特力材料886-3-5753170

胜特力电子(上海) 86-21-54151736

胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

Data Sheet

January 2002

8A, 400V - 600V Hyperfast Diodes

The RHRP840 and RHRP860 are hyperfast diodes with soft recovery characteristics (t_{rr} < 30ns). They have half the recovery time of ultrafast diodes and are silicon nitride passivated ion-implanted epitaxial planar construction.

These devices are intended for use as freewheeling/clamping diodes and rectifiers in a variety of switching power supplies and other power switching applications. Their low stored charge and hyperfast soft recovery minimize ringing and electrical noise in many power switching circuits reducing power loss in the switching transistors.

Formerly developmental type TA49059.

Ordering Information

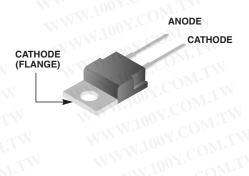
PART NUMBER	PACKAGE	BRAND		
RHRP840	TO-220AC	RHRP840		
RHRP860	TO-220AC	RHRP860		

NOTE: When ordering, use the entire part number.

Symbol

Features

•	Hyperfast with Soft Recovery	<30ns
•	Operating Temperature	175 ⁰ C
•	Reverse Voltage Up To	.600V


- Avalanche Energy Rated
- Planar Construction

Applications

- · Switching Power Supplies
- · Power Switching Circuits
- General Purpose

Packaging

JEDEC TO-220AC

WW	W. 100 Y. C.	OMITY
RHRP840	RHRP860	UNITS
400	600	V
400	600	COV
400	600	V.CV
8	8 1	AON.AON
16	16	100 A C
100	100	100X
75	75	W
20	20	mJ
-65 to 175	-65 to 175	°C
	400 400 8 16 100 75 20	400 600 400 600 400 600 8 8 16 16 100 100 75 75 20 20

WWW.100Y.CO

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Electrical Specifications T_C = 25°C, Unless Otherwise Specified

	TW.100Y.COM.TW	RHRP840		RHRP860				
SYMBOL	TEST CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
V _F	I _F = 8A	<u>-</u>	- WW.1	2.1	M.	-	2.1	V
	$I_F = 8A, T_C = 150^{\circ}C$	-	WW	1.7	OM:	-	1.7	V
I _R	V _R = 400V		-	100	COM	- N	-	μА
	V _R = 600V	, I v	-	W. Jan.	COM.	- W	100	μА
	V _R = 400V, T _C = 150°C	T. T.	- 77	500	V.COM	TW	-	μА
	V _R = 600V, T _C = 150°C	M	- 1	MA JO	ON.EON	TW	500	μА
t _{rr} OM	$I_F = 1A$, $dI_F/dt = 200A/\mu s$	OM:	- 1	30	OUN-CO	TW	30	ns
	$I_F = 8A$, $dI_F/dt = 200A/\mu s$	ONL	- N	35	1007.CC	WIT-	35	ns
t _a CC	$I_F = 8A$, $dI_F/dt = 200A/\mu s$	COM	18	W-WW	TOOY.C	18	Ī -	ns
t _b C	$I_F = 8A$, $dI_F/dt = 200A/\mu s$	I'COM	10		100Y	10	W -	ns
Q _{RR}	$I_F = 8A$, $dI_F/dt = 200A/\mu s$	ON.COM	56	-1/1/1	1007	56	LM -	nC
CJ	V _R = 10V, I _F = 0A	ON CO	25	- 7/1	100	25	TW	pF
$R_{ heta JC}$	Y COM.	1007.Cc	TW	2 🕥	- 10	O.Y.Co.	2	°C/W

DEFINITIONS

 V_F = Instantaneous forward voltage (pw = 300 μ s, D = 2%).

I_R = Instantaneous reverse current.

t_{rr} = Reverse recovery time (See Figure 9), summation of t_a + t_b

ta = Time to reach peak reverse current (See Figure 9).

t_b = Time from peak I_{RM} to projected zero crossing of I_{RM} based on a straight line from peak I_{RM} through 25% of I_{RM} (See Figure 9).

Q_{RR} = Reverse recovery charge.

CJ = Junction capacitance.

 $R_{\theta JC}$ = Thermal resistance junction to case.

pw = Pulse width.

D = Duty cycle.

Typical Performance Curves

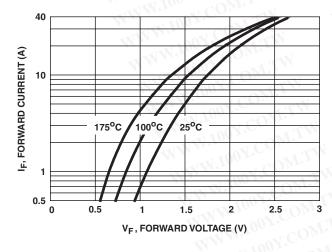


FIGURE 1. FORWARD CURRENT vs FORWARD VOLTAGE

WWW.100Y.CO

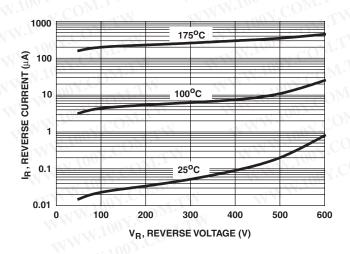


FIGURE 2. REVERSE CURRENT vs REVERSE VOLTAGE

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

Typical Performance Curves (Continued)

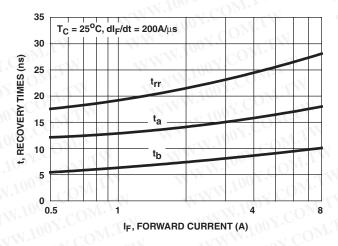


FIGURE 3. t_{rr}, t_a AND t_b CURVES vs FORWARD CURRENT

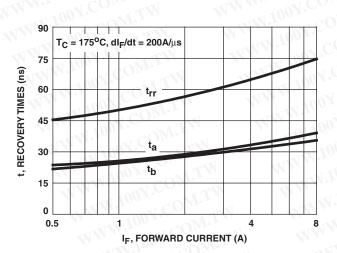


FIGURE 5. t_{rr} , t_a AND t_b CURVES vs FORWARD CURRENT

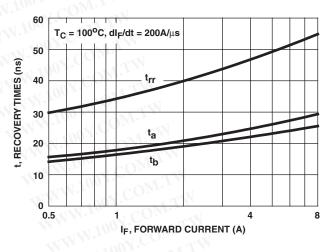


FIGURE 4. t_{rr}, t_a AND t_b CURVES vs FORWARD CURRENT

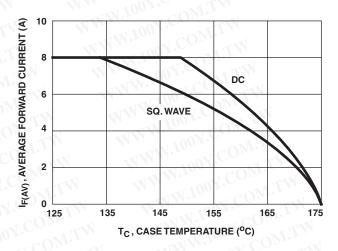


FIGURE 6. CURRENT DERATING CURVE

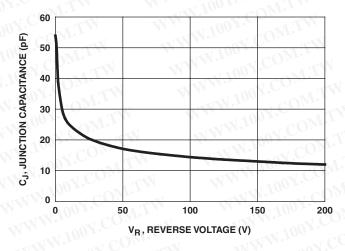


FIGURE 7. JUNCTION CAPACITANCE vs REVERSE VOLTAGE

WWW.100Y.CO

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw

Test Circuits and Waveforms

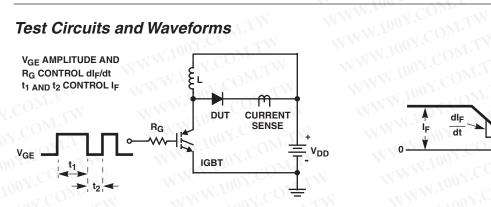


FIGURE 8. t_{rr} TEST CIRCUIT

I_{MAX} = 1A L = 40mH $R < 0.1\Omega$ $E_{AVL} = 1/2LI^2 \left[V_{R(AVL)} / (V_{R(AVL)} - V_{DD}) \right]$ Q1 = IGBT (BVCES > DUT VR(AVL)) R CURRENT V_{DD} SENSE Q₁ V_{DD} DUT

FIGURE 10. AVALANCHE ENERGY TEST CIRCUIT

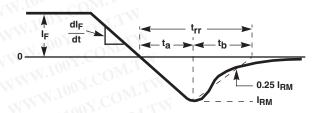


FIGURE 9. t_{rr} WAVEFORMS AND DEFINITIONS

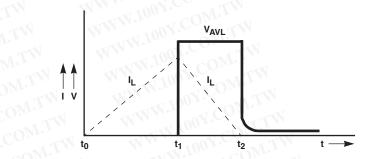


FIGURE 11. AVALANCHE CURRENT AND VOLTAGE WAVEFORMS WWW.100Y.COM.

WW.100Y.COM.TW WWW.100Y.COM.TW

WWW.100Y.CO.

Http://www. 100y. com. tw

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEXTM FAST ® OPTOLOGICTM SMART STARTTM VCXTM

Bottomless $^{\text{TM}}$ FASTr $^{\text{TM}}$ OPTOPLANAR $^{\text{TM}}$ STAR*POWER $^{\text{TM}}$ CoolFET $^{\text{TM}}$ FRFET $^{\text{TM}}$ PACMAN $^{\text{TM}}$ Stealth $^{\text{TM}}$ CROSSVOLT $^{\text{TM}}$ GlobalOptoisolator $^{\text{TM}}$ POP $^{\text{TM}}$ SuperSOT $^{\text{TM}}$ -3

DenseTrench™ Power247™ SuperSOT™-6 GTO™ SuperSOT™-8 HiSeC™ DOME™. PowerTrench® SyncFET™ **EcoSPARK™ ISOPLANAR™** QFET™ E^2CMOS^{TM} TinyLogic™ LittleFET™ OS^{TM} EnSigna™ MicroFET™ QT Optoelectronics™ TruTranslation™

FACT™ MicroPak™ Quiet Series™ UHC™ FACT Quiet Series™ MICROWIRE™ SILENT SWITCHER® UltraFET®

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the

A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition					
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.					
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.					
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.					
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.					

Rev. H4