D44VH10（NPN）， D45VH10（PNP）

Complementary Silicon Power Transistors

These complementary silicon power transistors are designed for high－speed switching applications，such as switching regulators and high frequency inverters．The devices are also well－suited for drivers for high power switching circuits．

Features

－Fast Switching－

$$
\mathrm{t}_{\mathrm{f}}=90 \mathrm{~ns}(\mathrm{Max})
$$

－Key Parameters Specified＠ $100^{\circ} \mathrm{C}$
－Low Collector－Emitter Saturation Voltage－

$$
\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}=1.0 \mathrm{~V}(\mathrm{Max}) @ 8.0 \mathrm{~A}
$$

－Complementary Pairs Simplify Circuit Designs
－ $\mathrm{Pb}-$ Free Packages are Available＊

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector－Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	80	Vdc
Collector－Emitter Voltage	$\mathrm{V}_{\mathrm{CEV}}$	100	Vdc
Emitter Base Voltage	V_{EB}	7.0	Vdc
Collector Current－Continuous	I_{C}	15	Adc
- Peak（Note 1）	I_{CM}	20	
Total Power Dissipation＠ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	P_{D}	83	W
Derate above $25^{\circ} \mathrm{C}$		0.67	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$
Operating and Storage Junction Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-55 to	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance，Junction to Case	$\mathrm{R}_{\theta \mathrm{\theta C}}$	1.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance，Junction to Ambient	$\mathrm{R}_{\theta \mathrm{JA}}$	62.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Lead Temperature for Soldering Purposes： $1 / 8^{\prime \prime}$ from Case for 5 Seconds	T_{L}	275	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device．Maximum Ratings are stress ratings only．Functional operation above the Recommended Operating Conditions is not implied．Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability．
1．Pulse Width $\leq 6.0 \mathrm{~ms}$ ，Duty Cycle $\leq 50 \%$ ．

[^0]
ON Semiconductor ${ }^{\circledR}$

http：／／onsemi．com

15 A
 COMPLEMENTARY SILICON POWER TRANSISTORS 80 V， 83 W

$x=4$ or 5
A＝Assembly Location
Y＝Year
WW＝Work Week
G＝Pb－Free Package

ORDERING INFORMATION

Device	Package	Shipping
D44VH10	TO－220	50 Units／Rail
D44VH10G	TO－220 （Pb－Free）	50 Units／Rail
D45VH10	TO－220	50 Units／Rail
D45VH10G	TO－220 （Pb－Free）	50 Units／Rail

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage (Note 2) $\left(I_{C}=25 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{\text {CEO(sus) }}$	80	-	-	Vdc
Collector-Emitter Cutoff Current $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CE}}=\text { Rated } \mathrm{V}_{\mathrm{CEV}}, \mathrm{~V}_{\mathrm{BE} \text { (off) }}=4.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=\text { Rated } \mathrm{V}_{\mathrm{CEV}}, \mathrm{~V}_{\mathrm{BE} \text { (off) })}=4.0 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right) \end{aligned}$	ICEV	-	-	$\begin{gathered} 10 \\ 100 \end{gathered}$	$\mu \mathrm{Adc}$
Emitter Base Cutoff Current $\left(\mathrm{V}_{\mathrm{EB}}=7.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	IEbo	-	-	10	$\mu \mathrm{Adc}$

ON CHARACTERISTICS (Note 2)

DC Current Gain $\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}}=2.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=4.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}\right) \end{aligned}$		$\mathrm{h}_{\text {FE }}$	35 20	-	-	-
$\begin{aligned} & \text { Collector-Emitter Saturation Voltage } \\ & \text { (} \left.I_{C}=8.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.4 \mathrm{Adc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=8.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.8 \mathrm{Adc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=15 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=3.0 \mathrm{Adc}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right) \end{aligned}$	D44VH10 D45VH10 D44VH10 D45VH10	$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	-	-	$\begin{aligned} & 0.4 \\ & 1.0 \\ & 0.8 \\ & 1.5 \end{aligned}$	Vdc
Base-Emitter Saturation Voltage $\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}}=8.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.4 \mathrm{Adc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=8.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.8 \mathrm{Adc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=8.0 \mathrm{Adc} \mathrm{I}_{\mathrm{B}}=0.4 \mathrm{Adc}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=8.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.8 \mathrm{Adc}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right) \end{aligned}$	D44VH10 D45VH10 D44VH10 D45VH10	$\mathrm{V}_{\text {BE(sat) }}$	-	-	$\begin{aligned} & 1.2 \\ & 1.0 \\ & 1.1 \\ & 1.5 \end{aligned}$	Vdc

DYNAMIC CHARACTERISTICS

Current Gain Bandwidth Product $\left(\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=20 \mathrm{MHz}\right)$		f_{T}	-	50	-	MHz
Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0, \mathrm{f}_{\text {test }}=1.0 \mathrm{MHz}\right)$	$\begin{aligned} & \text { D44VH10 } \\ & \text { D45VH10 } \end{aligned}$	C	-	$\begin{aligned} & 120 \\ & 275 \end{aligned}$	-	pF

SWITCHING CHARACTERISTICS

Delay Time	$\begin{gathered} \left(\mathrm{V}_{\mathrm{CC}}=20 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=8.0 \mathrm{Adc},\right. \\ \left.\mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=0.8 \mathrm{Adc}\right) \end{gathered}$	t_{d}	-	-	50	ns
Rise Time		t_{r}	-	-	250	
Storage Time		t_{s}	-	-	700	
Fall Time		t_{f}	-	-	90	

2. Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2 \%$.

D44VH10 (NPN), D45VH10 (PNP)

I I , COLLECTOR CURRENT (AMPS)
Figure 1. D44VH10 DC Current Gain

I_{C}, COLLECTOR CURRENT (AMPS)
Figure 3. D44VH10 DC Current Gain

I_{c}, COLLECTOR CURRENT (AMPS)
Figure 5. D44VH10 ON-Voltage

I_{C}, COLLECTOR CURRENT (AMPS)
Figure 2. D45VH10 DC Current Gain

I_{C}, COLLECTOR CURRENT (AMPS)
Figure 4. D45VH10 DC Current Gain

Figure 6. D45VH10 ON-Voltage

Figure 7. D44VH10 ON-Voltage

I_{C}, COLLECTOR CURRENT (AMPS)
Figure 8. D45VH10 ON-Voltage

Figure 9. Maximum Rated Forward Bias Safe Operating Area

Figure 10. Power Derating

Figure 11. Thermal Response

PACKAGE DIMENSIONS

TO-220
CASE 221A-09
ISSUE AG

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982 .
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.570	0.620	14.48	15.75
B	0.380	0.405	9.66	10.28
C	0.160	0.190	4.07	4.82
D	0.025	0.036	0.64	0.91
F	0.142	0.161	3.61	4.09
G	0.095	0.105	2.42	2.66
H	0.110	0.161	2.80	4.10
J	0.014	0.025	0.36	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045	---	1.15	---
Z	---	0.080	---	2.04

STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR

ON Semiconductor and (ill are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

[^0]: ＊For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details，please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual，SOLDERRM／D．

