勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw # FDS6930B # **Dual N-Channel Logic Level PowerTrench® MOSFET** ## **Features** - 5.5 A, 30 V. $R_{DS(ON)} = 38 \text{ m}\Omega$ @ $V_{GS} = 10 \text{ V}$ $R_{DS(ON)} = 50 \text{ m}\Omega$ @ $V_{GS} = 4.5 \text{ V}$ - Fast switching speed - Low gate charge - High performance trench technology for extremely low R_{DS(ON)} - High power and current handling capability # **General Description** These N-Channel Logic Level MOSFETs are produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance. These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required. # Absolute Maximum Ratings T_A = 25°C unless otherwise noted | Symbol | Parameter | | Ratings | Units | | |-----------------------------------|--|------------|------------|-----------|--| | V _{DSS} | Drain-Source Voltage | 30 | | | | | V _{GSS} | Gate-Source Voltage | MTM | ± 20 | V. | | | I _D | Drain Current - Continuous | (Note 1a) | 5.5 | A | | | | Pulsed | | 20 | WY.COM | | | P _D | Power Dissipation for Dual Operation | (Note 1) | 2 | WO | | | | Power Dissipation for Single Operation | (Note 1a) | 1.6 | 100 × CC | | | | WWW. 100Y. COMITW WW. | (Note 1b) | 1 | 7007. | | | | WWW. TONY. CONTENT WWW. | (Note 1c) | 0.9 | 1 100 Y.C | | | T _J , T _{STG} | Operating and Storage Junction Temperature Range | TOON.CO | -55 to 150 | °C | | | Thermal Cha | aracteristics | · Joan COM | WW WY | 141. | | | $R_{\theta JA}$ | Thermal Resistance, Junction-to-Ambient | (Note 1a) | 78 | °C/W | | | $R_{\theta JC}$ | Thermal Resistance, Junction-to-Case | (Note 1) | 40 | °C/W | | # **Package Marking and Ordering Information** | Device Marking \(\) | Device | Reel Size | Tape width | Quantity | |-----------------------|----------|-----------|------------|------------| | FDS6930B | FDS6930B | 13" | 12mm | 2500 units | # **Electrical Characteristics** $T_A = 25^{\circ}C$ unless otherwise noted | Symbol | Parameter | Test Conditions | Min | Тур | Max | Units | |--|---|--|--|----------------|----------------|-------| | Off Charac | teristics | MM 1001.00 | L/V | • | , | • | | BV _{DSS} | Drain-Source Breakdown Voltage | $V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$ | 30 | | | V | | $\frac{\Delta BV_{DSS}}{\Delta T_{J}}$ | Breakdown Voltage Temperature
Coefficient | I_D = 250 μ A, Referenced to 25°C | LTW | 26 | | mV/°C | | I _{DSS} | Zero Gate Voltage Drain Current | V _{DS} = 24 V, V _{GS} = 0 V
V _{DS} = 24 V, V _{GS} = 0 V, T _J = 55°C | MIT | N | 1
10 | μΑ | | I _{GSS} | Gate-Source Leakage | $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$ | $O_{M^{**}}$ | × 1 | ±100 | nA | | On Charact | teristics (Note 2) | V.11/4 W. 1003. | COM | | , | • | | V _{GS(th)} | Gate Threshold Voltage | $V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$ | 1 | 1.9 | 3 | V | | $\frac{\Delta V_{GS(th)}}{\Delta T_J}$ | Gate Threshold Voltage
Temperature Coefficient | I_D = 250 μ A, Referenced to 25°C | COJ | -4.6 | | mV/°C | | R _{DS(on)} | Static Drain–Source
On–Resistance | $V_{GS} = 10 \text{ V}, I_D = 5.5 \text{ A}$
$V_{GS} = 4.5 \text{ V}, I_D = 4.8 \text{ A}$
$V_{GS} = 10 \text{ V}, I_D = 5.5 \text{ A}, T_J = 125^{\circ}\text{C}$ | OY.CO | 31
40
45 | 38
50
62 | mΩ | | I _{D(on)} | On-State Drain Current | V _{GS} = 10 V, V _{DS} = 5 V | 20 | OM | - * T | Α | | 9 _{FS} | Forward Transconductance | V _{DS} = 5 V, I _D = 5.5 A | 700x. | 19 | LA | S | | Dynamic C | haracteristics | DY.CO. TW WWW | 1007 | Con | TW | | | C _{iss} | Input Capacitance | $V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$ | 1. | 310 | 412 | pF | | C _{oss} | Output Capacitance | f = 1.0 MHz | M.r. | 90 | 120 | pF | | C _{rss} | Reverse Transfer Capacitance | Thor. COM:I. | M.Ja | 40 | 60 | pF | | R _G | Gate Resistance | V _{GS} = 15 mV, f = 1.0 MHz | TW.1 | 1.9 | OM_{-1} | Ω | | Switching (| Characteristics (Note 2) | 100X:CONT.TW | -431 | 100% | Mon | LA | | t _{d(on)} | Turn-On Delay Time | V _{DD} = 15 V, I _D = 1 A, | MA | 6 | 12 | ns | | t _r | Turn-On Rise Time | $V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$ | WWW | 6 | 12 | ns | | t _{d(off)} | Turn-Off Delay Time | M.100 COM. | -XIW | 16 | 28 | ns | | t _f | Turn-Off Fall Time | W.1001. | 7 | 2 | 4 | ns | | Q_q | Total Gate Charge | V _{DS} = 15 V, I _D = 5.5 A, | 1/1/ | 2.7 | 3.8 | nC | | Q _{gs} | Gate-Source Charge | $V_{GS} = 5 V$ | W | 1.0 | 1001 | nC | | Q _{gd} | Gate-Drain Charge | MMM. TO COMP. TAN | | 0.7 | YOUY | nC | | | rce Diode Characteristics and Maximur | n Ratings | | WW | 1.1 | I.CO | | I _S | Maximum Continuous Drain-Source Diode Forward Current | | | | 1.3 | A) | | V _{SD} | Drain-Source Diode Forward Voltage | V _{GS} = 0 V, I _S = 1.3 A (Note 2) | - | 0.8 | 1.2 | V | | t _{rr} | Diode Reverse Recovery Time (note3) | $I_F = 5.5 \text{ A}, d_{iF}/d_t = 100 \text{ A/µs}$ | The state of s | 16 | 32 | nS | | Q _{rr} | Diode Reverse Recovery Charge | WWW. OOX.COM | N | 6 | MAN | nC | ^{1.} R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}^{ooA}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design. a) 78°C/W when mounted on a 0.5 in² pad of 2 oz b) 125°C/W when mounted on a 0.02 in² pad of 2 oz copper c) 135°C/W when Scale 1:1 on letter size paper - 2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0% - 3. Trr parameter will not be subjected to 100% production testing. ## **Typical Characteristics** Figure 1. On-Region Characteristics. Drain Current and Gate Voltage. Figure 3. On-Resistance Variation with Temperature. Figure 4. On-Resistance Variation with Gate-to-Source Voltage. Figure 5. Transfer Characteristics. WWW.100Y.COM Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature. # **Typical Characteristics** Figure 7. Gate Charge Characteristics. Figure 9. Maximum Safe Operating Area. Figure 10. Single Pulse Maximum Power Dissipation. Figure 11. Transient Thermal Response Curve. Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design. 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw The Power Franchise® bwer Province franchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ μSerDes™ TriFault Detect™ TRUECURRENT™* #### **TRADEMARKS** The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. F-PFS™ FRFET® Auto-SPM™ Build it Now™ Global Power Resource CorePLUS™ Green FPS™ CorePOWER™ CROSSVOLT™ **CTL™** Current Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK® EfficientMax™ ESBC™ Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FETBench™ FlashWriter®* **FPSTM** Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ Motion-SPM™ OptoHiT™ OPTOLOGIC® OPTOPLANAR® PDP SPM™ Power-SPM™ PowerTrench® PowerXS™ Programmable Active Droop OFFT QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™ Sync-Lock™ UHC' Ultra FRFET™ UniFET™ **VCXTM** VisualMax™ XSTM * Trademarks of System General Corporation, used under license by Fairchild Semiconductor. #### **DISCLAIMER** FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. - 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. - 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ### ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. ### PRODUCT STATUS DEFINITIONS #### **Definition of Terms** | Datasheet Identification | Product Status | Definition | | | |--------------------------|-----------------------|---|--|--| | Advance Information | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | | | Preliminary | First Production | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. | | | | No Identification Needed | Full Production | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. | | | | Obsolete | Not In Production | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. | | | WWW.100Y.COM