勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw February 2012 # FGB5N60UNDF 600V, 5A Short Circuit Rated IGBT # **Features** - Short circuit rated 10us - High current capability - · High input impedance - Fast switching - RoHS compliant ### **Applications** - · Home appliance inverter-driven appplication - Fan Motor Driver, Circulation Pump, Refrigerator, Dish Washer # **General Description** Using advanced NPT IGBT Technology, Fairchild's the NPT IGBTs offer the optimum performance for low power inverterdriven applications where low-losses and short circuit ruggedness feature are essential. # **Absolute Maximum Ratings** | Symbol | Description | | Ratings | Units | | |---------------------|---|--------------------------|-------------|---------|--| | V _{CES} | Collector to Emitter Voltage | TANN TOO | 600 | VO | | | V _{GES} | Gate to Emitter Voltage | W. 100 F. CC | ± 20 | 700 V | | | I _C | Collector Current | @ T _C = 25°C | 10 | 1100 A. | | | IC WW | Collector Current | @ T _C = 100°C | 5 | A | | | I _{CM (1)} | Pulsed Collector Current | @ T _C = 25°C | COMP 15 | Α | | | l _F | Diode Forward Current | @ T _C = 25°C | COM 5 | Α | | | P _D | Maximum Power Dissipation | @ T _C = 25°C | 73.5 | W | | | 'D | Maximum Power Dissipation | @ T _C = 100°C | 29.4 | W | | | T _J | Operating Junction Temperature | W 110 | -55 to +150 | °C | | | T _{stg} | Storage Temperature Range | | -55 to +150 | °C | | | T _L | Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds | | 300 | °C | | #### Notes: 1: Repetitive rating: Pulse width limited by max. junction temperature # **Thermal Characteristics** | Symbol | Parameter | Typ. | Max. | Units | |------------------------|--|--------|------|-------| | $R_{\theta JC}(IGBT)$ | Thermal Resistance, Junction to Case | ON COM | 1.7 | °C/W | | $R_{\theta JC}(Diode)$ | Thermal Resistance, Junction to Case | TO COM | 4.5 | °C/W | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient (PCB Mount)(2) | 1.100 | 40 | °C/W | Notes: 2: Mounted on 1" square PCB (FR4 or G-10 material) # Package Marking and Ordering Information | Device Marking | Device | Package | Rel Size | Tape Width | Quantity | |-----------------------|-------------|-----------------|----------|------------|----------| | FGB5N60UNDF | FGB5N60UNDF | TO-263AB/D2-PAK | MW. | ON COM | 50 | # Electrical Characteristics of the IGBT T_C = 25°C unless otherwise noted | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Units | |----------------------|---|---|-----------|--------------------|--------|-------| | Off Charac | teristics | COM.TW W | WW.100 | Y.CO! | M.TW | | | BV _{CES} | Collector to Emitter Breakdown Voltage | V _{GE} = 0V, I _C = 250μA | 600 | (| Mi | V | | I _{CES} | Collector Cut-Off Current | $V_{CE} = V_{CES}, V_{GE} = 0V$ | 1 | 005. | 1. | mA | | I _{GES} | G-E Leakage Current | $V_{GE} = V_{GES}, V_{CE} = 0V$ | 4/1// | 100-X-C | ±10 | uA | | On Charac | teristics | 100Y.COM | MMM | 100Y. | CON. | TW | | V _{GE(th)} | G-E Threshold Voltage | $I_C = 5mA$, $V_{CE} = V_{GE}$ | 5.5 | 6.8 | 8.5 | V | | 02() | V COM. | I _C = 5A, V _{GE} = 15V | WW | 1.9 | 2.4 | V | | V _{CE(sat)} | Collector to Emitter Saturation Voltage | I _C = 5A, V _{GE} = 15V,
T _C = 125°C | -W | 2.3 | 07.CO | V | | Dvnamic C | haracteristics | W.100Y.COM.TW | 1 | WW. | 00 X : | OM. | | C _{ies} | Input Capacitance | W. 100X.CON.TW | - | 181 | 700, | pF | | C _{oes} | Output Capacitance | $V_{CE} = 30V, V_{GE} = 0V,$ | - | 28 | U 1007 | pF | | C _{res} | Reverse Transfer Capacitance | f = 1MHz | - V | 7 | 100 | pF | | Switching | Characteristics | MMM.TOOX.COM | TW | WW | VV.10 | N.Co | | t _{d(on)} | Turn-On Delay Time | MM 100X.COM | TW- | 5.4 | - XX 1 | ns | | t _r | Rise Time | MMM. TOON COL | TH | 1.9 | 11 41 | ns | | t _{d(off)} | Turn-Off Delay Time | V _{CC} = 400V, I _C = 5A, | N. | 25.4 | MW. | ns | | t _f | Fall Time | $R_G = 10\Omega$, $V_{GE} = 15V$,
Inductive Load, $T_C = 25^{\circ}C$ | M | 101 | 202 | ns | | E _{on} | Turn-On Switching Loss | | OM.TW | 0.08 | | mJ | | E _{off} | Turn-Off Switching Loss | MAN 100 X.C | - 1 T | 0.07 | MAN | mJ | | E _{ts} | Total Switching Loss | MMM.ro. | COAL | 0.15 | WV | mJ | | t _{d(on)} | Turn-On Delay Time | al AMMilos | COM | 5.2 | **** | ns | | t _r | Rise Time | N N N 1 100 | Mo | 2.3 | - 1 | ns | | t _{d(off)} | Turn-Off Delay Time | V _{CC} = 400V, I _C = 5A, | 1.0 | 26.6 | N | ns | | t _f | Fall Time | $R_G = 10\Omega, V_{GE} = 15V,$ | V.Co. | 125 | | ns | | E _{on} | Turn-On Switching Loss | Inductive Load, T _C = 125°C | N.CO | 0.15 | | mJ | | E _{off} | Turn-Off Switching Loss | U.I. | 7100 - CO | 0.09 | s.T | mJ | | E _{ts} | Total Switching Loss | W.TW PIN | 100 | 0.24 | -7 | mJ | | T _{sc} | Short Circuit Withstand Time | $V_{CC} = 350V$,
$R_G = 100\Omega$, $V_{GE} = 15V$,
$T_C = 150^{\circ}C$ | 10 | co _M .T | - | μ\$ | WWW.100Y.CO WWW.100Y.C WWW.100 WWW.1 NW.100Y.COM.TW WI.M. Y.COM. ox.com # Electrical Characteristics of the IGBT T_C = 25°C unless otherwise noted | Q_g | Total Gate Charge | LA MAN 100X.C | TI-TV | 12.1 | nC | |-----------------|--------------------------|---|-------------------|------|----| | Q _{ge} | Gate to Emitter Charge | V _{CE} = 400V, I _C = 5A,
V _{CE} = 15V | - T | 1.7 | nC | | Q _{gc} | Gate to Collector Charge | V _{GE} = 15V | $CO\bar{J}_{I^*}$ | 7.2 | nC | ### Electrical Characteristics of the Diode T_C = 25°C unless otherwise noted | Symbol | Parameter | Test Condition | ons | Min. | Тур. | Max | Units | |---------------------|-------------------------------|---|----------------------------------|-------|------|-----|-------| | V _{FM} | Diode Forward Voltage | I _F = 5A | $T_{\rm C} = 25^{\rm o}{\rm C}$ | M.Co. | 1.7 | 2.2 | V | | | | | $T_{\rm C} = 125^{\rm o}{\rm C}$ | W.Cr | 1.6 | - | | | t cOM. | Diode Reverse Recovery Time | COM. | $T_{\rm C} = 25^{\rm o}{\rm C}$ | √√ C | 35 | V | ns | | Ţ _{rr} | Blode Reverse Recovery Time | - I _F =5A, dI _F /dt = 200A/μs | $T_{\rm C} = 125^{\rm o}{\rm C}$ | 100- | 87 | -=1 | | | 0 | Diode Reverse Recovery Charge | | $T_C = 25^{\circ}C$ | 1007. | 71 | | nC | | Q _{rr} Die | | | $T_{\rm C} = 125^{\rm o}{\rm C}$ | - 05 | 240 | | | W.100Y.COM.TW Figure 1. Typical Output Characteristics Figure 3. Typical Saturation Voltage Characteristics Figure 5. Saturation Voltage vs. Case Temperature at Variant Current Level **Figure 2. Typical Output Characteristics** Figure 4. Transfer Characteristics Figure 6. Saturation Voltage vs. V_{GE} Figure 7. Saturation Voltage vs. V_{GE} Figure 9. Gate charge Characteristics Figure 11. Turn-on Characteristics vs. Gate Resistance **Figure 8. Capacitance Characteristics** Figure 10. SOA Characteristics Figure 12. Turn-off Characteristics vs. Gate Resistance Figure 13. Turn-on Characteristics vs. Collector Current Figure 15. Switching Loss vs. Gate Resistance Figure 17. Turn off Switching SOA Characteristics Figure 14. Turn-off Characteristics vs. Collector Current Figure 16. Switching Loss vs Collector Current Figure 18. Forward Characteristics Figure 19. Reverse Recovery Current Figure 20. Stored Charge Figure 21. Reverse Recovery Time Figure 23. Transient Thermal Impedance of IGBT # **Mechanical Dimensions** # TO-263AB/D²-PAK 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw #### TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. 2Cool™ AccuPower™ Auto-SPM™ AX-CAP™* BitSiC[®] Build it Now™ CorePLUS™ CorePOWER™ $CROSSVOLT^{\text{TM}}$ CTL™ Current Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK® EfficentMax™ ESBC™ Fairchild[®] Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FETBench™ FlashWriter® **FPSTM** F-PESTM FRFET® Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Louder MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ Motion-SPM™ mWSaver™ OptoHiT™ OPTOLOGIC® OPTOPLANAR® PDP SPM™ Power-SPM™ PowerTrench® PowerXS™ Programmable Active Droop QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM® STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™ SYSTEM ® SGENERAL. The Power Franchise® wer iranchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC® TriFault Detect™ TRUECURRENT®* μSerDes™ UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ *Trademarks of System General Corporation, used under license by Fairchild Semiconductor #### DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN. WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. #### As used here in: - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. - A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or ### ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. #### **PRODUCT STATUS DEFINITIONS** Definition of Terms | Datasheet Identification | Product Status | Definition | |--------------------------|-----------------------|---| | Advance Information | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | Preliminary | First Production | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. | | No Identification Needed | Full Production | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. | | Obsolete | Not In Production | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. |