

## FDMA910PZ

Single P－Channel PowerTrench ${ }^{\circledR}$ MOSFET －20 V，－9．4 A， $20 \mathrm{~m} \Omega$

## Features

■ Max $r_{D S(o n)}=20 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-9.4 \mathrm{~A}$
－Max $\mathrm{r}_{\mathrm{DS}(\mathrm{on})}=24 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{GS}}=-2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-8.6 \mathrm{~A}$
－Max $\mathrm{r}_{\mathrm{DS}(\mathrm{on})}=34 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{GS}}=-1.8 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-7.2 \mathrm{~A}$
■ Low Profile－ 0.8 mm maximum in the new package MicroFET $2 \times 2 \mathrm{~mm}$

■ HBM ESD protection level $>2.8 \mathrm{k}$ V typical（Note 3）
■ Free from halogenated compounds and antimony oxides
－RoHS Compliant

## General Description

This device is designed specifically for battery charge or load switching in cellular handset and other ultraportable applications．It features a MOSFET with low on－state resistance and zener diode protection against ESD．The MicroFET 2X2 package offers exceptional thermal performance for its physical size and is well suited to linear mode applications．


MicroFET 2X2（Bottom View）
MOSFET Maximum Ratings $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted

| Symbol |  | Parameter | Ratings | Units |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{DS}}$ | Drain to Source Voltage |  | －20 | V |
| $\mathrm{V}_{\mathrm{GS}}$ | Gate to Source Voltage | anlo．－ | $\pm 8$ | V |
| ID | －Continuous | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad$（Note 1a） | －9．4 | A |
|  | －Pulsed | $\cdots$ | －45 |  |
| $\mathrm{P}_{\mathrm{D}}$ | Power Dissipation | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad$（Note 1a） | 2.4 | W |
|  | Power Dissipation | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$（Note 1b） | 0.9 |  |
| $\mathrm{T}_{\mathrm{J},}, \mathrm{T}_{\text {STG }}$ | Operating and Storage Jun | Temperature Range | －55 to＋150 | ${ }^{\circ} \mathrm{C}$ |

Thermal Characteristics

| $\mathrm{R}_{\theta J \mathrm{JA}}$ | Thermal Resistance，Junction to Ambient | （Note 1a） | 52 |
| :--- | :--- | :---: | :---: | :---: |
| $\mathrm{R}_{\theta \mathrm{JA}}$ | Thermal Resistance，Junction to Ambient | （Note 1b） | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

## Package Marking and Ordering Information

| Device Marking | Device | Package | Reel Size | Tape Width | Quantity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 910 | FDMA910PZ | MicroFET 2X2 | $7 "$ | 12 mm | 3000 units |

Electrical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted

| Symbol | Parameter | Test Conditions | Min | Typ | Max | Units |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Off Characteristics

| $\mathrm{BV}_{\mathrm{DSS}}$ | Drain to Source Breakdown Voltage | $\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ | -20 |  | V |  |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\frac{\Delta \mathrm{BV}_{\mathrm{DSS}}}{}$ | Breakdown Voltage Temperature <br> Coefficient | $\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$, referenced to $25^{\circ} \mathrm{C}$ |  | -12 |  | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ |
| $\frac{\mathrm{I}_{\mathrm{J}}}{}$ | Zero Gate Voltage Drain Current | $\mathrm{V}_{\mathrm{DS}}=-16 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ |  |  | -1 | $\mu \mathrm{~A}$ |
| $\mathrm{I}_{\mathrm{GSS}}$ | Gate to Source Leakage Current | $\mathrm{V}_{\mathrm{GS}}= \pm 8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |  |  | $\pm 1$ | $\mu \mathrm{~A}$ |

## On Characteristics

| $\mathrm{V}_{\mathrm{GS} \text { (th) }}$ | Gate to Source Threshold Voltage | $\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$ | -0.4 | -0.5 | -1.5 | V |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{\Delta \mathrm{V}_{\mathrm{GS}(\mathrm{th})}}{\Delta \mathrm{T}_{\mathrm{J}}}$ | Gate to Source Threshold Voltage Temperature Coefficient | $\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$, referenced to $25^{\circ} \mathrm{C}$ |  | 3 |  | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ |
| $\mathrm{r}_{\text {DS(on) }}$ | Static Drain to Source On Resistance | $\mathrm{V}_{G S}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-9.4 \mathrm{~A}$ |  | 16 | 20 | $\mathrm{m} \Omega$ |
|  |  | $\mathrm{V}_{\mathrm{GS}}=-2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-8.6 \mathrm{~A}$ |  | 19 | 24 |  |
|  |  | $\mathrm{V}_{G S}=-1.8 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-7.2 \mathrm{~A}$ |  | 24 | 34 |  |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-9.4 \mathrm{~A}, \\ & \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{aligned}$ |  | 20 | 25 |  |
| $\mathrm{g}_{\mathrm{FS}}$ | Forward Transconductance | $\mathrm{V}_{\mathrm{DD}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-9.4 \mathrm{~A}$ |  | 52 |  | S |

## Dynamic Characteristics

| $C_{\text {iss }}$ | Input Capacitance | $\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$, | 2110 | 2805 | pF |  |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| $\mathrm{C}_{\text {oss }}$ | Output Capacitance | $\mathrm{f}=1 \mathrm{MHz}$ |  | 414 | 620 | pF |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance |  |  | 388 | 580 | pF |

## Switching Characteristics

| $\mathrm{t}_{\mathrm{d}(\mathrm{on})}$ | Turn-On Delay Time | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-9.4 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=6 \Omega \end{aligned}$ |  | 9.4 | 19 | ns |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{r}}$ | Rise Time |  |  | 19 | 34 | ns |
| $\mathrm{t}_{\mathrm{d} \text { (off) }}$ | Turn-Off Delay Time |  |  | 135 | 216 | ns |
| $\mathrm{t}_{\mathrm{f}}$ | Fall Time |  |  | 103 | 165 | ns |
| $\mathrm{Q}_{\mathrm{g}}$ | Total Gate Charge | $\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=-10 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=-9.4 \mathrm{~A} \end{aligned}$ |  | 21 | 29 | nC |
| $\mathrm{Q}_{\mathrm{gs}}$ | Gate to Source Charge |  |  | 2.5 |  | nC |
| $\mathrm{Q}_{\mathrm{gd}}$ | Gate to Drain "Miller" Charge |  |  | 6 |  | nC |

Drain-Source Diode Characteristics

| $V_{\text {SD }}$ | Source to Drain Diode Forward Voltage | $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-2 \mathrm{~A} \quad$ (Note 2) | -0.6 | -1.2 | V |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-9.4 \mathrm{~A} \quad$ (Note 2) | -0.8 | -1.2 | V |
| $\mathrm{t}_{\mathrm{rr}}$ | Reverse Recovery Time | $\mathrm{I}_{\mathrm{F}}=-9.4 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$ | 23 | 37 | ns |
| $\mathrm{Q}_{\mathrm{rr}}$ | Reverse Recovery Charge |  | 6.3 | 13 | nC |

## NOTES

1. $R_{\theta J A}$ is determined with the device mounted on a 1 in $^{2}$ pad 2 oz copper pad on a $1.5 \times 1.5 \mathrm{in}$. board of FR-4 material. $R_{\theta J C}$ is guaranteed by design while $R_{\theta J A}$ is determined by the user's board design

2. Pulse Test: Pulse Width < $300 \mu \mathrm{~s}$, Duty cycle < $2.0 \%$.
3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied

Typical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted


Figure 1. On-Region Characteristics


Figure 3. Normalized On-Resistance vs Junction Temperature


Figure 5. Transfer Characteristics


Figure2. Normalized On-Resistance vs Drain Current and Gate Voltage


Figure 4. On-Resistance vs Gate to Source Voltage


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted


Figure 7. Gate Charge Characteristics


Figure 9. Gate Leakage Current vs Gate to Source Voltage


Figure8. Capacitance vs Drain to Source Voltage


Figure 10. Forward Bias Safe Operating Area


Figure 11. Single Pulse Maximum Power Dissipation

Typical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted


## Dimensional Outline and Pad Layout




RECOMMENDED LAND PATTERN OPT 2

NOTES:
A. DOES NOT FULLY CONFORM TO JEDEC REGISTRATION MO-229 DATED AUG/2003
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER

ASME Y14.5M, 1994

## FAIRCHILD

SEMICロNDபСTロ®

## 勝特力 材 料 886－3－5753170 <br> 胜特力电子（上洴）86－21－34970699 <br> 胜特力电子（澡圳） $86-755-83298787$ <br> Http：／／www．100y．com．tw

TRADEMARKS
The following includes registered and unregistered trademarks and service marks，owned by Fairchild Semiconductor and／or its global subsidiaries，and is not intended to be an exhaustive list of all such trademarks．

| $2 \mathrm{Cool}{ }^{\text {TM }}$ | F－PFS ${ }^{\text {TM }}$ | PowerTrench ${ }^{\circledR}$ | The Power Franchise ${ }^{\circledR}$ |
| :---: | :---: | :---: | :---: |
| AccuPower ${ }^{\text {™ }}$ | $\mathrm{FRFET}^{\circledR}$ | PowerXS ${ }^{\text {™ }}$ | the ${ }^{\text {® }}$ |
| AX－CAP ${ }^{\text {tm }}$ | Global Power Resource ${ }^{\text {SM }}$ | Programmable Active Droop ${ }^{\text {™ }}$ | p Wer |
| BitSic ${ }^{\circledR}$ | Green Bridge ${ }^{\text {™ }}$ | QFET ${ }^{\circledR}$ | franchise ${ }^{\text {TM }}$ |
| Build it Now $^{\text {TM }}$ | Green FPS ${ }^{\text {¹ }}$ | QS ${ }^{\text {™ }}$ |  |
| CorePLUS ${ }^{\text {TM }}$ | Green FPS ${ }^{\text {™ }}$ e－Series ${ }^{\text {™ }}$ | Quiet Series ${ }^{\text {TM }}$ | TinyBuck ${ }^{\text {M }}$ <br> TinyCalcт ${ }^{\text {т }}$ |
| CorePOWER ${ }^{\text {T }}$ | Gmax ${ }^{\text {TM }}$ | RapidConfigure ${ }^{\text {TM }}$ | TinyCalc ${ }^{\text {M }}$ TinyLogic ${ }^{\circledR}$ |
| CROSSVOLT ${ }^{\text {TM }}$ | GTO ${ }^{\text {m }}$ | $)^{\text {TM }}$ | TINYOPTOTм |
| CTL ${ }^{\text {M }}$ | IntelliMAX ${ }^{\text {TM }}$ |  | TinyPower ${ }^{\text {T }}$ |
| Current Transfer Logic ${ }^{\text {TM }}$ | ISOPLANAR ${ }^{\text {TM }}$ | Saving our world， $1 \mathrm{~mW} / \mathrm{W} / \mathrm{kW}$ at a time ${ }^{\text {TM }}$ | TinyPWM ${ }^{\text {TM }}$ |
| DEUXPEED ${ }^{\circledR}$ | Marking Small Speakers Sound Louder | SignalWise ${ }^{\text {T }}$ | TinyPWM |
| Dual Cool ${ }^{\text {tM }}$ | and Better ${ }^{\text {TM }}$ | SmartMax ${ }^{\text {M }}$ |  |
| EcoSPARK ${ }^{\circledR}$ | MegaBuck ${ }^{\text {™ }}$ | SMART START ${ }^{\text {m }}$ |  |
| EfficentMax ${ }^{\text {TM }}$ | MICROCOUPLER ${ }^{\text {TM }}$ | Solutions for Your Success ${ }^{\text {TM }}$ | TRUECURRENT ${ }^{\circledR}$＊ |
| ESBC ${ }^{\text {M }}$ | MicroFET ${ }^{\text {TM }}$ | SPM ${ }^{\circledR}$ | TRUECTMRT |
| $\square^{8}$ | MicroPak ${ }^{\text {™ }}$ | STEALTH ${ }^{\text {TM }}$ | $\mu$ Ser |
|  | MicroPak2 ${ }^{\text {™ }}$ | SuperFET ${ }^{\circledR}$ |  |
| Fairchild ${ }^{\circledR}$ | MillerDrive ${ }^{\text {TM }}$ | SuperSOT ${ }^{\text {TM }}$－3 | ${ }^{\text {SerDes }}$ |
| Fairchild Semiconductor ${ }^{\circledR}$ | MotionMax ${ }^{\text {™ }}$ | SuperSOT ${ }^{\text {TM }}$－6 | UHC ${ }^{\circledR}$ |
| FACT Quiet Series ${ }^{\text {™ }}$ | Motion－SPM ${ }^{\text {TM }}$ | SuperSOT ${ }^{\text {TM }}$－8 | Ultra FRFET ${ }^{\text {TM }}$ |
| FACT ${ }^{\circledR}$ | mWSaver ${ }^{\text {M }}$ | SupreMOS ${ }^{\circledR}$ | UniFET ${ }^{\text {TM }}$ |
| FAST ${ }^{\circledR}$ | OptoHiT ${ }^{\text {тм }}$ | SyncFET ${ }^{\text {TM }}$ | VCX ${ }^{\text {™ }}$ |
| FastvCore ${ }^{\text {™ }}$ | OPTOLOGIC ${ }^{\circledR}$ | Sync－Lock ${ }^{\text {TM }}$ | VisualMax ${ }^{\text {TM }}$ |
| FETBench ${ }^{\text {™ }}$ | OPTOPLANAR ${ }^{\circledR}$ | E SYSTEM ${ }^{\circledR}$ | VoltagePlus ${ }^{\text {TM }}$ |
| FlashWriter ${ }^{\circledR}$＊ |  | 5 GENERAL | XS ${ }^{\text {TM }}$ |
| FPS ${ }^{\text {m }}$ |  |  |  |

＊Trademarks of System General Corporation，used under license by Fairchild Semiconductor．

## DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY，FUNCTION，OR DESIGN．FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN；NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS，NOR THE RIGHTS OF OTHERS THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD＇S WORLDWIDE TERMS AND CONDITIONS，SPECIFICALLY THE WARRANTY THEREIN，WHICH COVERS THESE PRODUCTS．

## LIFE SUPPORT POLICY

FAIRCHILD＇S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION．

## As used here in

1．Life support devices or systems are devices or systems which，（a）are intended for surgical implant into the body or（b）support or sustain life， and（c）whose failure to perform when properly used in accordance with instructions for use provided in the labeling，can be reasonably expected to result in a significant injury of the user．

2．A critical component in any component of a life support，device，or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system，or to affect its safety or effectiveness．

## ANTI－COUNTERFEITING POLICY

Fairchild Semiconductor Corporation＇s Anti－Counterfeiting Policy．Fairchild＇s Anti－Counterfeiting Policy is also stated on our external website， www．Fairchildsemi．com，under Sales Support．
Counterfeiting of semiconductor parts is a growing problem in the industry．All manufactures of semiconductor products are experiencing counterfeiting of their parts．Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation，substandard performance，failed application，and increased cost of production and manufacturing delays．Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts．Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above．Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts，have full traceability，meet Fairchild＇s quality standards for handing and storage and provide access to Fairchild＇s full range of up－to－date technical and product information．Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise．Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources．Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors．

## PRODUCT STATUS DEFINITIONS

Definition of Terms

| Datasheet Identification | Product Status | Definition |
| :---: | :---: | :--- |
| Advance Information | Formative／In Design | Datasheet contains the design specifications for product development．Specifications <br> may change in any manner without notice． |
| Preliminary | First Production | Datasheet contains preliminary data；supplementary data will be published at a later <br> date．Fairchild Semiconductor reserves the right to make changes at any time without <br> notice to improve design． |
| No Identification Needed | Full Production | Datasheet contains final specifications．Fairchild Semiconductor reserves the right to <br> make changes at any time without notice to improve the design． |
| Obsolete | Not In Production | Datasheet contains specifications on a product that is discontinued by Fairchild <br> Semiconductor．The datasheet is for reference information only． |

