2N6338，2N6341

High－Power NPN Silicon
 Transistors

．．．designed for use in industrial－military power amplifier and switching circuit applications．
－High Collector－Emitter Sustaining Voltage－

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CEO}(\mathrm{sus})}=100 \mathrm{Vdc}(\mathrm{Min})-2 \mathrm{~N} 6338 \\
& =150 \mathrm{Vdc}(\mathrm{Min})-2 \mathrm{~N} 6341
\end{aligned}
$$

－High DC Current Gain－

$$
\begin{aligned}
\mathrm{h}_{\mathrm{FE}}=30 & -120 @ \mathrm{I}_{\mathrm{C}}=10 \text { Adc } \\
& =12(\mathrm{Min}) @ \mathrm{I}_{\mathrm{C}}=25 \text { Adc }
\end{aligned}
$$

－Low Collector－Emitter Saturation Voltage－

$$
\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}=1.0 \mathrm{Vdc}(\mathrm{Max}) @ \mathrm{I}_{\mathrm{C}}=10 \mathrm{Adc}
$$

－Fast Switching Times＠ $\mathrm{I}_{\mathrm{C}}=10$ Adc

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{r}}=0.3 \mathrm{~ms}(\mathrm{Max}) \\
& \mathrm{t}_{\mathrm{s}}=1.0 \mathrm{~ms}(\mathrm{Max}) \\
& \mathrm{t}_{\mathrm{f}}=0.25 \mathrm{~ms}(\mathrm{Max})
\end{aligned}
$$

－ Pb －Free Packages are Available
＊MAXIMUM RATINGS

Rating	Symbol	2N6338	2N6341	Unit
Collector－Base Voltage	V_{CB}	120	180	Vdc
Collector－Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	100	150	Vdc
Emitter－Base Voltage	V_{EB}	6.0	Vdc	
Collector Current Continuous Peak	I_{C}	25		Adc
Base Current		50		
Total Device Dissipation ＠ Derate above $25^{\circ}{ }^{\circ} \mathrm{C}$	P_{D}	200	W	
Operating and Storage Junction Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-65 to＋200	${ }^{\circ} \mathrm{C}$	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance，Junction to Case	$\theta_{\text {JC }}$	0.875	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Stresses exceeding Maximum Ratings may damage the device．Maximum Ratings are stress ratings only．Functional operation above the Recommended Operating Conditions is not implied．Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability．
＊Indicates JEDEC Registered Data．

ON

ON Semiconductor ${ }^{\text {® }}$

http：／／onsemi．com

25 AMPERE POWER TRANSISTORS NPN SILICON

TO－204AA CASE 1－07

ORDERING INFORMATION

Device	Package	Shipping
2N6338	TO－204AA	100 Units／Tray
2N6338G	TO－204AA （Pb－Free）	100 Units／Tray
2N6341	TO－204AA	100 Units／Tray
2N6341G	TO－204AA （Pb－Free）	100 Units／Tray

勝 特 力 材 料 886－3－5753170
胜特力 电子（上海）86－21－34970699胜特力 电子（深圳）86－755－83298787

Http：／／www． $100 y$ ．com．tw

Figure 1. Power Derating
*ELECTRICAL CHARACTERISTICS $\left(T_{C}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage (1) $\left(\mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\begin{aligned} & \hline \text { 2N6338 } \\ & \text { 2N6341 } \end{aligned}$	$\mathrm{V}_{\text {CEO(sus) }}$	$\begin{aligned} & 100 \\ & 150 \end{aligned}$		Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=50 \mathrm{Vdc}, \mathrm{I}_{\mathrm{B}}=0\right)$ $\left(\mathrm{V}_{\mathrm{CE}}=75 \mathrm{Vdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\begin{aligned} & \text { 2N6338 } \\ & \text { 2N6341 } \end{aligned}$	ICEO	-	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\mu \mathrm{Adc}$
Collector Cutoff Current $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CE}}=\text { Rated } \mathrm{V}_{\mathrm{CEO}}, \mathrm{~V}_{\mathrm{EB}(\text { off })}=1.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=\text { Rated } \mathrm{V}_{\mathrm{CEO}}, \mathrm{~V}_{\mathrm{EB}(\text { off })}=1.5 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{C}}=150^{\circ} \mathrm{C}\right) \end{aligned}$		$I_{\text {CEX }}$	-	$\begin{aligned} & 10 \\ & 1.0 \end{aligned}$	μ Adc mAdc
Collector Cutoff Current ($\mathrm{V}_{\mathrm{CB}}=$ Rated $\left.\mathrm{V}_{\mathrm{CB}}, \mathrm{I}_{\mathrm{E}}=0\right)$		ICBO	-	10	$\mu \mathrm{Adc}$
Emitter Cutoff Current ($\mathrm{V}_{\mathrm{BE}}=6.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0$)		$\mathrm{I}_{\text {ebo }}$	-	100	$\mu \mathrm{Adc}$

ON CHARACTERISTICS (1)

DC Current Gain) $\begin{aligned} & \left(I_{\mathrm{C}}=0.5 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=2.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=2.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=25 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=2.0 \mathrm{Vdc}\right) \end{aligned}$	$\mathrm{h}_{\text {FE }}$	$\begin{aligned} & 50 \\ & 30 \\ & 12 \end{aligned}$	$\begin{gathered} - \\ 120 \end{gathered}$	-
Collector Emitter Saturation Voltage $\begin{aligned} & \left(I_{C}=10 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=1.0 \mathrm{Adc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=25 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=2.5 \mathrm{Adc}\right) \end{aligned}$	$\mathrm{V}_{\text {CE(sat) }}$	-	$\begin{aligned} & 1.0 \\ & 1.8 \end{aligned}$	Vdc
Base-Emitter Saturation Voltage $\begin{aligned} & \left(I_{C}=10 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=1.0 \mathrm{Adc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=25 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=2.5 \mathrm{Adc}\right) \end{aligned}$	$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$	-	$\begin{aligned} & 1.8 \\ & 2.5 \end{aligned}$	Vdc
Base-Emitter On Voltage ($\mathrm{I}_{\mathrm{C}}=10 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{Vdc}$)	$\mathrm{V}_{\mathrm{BE} \text { (on) }}$	-	1.8	Vdc

DYNAMIC CHARACTERISTICS

| Current-Gain - Bandwidth Product (2) $\quad\left(\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}_{\text {test }}=10 \mathrm{MHz}\right)$ | f_{T} | 40 | - | MHz |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=0.1 \mathrm{MHz}\right)$ | C_{ob} | - | 300 | pF |

SWITCHING CHARACTERISTICS

Rise Time $\left(\mathrm{V}_{\mathrm{CC}} \approx 80 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{Adc}, \mathrm{I}_{\mathrm{B} 1}=1.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{BE}(\mathrm{off})}=6.0 \mathrm{Vdc}\right)$	t_{r}	-	0.3	$\mu \mathrm{~s}$
Storage Time $\left(\mathrm{V}_{\mathrm{Cc}} \approx 80 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{Adc}, \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=1.0 \mathrm{Adc}\right)$	t_{s}	-	1.0	$\mu \mathrm{~s}$
Fall Time $\left(\mathrm{V}_{\mathrm{CC}} \approx 80 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{Adc}, \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=1.0 \mathrm{Adc}\right)$	t_{f}	-	0.25	$\mu \mathrm{~s}$

*Indicates JEDEC Registered Data.
(1) Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$.
(2) $\mathrm{f}_{\mathrm{T}}=\left|\mathrm{h}_{\mathrm{f}}\right| \bullet \mathrm{f}_{\text {test }}$.

Figure 2. Switching Time Test Circuit

Figure 4. Thermal Response

Figure 5. Active Region Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $\mathrm{I}_{\mathrm{C}}-\mathrm{V}_{\mathrm{CE}}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 5 is based on $\mathrm{T}_{\mathrm{J}(\mathrm{pk})}=200^{\circ} \mathrm{C}$; T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $\mathrm{T}_{\mathrm{J}(\mathrm{pk})}$ $\leq 200^{\circ} \mathrm{C} . \mathrm{T}_{\mathrm{J}(\mathrm{pk})}$ may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

Figure 6. Turn-Off Time

Figure 7. Capacitance

2N6338, 2N6341

PACKAGE DIMENSIONS

TO-204AA (TO-3

CASE 1-07
ISSUE Z

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH
3. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO-204AA OUTLINE SHALL APPLY

DIM	INCHES		MILLIMETERS		
	MIN		MAX	MIN	
A	1.550 REF		39.37 REF		
B	---	1.050	---	26.67	
C	0.250	0.335	6.35	8.51	
D	0.038	0.043	0.97	1.09	
E	0.055	0.070	1.40		1.77
G	0.430 BSC		10.92 BSC		
H	0.215 BSC		5.46		BSC
K	0.440		0.480	11.18	
L	0.665		BSC	16.89	

STYLE 1:
PIN 1. BASE
2. EMITTER

CASE: COLLECTOR

Abstract

ON Semiconductor and (ON) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

