Http://www.100y.com.tw

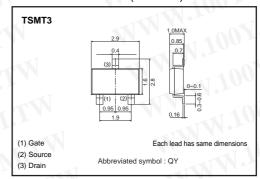
RSR025N03

Transistors

4V Drive Nch MOS FET RSR025N03

Structure

Silicon N-channel MOS FET


Features

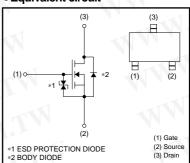
- 1) Low on-resistance.
- 2) Built-in G-S Protection Diode.
- 3) Small Surface Mount Package (TSMT3)

Application

Power switching, DC / DC converter.

External dimensions (Unit : mm)

Packaging specifications


	Package	Taping
Type	Code	TL
	Basic ordering unit (pieces)	3000
RSR025N03	0.11	

● Absolute maximum ratings (Ta=25°C)

Parameter	Symbol	Limits	Unit V	
Drain-source voltage		Voss		
Gate-source voltage		Vgss	20	V
Drain current	Continuous	ID	±2.5	Α
	Pulsed	I _{DP} *1	±10	Α
Source current (Body diode)	Continuous	ls	0.8	Α
	Pulsed	Isp*1	3.2	Α
Total power dissipation	P _D *2	1	W	
Channel temperature	Tch	150	°C	
Storage temperature		Tstg	-55 to 150	°C
	4 % (%)			

^{*1} Pw≤100μs, Duty cycle≤2%

Equivalent circuit

*A protection diode is included between the gate and the source terminals to protect the diode against static electricity when the product is in use. Use the protection circuit when the fixed voltages are exceeded.

Thermal resistance

Parameter	Symbol	Limits	Unit	
Channel to ambient	Rth (ch-a)*	125	°C/W	

^{*2} Mounted on a ceramic board.

XWW.100

●Electrical characteristics (Ta=25°C)

Gate-source leakage IGSS - - 10 μA VGS=20V, VDS=0V	Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
	Gate-source leakage	Igss	بطر	_	10	μΑ	Vgs=20V, Vps=0V
	Drain-source breakdown voltage	V _(BR) DSS	30	7	_	V	I _D =1mA, V _{GS} =0V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zero gate voltage drain current	IDSS		175	1	μA	V _{DS} =30V, V _{GS} =0V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate threshold voltage	V _{GS (th)}	1.0		2.5	V	V _{DS} =10V, I _D =1mA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	a	U	-	50	70		I _D =2.5A, V _{GS} =10V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		R _{DS (on)} *	(GV	74	105	mΩ	I _D =2.5A, V _{GS} =4.5V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	resistance		_	83	118		I _D =2.5A, V _{GS} =4V
	Forward transfer admittance	Y _{fs} *	1.5	()-1/	_	S	I _D =2.5A, V _{DS} =10V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input capacitance	Ciss		165	- 11	pF	Vps=10V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Output capacitance	Coss	_	55	17.	pF	Vgs=0V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reverse transfer capacitance	Crss	<₹ (35	_	pF	f=1MHz
	Turn-on delay time	td (on) *) F.	6	A-1	ns	I _D =1.25A, V _{DD} ≒15V
Fall time t_f * − 5 − ns R _G =10Ω Total gate charge Q _g * − 2.9 4.1 nC V _{DD} =15V Gate-source charge Q _{gs} * − 0.8 − nC V _{GS} =5V	Rise time	tr *		10	$D E_{i}$	ns	V _{GS} =10V
Total gate charge $Q_g * - 2.9$ 4.1 nC $V_{DD} = 15V$ Gate-source charge $Q_{gs} * - 0.8$ - nC $V_{GS} = 5V$	Turn-off delay time	t _{d (off)} *	A	20	_	ns	R _L =12.0Ω
Gate-source charge	Fall time	t _f *	0	5		ns	$R_G=10\Omega$
	Total gate charge	Qg *	-0	2.9	4.1	nC	V _{DD} ≒15V
Gate-drain charge Qnd * - 0.9 - nC In-2.5A	Gate-source charge	Qgs *	(GV	0.8	-	nC	V _{GS} =5V
oute didni charge	Gate-drain charge	Q _{gd} *	_	0.9		nC	ID=2.5A
*Pulsed	*Pulsed		40				41, 11007

●Body diode characteristics (Source-Drain) (Ta=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Forward voltage	V _{SD} *	-3(1	4-1	1.2	V	Is=3.2A, Vgs=0V

NW.100Y.COM.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 WWW.100Y.COM.TW 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw WWW.100Y.COM.TW

WWW.100Y.COM.TW

WWW.1007.C

100Y.COM.TW

Rev.C

Transistors

Electrical characteristic curves

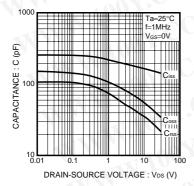


Fig.1 Typical Capacitance vs. Drain-Source Voltage

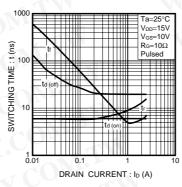


Fig.2 Switching Characteristics

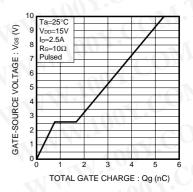


Fig.3 Dynamic Input Characteristics

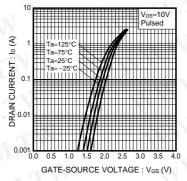


Fig.4 Typical Transfer Characteristics

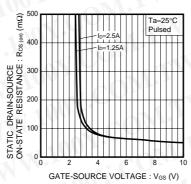


Fig.5 Static Drain-Source On-State Resistance vs. Gate-Source Voltage

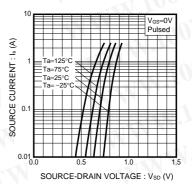


Fig.6 Source Current vs. Source-Drain Voltage

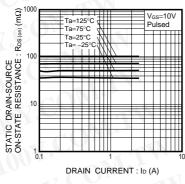


Fig.7 Static Drain-Source On-State Resistance vs. Drain Current (I)

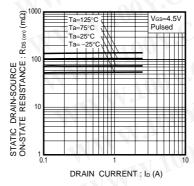


Fig.8 Static Drain-Source On-State Resistance vs. Drain Current (II)

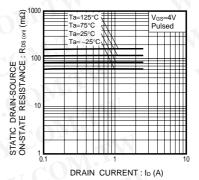


Fig.9 Static Drain-Source On-State Resistance vs. Drain Current (III)

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

