
－High gain low noise RF transistor
－Small package $1.4 \times 0.8 \times 0.59 \mathrm{~mm}$
－Outstanding noise figure $F=0.7 \mathrm{~dB}$ at 1.8 GHz
Outstanding noise figure $F=1.3 \mathrm{~dB}$ at 6 GHz
－Maximum stable gain
$G_{\mathrm{ms}}=21 \mathrm{~dB}$ at 1.8 GHz
$G_{\mathrm{ma}}=10 \mathrm{~dB}$ at 6 GHz
－Gold metallization for extra high reliability
－Pb－free（RoHS compliant）package ${ }^{1)}$
－Qualified according AEC Q101
＊Short term description

NPN Silicon Germanium RF Transistor＊

ESD（Electrostatic discharge）sensitive device，observe handling precaution！

Type	Marking	Pin Configuration					Package	
BFP620F	R2s	$1=\mathrm{B}$	$2=\mathrm{E}$	$3=\mathrm{C}$	$4=\mathrm{E}$	-	-	TSFP－4

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector－emitter voltage	$V_{\text {CEO }}$		V
$T_{\text {A }}>0^{\circ} \mathrm{C}$		2.3	
$T_{\mathrm{A}} \leq 0^{\circ} \mathrm{C}$		2.1	
Collector－emitter voltage	$V_{\text {CES }}$	7.5	
Collector－base voltage	$V_{\text {CBO }}$	7.5	
Emitter－base voltage	$V_{\text {EBO }}$	1.2	
Collector current	I_{C}	80	mA
Base current	I_{B}	3	
Total power dissipation ${ }^{2)}$ $T_{\mathrm{S}} \leq 96^{\circ} \mathrm{C}$	$P_{\text {tot }}$	185	mW
Junction temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Ambient temperature	$T_{\text {A }}$	－65 ．．． 150	
Storage temperature	$T_{\text {sta }}$	－65 ．．． 150	

[^0]
Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ${ }^{1}$)	$R_{\text {thJS }}$	≤ 290	K/W

Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

| Parameter | Symbol | Values | | | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | | min. | typ. | max. | |
| DC Characteristics | $V_{(B R) C E O}$ | 2.3 | 2.8 | - | V |
| Collector-emitter breakdown voltage
 $I_{\mathrm{C}}=1 \mathrm{~mA}, I_{\mathrm{B}}=0$ | I_{CES} | - | - | 10 | $\mu \mathrm{~A}$ |
| Collector-emitter cutoff current
 $V_{\mathrm{CE}}=7.5 \mathrm{~V}, V_{\mathrm{BE}}=0$ | I_{CBO} | - | - | 100 | nA |
| Collector-base cutoff current
 $V_{\mathrm{CB}}=5 \mathrm{~V}, I_{\mathrm{E}}=0$ | I_{EBO} | - | - | 3 | $\mu \mathrm{~A}$ |
| Emitter-base cutoff current
 $V_{\mathrm{EB}}=0.5 \mathrm{~V}, I_{\mathrm{C}}=0$ | h_{FE} | 110 | 180 | 270 | - |
| DC current gain | | | | | |
| $I_{\mathrm{C}}=50 \mathrm{~mA}, V_{\mathrm{CE}}=1.5 \mathrm{~V}$, pulse measured | | | | | |

[^1]BFP620F

Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
AC Characteristics (verified by random sampling)					
Transition frequency $I_{\mathrm{C}}=50 \mathrm{~mA}, V_{\mathrm{CE}}=1.5 \mathrm{~V}, f=1 \mathrm{GHz}$	f_{\top}	-	65	-	GHz
Collector-base capacitance $V_{\mathrm{CB}}=2 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{BE}}=0,$ emitter grounded	$C_{\text {cb }}$	-	0.12	0.2	pF
Collector emitter capacitance $V_{\mathrm{CE}}=2 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{BE}}=0,$ base grounded	$C_{\text {ce }}$	-	0.2	-	
Emitter-base capacitance $V_{\mathrm{EB}}=0.5 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{CB}}=0$ collector grounded	$C_{\text {eb }}$	-	0.45		
Noise figure $\begin{aligned} & I_{\mathrm{C}}=5 \mathrm{~mA}, V_{\mathrm{CE}}=1.5 \mathrm{~V}, f=1.8 \mathrm{GHz}, Z_{\mathrm{S}}=Z_{\mathrm{Sopt}} \\ & I_{\mathrm{C}}=5 \mathrm{~mA}, V_{\mathrm{CE}}=1.5 \mathrm{~V}, f=6 \mathrm{GHz}, Z_{\mathrm{S}}=Z_{\mathrm{Sopt}} \end{aligned}$	F	-	$\begin{aligned} & 0.7 \\ & 1.3 \end{aligned}$	-	dB
Power gain, maximum stable ${ }^{1)}$ $\begin{aligned} & I_{\mathrm{C}}=50 \mathrm{~mA}, V_{\mathrm{CE}}=1.5 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\mathrm{Sopt}}, \\ & Z_{\mathrm{L}}=Z_{\mathrm{Lopt}}, f=1.8 \mathrm{GHz} \end{aligned}$	G_{ms}	-	21		dB
Power gain, maximum available ${ }^{1)}$ $\begin{aligned} & I_{\mathrm{C}}=50 \mathrm{~mA}, V_{\mathrm{CE}}=1.5 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\mathrm{Sopt}}, \\ & Z_{\mathrm{L}}=Z_{\mathrm{Lopt},}, f=6 \mathrm{GHz} \end{aligned}$	G_{ma}	-	10	-	dB
Transducer gain $\begin{aligned} & I_{\mathrm{C}}=50 \mathrm{~mA}, V_{\mathrm{CE}}=1.5 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\mathrm{L}}=50 \Omega, \\ & f=1.8 \mathrm{GHz} \\ & f=6 \mathrm{GHz} \end{aligned}$	$\left\|S_{21 \mathrm{e}}\right\|^{2}$	-	$\begin{gathered} 19.5 \\ 9.5 \end{gathered}$	-	dB
Third order intercept point at output ${ }^{2}$) $V_{\mathrm{CE}}=2 \mathrm{~V}, I_{\mathrm{C}}=50 \mathrm{~mA}, Z_{\mathrm{S}}=Z_{\mathrm{L}}=50 \Omega, f=1.8 \mathrm{GHz}$	$I P_{3}$	-	25	-	dBm
1 dB Compression point at output $I_{\mathrm{C}}=50 \mathrm{~mA}, V_{\mathrm{CE}}=2 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\mathrm{L}}=50 \Omega, f=1.8 \mathrm{GHz}$	$P_{-1 \mathrm{~dB}}$	-	14	-	
${ }^{1} G_{\mathrm{ma}}=\left\|S_{21 \mathrm{e}} / S_{12 \mathrm{e}}\right\|\left(k-\left(\mathrm{k}^{2}-1\right)^{1 / 2}\right), G_{\mathrm{ms}}=\left\|S_{21 \mathrm{e}} / S_{12 \mathrm{e}}\right\|$ ${ }^{2}$ IP3 value depends on termination of all intermodulation fr Termination used for this measurement is 50Ω from 0.1 MH	uency comp to 6 GHz	ents.			

BFP620F

SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G. 6 Syntax):

Transistor Chip Data:

$\mathrm{IS}=$	0.22	fA	$\mathrm{BF}=$	425	-	$\mathrm{NF}=$	1.025	-
$\mathrm{VAF}=$	1000	V	$\mathrm{IKF}=$	0.25	A	$\mathrm{ISE}=$	21	fA
$\mathrm{NE}=$	2	-	$\mathrm{BR}=$	50	-	$\mathrm{NR}=$	1	-
$\mathrm{VAR}=$	2	V	$\mathrm{IKR}=$	10	mA	$\mathrm{ISC}=$	18	pA
$\mathrm{NC}=$	2	-	$\mathrm{RB}=$	3.129	Ω	$\mathrm{IRB}=$	1.522	mA
$\mathrm{RBM}=$	2.707	Ω	$\mathrm{RE}=$	0.6	-	$\mathrm{RC}=$	2.364	Ω
$\mathrm{CJE}=$	250.7	fF	$\mathrm{VJE}=$	0.75	V	$\mathrm{MJE}=$	0.3	-
$\mathrm{TF}=$	1.43	ps	$\mathrm{XTF}=$	10	-	$\mathrm{VTF}=$	1.5	V
$\mathrm{ITF}=$	2.4	A	$\mathrm{PTF}=$	0	deg	$\mathrm{CJC}=$	124.9	fF
$\mathrm{VJC}=$	0.6	V	$\mathrm{MJC}=$	0.5	-	$\mathrm{XCJC}=$	1	-
$\mathrm{TR}=$	0.2	ns	$\mathrm{CJS}=$	128.1	fF	$\mathrm{VJS}=$	0.52	V
$\mathrm{MJS}=$	0.5	-	$\mathrm{NK}=$	-1.42	-	$\mathrm{EG}=$	1.078	eV
$\mathrm{XTI}=$	3	-	$\mathrm{FC}=$	0.8		TNOM	298	K
$\mathrm{AF}=$	2	-	$\mathrm{KF}=$	$7.291 \mathrm{E}-11$				
TITF1	-0.0065	-	TITF 2	$1.0 \mathrm{E}-5$				

All parameters are ready to use, no scalling is necessary.

$L_{\mathrm{BO}}=$	0.22	nH
$L_{\mathrm{EO}}=$	0.28	nH
$L_{\mathrm{CO}}=$	0.22	nH
$K_{\mathrm{BO}-\mathrm{E} 0}=$	0.1	-
$K_{\mathrm{BO}-\mathrm{CO}}=$	0.01	-
$K_{\mathrm{E} 0-\mathrm{CO}}=$	0.11	-
$C_{\mathrm{BE}}=$	34	fF
$C_{\mathrm{BC}}=$	2	fF
$C_{\mathrm{CE}}=$	33	fF
$L_{\mathrm{BI}}=$	0.42	nH
$R_{\mathrm{LBI}}=$	0.15	Ω
$L_{\mathrm{EI}}=$	0.26	nH
$R_{\mathrm{LEI}}=$	0.11	Ω
$L_{\mathrm{CI}}=$	0.35	nH
$R \mathrm{LI}=$	0.13	Ω
$K_{\mathrm{BI}-\mathrm{EI}}=$	-0.05	-
$K_{\mathrm{BI}-\mathrm{CI}}=$	-0.08	-
$K_{\mathrm{EI}-\mathrm{CI}}=$	0.2	-
Valid up to 6 GHz		

Total power dissipation $P_{\text {tot }}=f\left(T_{\mathrm{S}}\right)$

Permissible Pulse Load
$P_{\text {totmax }} / P_{\text {totDC }}=f\left(t_{\mathrm{p}}\right)$

Permissible Pulse Load $R_{\text {thJS }}=f\left(t_{\mathrm{p}}\right)$

Collector-base capacitance $C_{\mathrm{cb}}=f\left(V_{\mathrm{CB}}\right)$ $f=1 \mathrm{MHz}$

BFP620F

Third order Intercept Point $I P_{3}=f\left(I_{C}\right)$
(Output, $\mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega$)
$V_{\text {CE }}=$ parameter, $f=1.8 \mathrm{GHz}$

Power gain $G_{\mathrm{ma}}, G_{\mathrm{ms}}=f\left(I_{\mathrm{C}}\right)$
$V_{C E}=1.5 \mathrm{~V}$
$f=$ Parameter in GHz

Transition frequency $f_{\top}=f\left(I_{\mathrm{C}}\right)$
$f=1 \mathrm{GHz}$
$V_{C E}=$ Parameter in V

Power Gain $G_{\mathrm{ma}}, G_{\mathrm{ms}}=f(f)$,
$\left|S_{21}\right|^{2}=f(\mathrm{f})$
$V_{C E}=1.5 \mathrm{~V}, I_{\mathrm{C}}=50 \mathrm{~mA}$

Power gain $G_{m a}, G_{m s}=f\left(V_{C E}\right)$
$I_{C}=50 \mathrm{~mA}$
$f=$ Parameter in GHz

Noise figure $F=f\left(I_{\mathrm{C}}\right)$
$V_{\mathrm{CE}}=1.5 \mathrm{~V}, f=1.8 \mathrm{GHz}$

Noise figure $F=f\left(I_{\mathrm{C}}\right)$
$V_{C E}=1.5 \mathrm{~V}, Z_{S}=Z_{\text {Sopt }}$

Noise figure $F=f(f)$
$V_{C E}=1.5 \mathrm{~V}, Z_{S}=Z_{\text {Sopt }}$

Source impedance for min.
noise figure vs. frequency
$V_{C E}=1.5 \mathrm{~V}, I_{C}=5.0 \mathrm{~mA} / 50.0 \mathrm{~mA}$

Package Outline

Foot Print

Marking Layout (Example)

Standard Packing
Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel

Edition 2006－02－01
Published by

Attention please！

The information given in this dokument shall in no event be regarded as a guarantee of conditions or characteristics（＂Beschaffenheitsgarantie＂）．With respect to any examples or hints given herein，any typical values stated herein and／or any information regarding the application of the device，Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind，including without limitation warranties of non－infringement of intellectual property rights of any third party．

Information

For further information on technology，delivery terms and conditions and prices please contact your nearest Infineon Technologies Office（www．infineon．com）．

Warnings

Due to technical requirements components may contain dangerous substances． For information on the types in question please contact your nearest Infineon Technologies Office．
Infineon Technologies Components may only be used in life－support devices or systems with the express written approval of Infineon Technologies，if a failure of such components can reasonably be expected to cause the failure of that life－support device or system，or to affect the safety or effectiveness of that device or system．
Life support devices or systems are intended to be implanted in the human body， or to support and／or maintain and sustain and／or protect human life．If they fail， it is reasonable to assume that the health of the user or other persons may be endangered．

[^0]: ${ }^{1} \mathrm{~Pb}$－containing package may be available upon special request
 ${ }^{2} T_{\mathrm{S}}$ is measured on the collector lead at the soldering point to the pcb

[^1]: ${ }^{1}$ For calculation of R_{thJA} please refer to Application Note Thermal Resistance

