALE, value; 1 W - model, value, tolerance, date code; 2 W and 3 W - DALE, model, value, tolerance, date code
 (1) 0.1 % and 0.25 % is available on the WSC2515 for 0.499 Ω to 2.5 kΩ range
 (2) As of 1/1/2010, the WSC0001 and WSC0002 are molded with thermoplastic in lieu of epoxy. Reference PCN-DR-002-2009 and PCN-DR-003-2009.

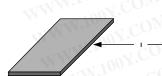
PARAMETER	UNIT	WSC01/2	WSC0001	WSC2515	WSC0002	WSC4527/WSC6927
Temperature Coefficient	ppm/°C	0.1 Ω to 0.99 $\Omega = \pm 90$ 1.0 Ω to 4.99 $\Omega = \pm 50$	0.1 Ω to 0.99 Ω = ± 90 1.0 Ω to 26.5 Ω = ± 50 26.51 Ω and above = ± 20	0.1 Ω to 0.3 Ω = ± 150 0.31 Ω to 0.99 Ω = ± 90 1.0 Ω to 26.5 Ω = ± 50 26.51 Ω and above = ± 20	0.1 Ω to 0.99 Ω = \pm 90 1.0 Ω to 9.9 Ω = \pm 50 10.0 Ω and above = \pm 20	0.1 Ω to 0.3 Ω = ± 150 0.31 Ω to 0.99 Ω = ± 90 1.0 Ω to 9.9 Ω = ± 50 10 Ω and above = ± 20
Dielectric Withstanding Voltage	V _{AC}	> 500	> 500	> 500	> 500	> 500
Insulation Resistance	Ω	> 109	> 10 ⁹	> 10 ⁹	> 10 ⁹	> 10 ⁹
Operating Temperature Range	°C	- 65 to + 175	- 65 to + 275	- 65 to + 275	- 65 to + 275	- 65 to + 275
Maximum Working Voltage	V	$(P \times R)^{1/2}$	(P x R) ^{1/2}	$(P \times R)^{1/2}$	$(P \times R)^{1/2}$	$(P \times R)^{1/2}$
Weight/1000 pieces (typical)	g	90	165	165	760	760/1675

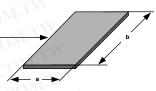
GLOBAL MODEL SIZE VALUE TOLERANCE PACKAGING SPECIAL WSC 0001 $K = 1.5 \text{ k}\Omega$ $K = 1.0 $	WS	C 2 5	1 5 R	7 0 (0 0 F E A	1007
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	GLOBAL MODEL	SIZE	VALUE	TOLERANCE	PACKAGING	SPECIAL
		0001 2515 0002 4527	K = Thousand $R7000 = 0.70 \Omega$	$C = \pm 0.25 \% $ (3) $D = \pm 0.5 \%$ $F = \pm 1.0 \%$ $G = \pm 2.0 \%$ $H = \pm 3.0 \%$ $J = \pm 5.0 \%$	EK = Lead (Pb)-free, bulk TA = Tin/lead, tape/reel (R86)	(Up to 2 digits) From 1 to 99
	HISTORICAL M	ODEL	RESISTANCE VALUE	то	_ERANCE PA	CKAGING

(3) WSC2515 only

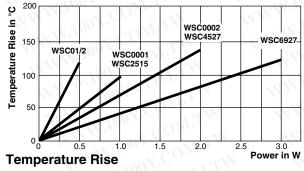
* Pb containing terminations are not RoHS compliant, exemptions may apply

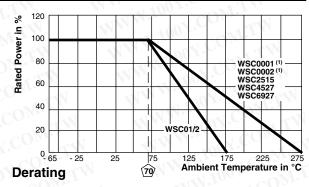

Wirewound Resistors, Precision Power, Surface Mount


Vishay Dale


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699

胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw


DIMENSIONS in inches (millimeters)



MODEL	DIMENSIONS						SOLDER PAD DIMENSIONS		
MODEL	L	H	LONE	W	W ₁	a	b	I	
WSC01/2	0.200 ± 0.020 [5.08 ± 0.508]	0.096 ± 0.015 [2.44 ± 0.381]	0.040 ± 0.010 [1.02 ± 0.254]	0.125 ± 0.005 [3.18 ± 0.127]	0.050 ± 0.010 [1.27 ± 0.254]	0.085 [2.16]	0.070 [1.78]	0.080 [2.03]	
WSC0001	0.250 ± 0.020 [6.35 ± 0.508]	0.110 ± 0.015 [2.79 ± 0.381]	0.045 ± 0.010 [1.14 ± 0.254]	0.150 ± 0.005 [3.81 ± 0.127]	0.098 ± 0.005 [2.49 ± 0.127]	0.090 [2.29]	0.115 [2.92]	0.120 [3.05]	
WSC2515	0.250 ± 0.020 [6.35 ± 0.508]	0.110 ± 0.015 [2.79 ± 0.381]	0.045 ± 0.010 [1.14 ± 0.254]	0.150 ± 0.005 [3.81 ± 0.127]	0.098 ± 0.005 [2.49 ± 0.127]	0.090 [2.29]	0.115 [2.92]	0.120 [3.05]	
WSC0002	0.445 ± 0.032 [11.30 ± 0.813]	0.162 ± 0.015 [4.11 ± 0.381]	0.100 ± 0.010 [2.54 ± 0.254]	0.275 ± 0.005 [6.98 ± 0.127]	0.215 ± 0.005 [5.46 ± 0.127]	0.155 [3.94]	0.230 [5.84]	0.205 [5.21]	
WSC4527	0.455 ± 0.020 [11.56 ± 0.508]	0.167 ± 0.010 [4.24 ± 0.254]	0.100 ± 0.010 [2.54 ± 0.254]	0.275 ± 0.005 [6.98 ± 0.127]	0.215 ± 0.005 [5.46 ± 0.127]	0.155 [3.94]	0.230 [5.84]	0.205 [5.21]	
WSC6927	0.690 ± 0.032 [17.53 ± 0.813]	0.280 ± 0.015 [7.11 ± 0.381]	0.100 ± 0.010 [2.54 ± 0.254]	0.275 ± 0.005 [6.98 ± 0.127]	0.215 ± 0.015 [5.46 ± 0.381]	0.155 [3.94]	0.235 [5.97]	0.470 [11.94]	

Note

(1) As of 1/1/2010, WSC0001 and WSC0002 will be molded with thermoplastic and have the higher 275 °C temperature derating

PERFORMANCE						
TEST	CONDITIONS OF TEST	TEST LIMITS				
Thermal Shock	- 55 °C to + 150 °C, 1000 cycles, 15 min at each extreme	$\pm (0.5 \% + 0.05 \Omega) \Delta R$				
Short Time Overload	5 x rated power for 5 s	± (0.2 % + 0.05 Ω) ΔR				
Low Temperature Storage	- 65 °C for 24 h	± (0.2 % + 0.05 Ω) ΔR				
High Temperature Exposure	1000 h at + 275 °C (+ 175 °C for WSC01/2)	± (0.5 % + 0.05 Ω) ΔR				
Bias Humidity	+ 85 °C, 85 % RH, 10 % Bias, 1000 h	± (0.2 % + 0.05 Ω) ΔR				
Mechanical Shock	100 g's for 11 ms, 5 pulses	± (0.1 % + 0.05 Ω) ΔR				
Vibration	Frequency varied 10 Hz to 500 Hz in 1 min, 3 directions, 9 h	± (0.1 % + 0.05 Ω) ΔR				
Load Life	1000 h at rated power, + 70 °C, 1.5 h "ON", 0.5 h "OFF"	± (1.0 % + 0.05 Ω) ΔR				
Resistance to Solder Heat	+ 260 °C solder, 10 s to 12 s dwell, 25 mm/s emergence	$\pm (0.5 \% + 0.05 \Omega) \Delta R$				

PACKAGING	MAM. TOOX.CO.	TW WW	TI 100Y.CO. TY	WW. 10
MODEL	M. To COM	R	EEC.	N XXV
MODEL	TAPE WIDTH	DIAMETER	PIECES/REEL	CODE
WSC01/2	12 mm/embossed plastic	330 mm/13"	2000	EA/TA
WSC0001/WSC2515	16 mm/embossed plastic	330 mm/13"	2000	EA/TA
WSC0002/WSC4527	24 mm/embossed plastic	330 mm/13"	1200	EA/TA
WSC6927	32 mm/embossed plastic	330 mm/13"	725	EA/TA

Note

• Embossed Carrier Tape per EIA-481-1, 2, 3

Vishav

Disclaimer

W.100Y.COM All product specifications and data are subject to change without notice.

> Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

> Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

> No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

> The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Revision: 18-Jul-08

WW.100Y.COM.TW WWW.100Y.CON Document Number: 91000 www.vishay.com