April 1999 勝 特 力 材 料 886-3-5753170 胜特力电子仁海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw FDS6630A # N-Channel Logic Level PowerTrench™ MOSFET ## **General Description** This N-Channel Logic Level MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize on-state resistance and yet maintain superior switching performance. These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required. ## **Applications** - DC/DC converter - Load switch - Motor drives ## **Features** - 6.5 A, 30 V. $R_{DS(on)} = 0.038 \ \Omega \ @ V_{GS} = 10 \ V$ $R_{DS(on)} = 0.053 \ \Omega \ @ V_{GS} = 4.5 \ V$ - Low gate charge (5nC typical). - Fast switching speed. - \bullet High performance trench technology for extremely low $R_{\mbox{\tiny DS(ON)}}.$ - High power and current handling capability. Absolute Maximum Ratings T_A = 25°C unless otherwise noted | Symbol | Parameter | 100Y.CO | Ratings | Units | |-----------------------------------|--|-----------|-------------|----------| | V _{DSS} | Drain-Source Voltage | 1100X.C | 30 | 110V | | V _{GSS} | Gate-Source Voltage | M. CC | <u>+</u> 20 | V | | I _D | Drain Current - Continuous | (Note 1a) | 6.5 | A | | | - Pulsed | , 100 x | 40 | W.100 | | P _D | Power Dissipation for Single Operation | (Note 1a) | 2.5 | W | | | MAN. Too COM. | (Note 1b) | 1.2 | | | | W.1001. COM:11. | (Note 1c) | CONL | 7.1/W.T. | | T _J , T _{stg} | Operating and Storage Junction Temperature Range | | -55 to +150 | ∘C | # **Thermal Characteristics** | $R_{\theta^{JA}}$ | Thermal Resistance, Junction-to-Ambient | (Note 1a) | 50 | °C/W | |-------------------|---|-----------|----|------| | R _{OJC} | Thermal Resistance, Junction-to-Case | (Note 1) | 25 | °C/W | Package Outlines and Ordering Information | Device Marking | Device | Reel Size | Tape Width | Quantity | |----------------|----------|-----------|------------|------------| | FDS6630A | FDS6630A | 13" | 12mm | 2500 units | ©1999 Fairchild Semiconductor Corporation FDS6630A Rev. C1 | Symbol | Parameter | Test Conditions | | Typ | Max | Units | |-----------------------------------|---|---|-------------|-------------------------|-------------------------|-------| | Off Char | acteristics | MATTIN M. TOOL | 1.1 | Ŋ | • | | | BV _{DSS} | Drain-Source Breakdown Voltage | $V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$ | | | | V | | ABVDSS
ΔTJ | Breakdown Voltage Temperature
Coefficient | I_D = 250 μ A, Referenced to 25°C | OM.T | 24 | | mV/∘C | | I _{DSS} | Zero Gate Voltage Drain Current | $V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$ | $M_{\rm O}$ | X | 1 | μΑ | | I _{GSSF} | Gate-Body Leakage Current, Forward | $V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$ | - 01 | IN | 100 | nA | | I _{GSSR} | Gate-Body Leakage Current, Reverse | $V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$ | Co. | TI | -100 | nA | | On Char | acteristics (Note 2) | | | | | | | V _{GS(th)} | Gate Threshold Voltage | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$ | 1C | 1.7 | 3 | V | | <u>A</u> VGS(th)
ΛΤυ | Gate Threshold Voltage Temperature Coefficient | $I_D = 250 \mu A$, Referenced to 25°C | 00X.C | 0-4 | TW | mV/°C | | R _{DS(on)} | Static Drain-Source
On-Resistance | $V_{GS} = 10 \text{ V}, I_D = 6.5 \text{ A}$
$V_{GS} = 10 \text{ V}, I_D = 6.5 \text{ A}, T_J = 125 ^{\circ}\text{C}$
$V_{GS} = 4.5 \text{ V}, I_D = 5.5 \text{ A}$ | 100X | 0.028
0.044
0.040 | 0.038
0.060
0.053 | Ω | | I _{D(on)} | On-State Drain Current | $V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$ | | -1 CO | M· | Α | | g FS | Forward Transconductance | $V_{DS} = 5 \text{ V}, I_{D} = 6.5 \text{ A}$ | x 10 | 13 | T.Mc | S | | Dynamic | Characteristics | | | | | | | C _{iss} | Input Capacitance | $V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$ | | 460 | | pF | | Coss | Output Capacitance | f = 1.0 MHz | WW. | 115 | $CO_{j_{1}}$ | pF | | C _{rss} | Reverse Transfer Capacitance | 20 T. COM. IV | | 45 | - COI | pF | | Switchin | ng Characteristics (Note 2) | 100Y. OM.TW | N N N | N.100 | y | M.T. | | t _{d(on)} | Turn-On Delay Time | $V_{DD} = 15 \text{ V}, I_{D} = 1 \text{ A},$ | W | 5 | 11 | ns | | t _r | Turn-On Rise Time | $V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$ | W | 8 | 17 | ns | | t _{d(off)} | Turn-Off Delay Time | N.100 COM. | - T | 17 | 28 | ns | | t _f | Turn-Off Fall Time | W.100 Y. COM. TW | - 1 | 13 | 24 | ns | | $\overline{Q_g}$ | Total Gate Charge | $V_{DS} = 5 \text{ V}, I_{D} = 6.5 \text{ A},$ | V | 5 | 7 | nC | | Q_{gs} | Gate-Source Charge | $V_{GS} = 5 \text{ V}$ | | 2 | - 100 | nC | | Q_{qd} | Gate-Drain Charge | MM. Ing COM. | | 0.9 | M. | nC | | 1 | ource Diede Characteristics on | d Maximum Patings | | -11 | M.10 | ~ C | | <u>Drain-Sc</u>
I _s | Durce Diode Characteristics and Maximum Continuous Drain-Source Did | | - | | 2.1 | Α | | V _{SD} | Drain-Source Diode Forward Voltage | $V_{GS} = 0 \text{ V}, I_{S} = 2.1 \text{ A} \text{ (Note 2)}$ | N | 0.8 | 1.2 | V | ^{1:} R_{BJA} is the sum of the junction-to-case and case-to-ambient resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design. a) 50° C/W when mounted on a 1 in2 pad of 2 oz. copper. WWW.100Y.COM.TV mounted on a 0.04 in² pad of 2 oz. copper. c) 125° C/W on a 0.006 in2 pad of 2 oz. copper. Scale 1: 1 on letter size paper 2: Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0% # **Typical Characteristics** Figure 1. On-Region Characteristics. Figure 3. On-Resistance Variation with Temperature. Figure 5. Transfer Characteristics. WWW.100Y.COM. Figure 2. On-Resistance Variation with Drain Current and Gate Voltage. Figure 4. On-Resistance Variation with Gate-to-Source Voltage. Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature. # Typical Characteristics (continued) Figure 7. Gate-Charge Characteristics. Figure 9. Maximum Safe Operating Area. Figure 10. Single Pulse Maximum Power Dissipation. Figure 11. Transient Thermal Response Curve. Thermal characterization performed using the conditions described in Note 1c. Transient themal response will change depending on the circuit board design. ## TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. SyncFET™ **ISOPLANAR™** ACEx™ MICROWIRE™ CoolFET™ TinyLogic™ UHCTM РОРТМ CROSSVOLT™ VCX^{TM} E²CMOSTM PowerTrench® QFET™ FACT™ FACT Quiet Series™ QSTM FAST[®] Quiet Series™ SuperSOT™-3 FASTr™ $\mathsf{GTO^{\mathsf{TM}}}$ SuperSOT™-6 HiSeC™ SuperSOT™-8 #### **DISCLAIMER** FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ## **PRODUCT STATUS DEFINITIONS** ### **Definition of Terms** | Datasheet Identification | Product Status | Definition | | | | |--|---------------------------|---|--|--|--| | Advance Information | Formative or
In Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | | | | Preliminary First Production | | This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | | | | No Identification Needed Full Production | | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | | | | Obsolete | Not In Production | This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor The datasheet is printed for reference information only | | | | WWW.100Y.COM.TV