

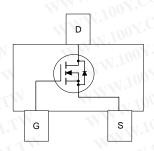
勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

April 1999

FDN359AN N-Channel Logic Level PowerTrench™ MOSFET

General Description

This N-Channel Logic Level MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize on-state resistance and yet maintain superior switching performance.


These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required.

Features

- Very fast switching.
- Low gate charge (5nC typical).
- High power version of industry standard SOT-23 package. Identical pin out to SOT-23 with 30% higher power handling capability.

Absolute Maximum Ratings $T_A = 25^{\circ}\text{C}$ unless other wise noted

Symbol	Parameter	Ratings	Units
V _{DSS}	Drain-Source Voltage	ON 30	V
V_{GSS}	Gate-Source Voltage	±20	V
I _D	Maximum Drain Current - Continuous (Note 1a)	2.7	A
	- Pulsed	WW 15 TW WY	
P _D	Maximum Power Dissipation (Note 1a)	WWW. C0.5	W
	(Note 1b)	0.46	
Γ_{J} , T_{STG}	Operating and Storage Temperature Range	-55 to 150	
THERMA	L CHARACTERISTICS	W. 1003. COM. T.	1
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1a)	250	°C/W
R _{eJC}	Thermal Resistance, Junction-to-Case (Note 1)	75	°C/W

Electrical Characteristics (T _A = 25 °C unless otherwise noted)							
Symbol	Parameter	Conditions	Min	Тур	Max	Units	
OFF CHARACTERISTICS							
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	30			V	
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient	I _D = 250 μA, Referenced to 25 °C	W	23		mV/°C	
	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, \ V_{GS} = 0 \text{ V}$ $T_{J} = 55^{\circ}\text{C}$	- TIN		1	μA	
					10	μA	
I _{GSSF}	Gate - Body Leakage, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$	1.1		100	nA	
I _{GSSR}	Gate - Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$	Λ .T		-100	nA	
ON CHARACTERISTICS (Note)							
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	P1,	1.6	3	V	
$\Delta V_{GS(th)}/\Delta T_{J}$	Gate Threshold Voltage Temp. Coefficient	I _D = 250 μA, Referenced to 25 °C	ON	-4		mV/°C	
R _{DS(ON)}		$V_{GS} = 10 \text{ V}, I_D = 2.7 \text{ A}$ $T_J = 125^{\circ}\text{C}$	COI	0.037	0.046	Ω	
003.00				0.055	0.075		
		$V_{GS} = 4.5 \text{ V}, I_D = 2.4 \text{ A}$	1.0	0.049	0.06		
I _{D(ON)}	On-State Drain Current	$V_{GS} = 10 \text{ V}, \ V_{DS} = 5 \text{ V}$	15			Α	
g _{FS}	Forward Transconductance	$V_{DS} = 5 \text{ V}, I_{D} = 2.7 \text{ A}$.Va	9.5	TW	S	
DYNAMIC CHARACTERISTICS							
C _{iss}	Input Capacitance	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1.0 \text{ MHz}$	700.	480	1.1	pF	
C _{oss}	Output Capacitance		1.100	120	M^{T}	pF	
C _{rss}	Reverse Transfer Capacitance		-110	45	_113	pF	
SWITCHING CHARACTERISTICS (Note)							
t _{D(on)}	Turn - On Delay Time	$V_{DD} = 5 \text{ V}, \ I_{D} = 1 \text{ A},$ $V_{GS} = 4.5 \text{ V}, \ R_{GEN} = 6 \Omega$	W.7	6	12	ns	
ţ	Turn - On Rise Time		o W	13	24	ns	
t _{D(off)}	Turn - Off Delay Time			15	27	ns	
t,	Turn - Off Fall Time			4	10	ns	
Q_g	Total Gate Charge	$V_{DS} = 10 \text{ V}, I_{D} = 2.7 \text{ A},$ $V_{GS} = 5 \text{ V}$	WW	5	7	nC	
Q_{gs}	Gate-Source Charge		W.V	1.4	ov C	nC	
Q_{gd}	Gate-Drain Charge	W.100 COM.		1.6	UV -	nC	
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS							
l _s	Maximum Continuous Drain-Source Diode Fo	1110		N.	0.42	Α	
V_{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = 0.42 \text{ A} \text{ (Note)}$		0.65	1.2	V	

Typical $R_{_{\theta JA}}$ using the board layouts shown below on FR-4 PCB in a still air environment :

a. 250°C/W when mounted on 1 0.02 in² pad of 2oz Cu a 0.02 in² pad of 2oz Cu.

W.100Y.COM.TW

WWW.100Y.COM.TV

ed c . vil .. pad. WWW.100Y.COM.TW b. 270°C/W when mounted on a minimum pad. WWW.100Y.COM.TW

2. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2.0%. WWW.100Y.COM.TW WWW.100Y.COM.TW

NW.100Y.COM.TW

WWW.

WWW.1007

ox.com.TW

OOY.COM.TW

^{1.} R_{BLA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{BL} is guaranteed by design while R_{eca} is determined by the user's board design. WWW.100Y.

Typical Electrical Characteristics

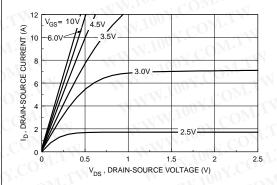


Figure 1. On-Region Characteristics.

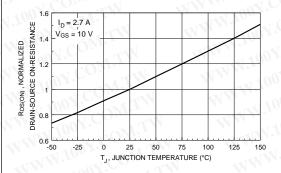


Figure 3. On-Resistance Variation with Temperature.

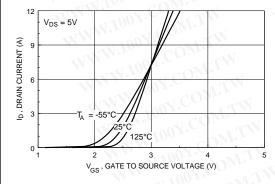


Figure 5. Transfer Characteristics.

WWW.100Y.COM.

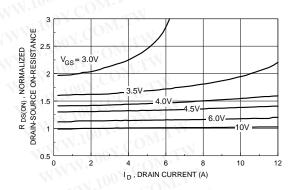


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

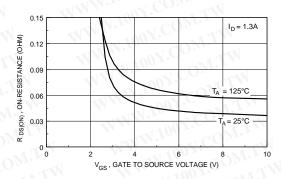


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

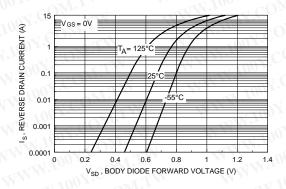


Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Electrical Characteristics

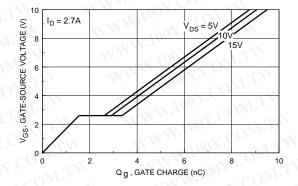


Figure 7. Gate Charge Characteristics.

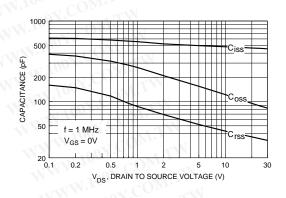


Figure 8. Capacitance Characteristics.

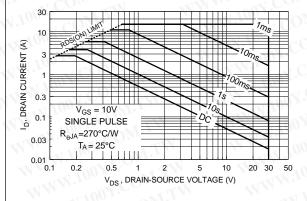


Figure 9. Maximum Safe Operating Area.

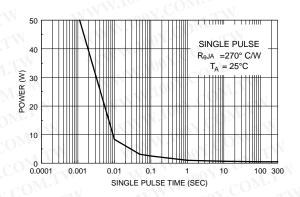


Figure 10. Single Pulse Maximum Power Dissipation.

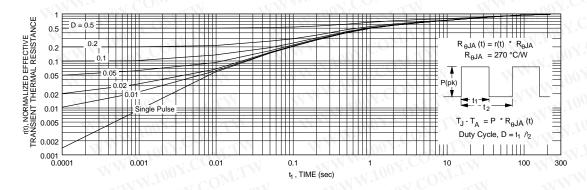


Figure 11. Transient Thermal Response Curve.

WWW.100Y.COM.

Thermal characterization performed using the conditions described in note 1b.

Transient thermal response will change depending on the circuit board design.

OOY.COM.TV

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ **ISOPLANAR™** TinyLogic™ MICROWIRE™ UHCTM. CoolFET™ РОРТМ VCX^{TM} CROSSVOLT™

E²CMOSTM PowerTrench™ QFET™ FACT™

FACT Quiet Series™ QSTM

FAST[®] Quiet Series™ SuperSOT™-3 FASTr™ $\mathsf{GTO^{\mathsf{TM}}}$ SuperSOT™-6 HiSeC™ SuperSOT™-8

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition			
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date Fairchild Semiconductor reserves the right to make changes at any time without notice in order to imp design.			
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchi Semiconductor reserves the right to make changes any time without notice in order to improve design.			
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only			

WWW.100Y.COM.TV