Data Sheet January 2000 File Number 3613.5 ## 4A, 400V - 600V Hyperfast Diodes The RHRD440, RHRD460, RHRD440S and RHRD460S are hyperfast diodes with soft recovery characteristics (t_{rr} < 30ns). They have half the recovery time of ultrafast diodes and are of silicon nitride passivated ion-implanted epitaxial planar construction. These devices are intended for use as freewheeling/ clamping diodes and rectifiers in a variety of switching power supplies and other power switching applications. Their low stored charge and hyperfast soft recovery minimize ringing and electrical noise in many power switching circuits, reducing power loss in the switching transistors. Formerly developmental type TA49055. ### Ordering Information | PART NUMBER | PACKAGE | BRAND | |-------------|---------|--------| | RHRD440 | TO-251 | RHR440 | | RHRD460 | TO-251 | RHR460 | | RHRD440S | TO-252 | RHR440 | | RHRD460S | TO-252 | RHR460 | NOTE: When ordering, use the entire part number. Add the suffix 9A to obtain the TO-252AA variant in the tape and reel, i.e., RHRD460S9A. #### Features | • | Hyperfast with Soft Recovery | <30ns | |---|------------------------------|-------------------| | • | Operating Temperature | 75 ⁰ C | | • | Reverse Voltage Up to | .600V | - · Avalanche Energy Rated - Planar Construction ### **Applications** - · Switching Power Supplies - Power Switching Circuits - · General Purpose ### Packaging **JEDEC STYLE TO-251** # Symbol 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw **JEDEC STYLE TO-252** ## **Absolute Maximum Ratings** $T_C = 25^{\circ}C$, Unless Otherwise Specified | | RHRD440,
RHRD440S | RHRD460,
RHRD460S | UNITS | | |--|----------------------|----------------------|---------|--| | Peak Repetitive Reverse VoltageV _{RRM} | 400 | 600 | V | | | Working Peak Reverse Voltage | 400 | 600 | V | | | DC Blocking VoltageV _R | 400 | 600 | 100A. | | | Average Rectified Forward Current $I_{F(AV)}$ ($T_C = 157^{\circ}C$) | oM.4W | 4 | N.104Y. | | | Repetitive Peak Surge CurrentI _{FRM} (Square Wave, 20kHz) | CON 8 TW | 8 | 100 | | | Nonrepetitive Peak Surge Current | 40 | 40 | N A | | | Maximum Power Dissipation | 50 | 50 | W | | | Avalanche Energy (See Figures 10 and 11) | 10 | 10 | mJ | | | Operating and Storage Temperature | -65 to 175 | -65 to 175 | °C | | | Maximum Lead Temperature for Soldering | | | | | | (Leads at 0.063 in. (1.6mm) from case for 10s) | 300 | 300 | °C | | | Package Body for 10s, see Tech Brief 334 | 260 | 260 | °C | | #### RHRD440, RHRD460, RHRD440S, RHRD460S **Electrical Specifications** $T_C = 25^{\circ}C$, Unless Otherwise Specified | | TEST CONDITION | RHR | RHRD440, RHRD440S | | RHRD460, RHRD460S | | | | |-----------------|---|---------|-------------------|------------|-------------------|-----------|----------------|-------| | SYMBOL | | MIN | TYP | MAX | MIN | TYP | MAX | UNITS | | V _F | I _F = 4A | .TW - | MA | 2.1 | COMA | 1 | 2.1 | V | | | $I_F = 4A, T_C = 150^{\circ}C$ | VII. | MAA | 1.7 | COM | I.A. | 1.7 | V | | I _R | V _R = 400V | TILI | -111 | 100 | MOD : | TV | - | μА | | | V _R = 600V | OM.T.W | - 10 | W.10 | 07. | 1.17 | 100 | μА | | | V _R = 400V, T _C = 150°C | WE.MO | - | 500 | 001- | M.TV | - | μА | | | $V_R = 600V, T_C = 150^{\circ}C$ | ON-TV | - | W AND WALL | 1003. | OM_{LL} | 500 | μА | | t _{rr} | $I_F = 1A$, $dI_F/dt = 200A/\mu s$ | COMIT | - | 30 | V.1007. | TMO | 30 | ns | | | $I_F = 4A$, $dI_F/dt = 200A/\mu s$ | COM | - | 35 | W.100x. | COM | 35 | ns | | ta | $I_F = 4A$, $dI_F/dt = 200A/\mu s$ | OV. | 16 | - IN TO | W.1003 | 16 | I.A. | ns | | t _b | $I_F = 4A$, $dI_F/dt = 200A/\mu s$ | 007. | 7 | - 11 | WW.100 | 7.01 | U.L. | ns | | Q _{RR} | $I_F = 4A$, $dI_F/dt = 200A/\mu s$ | 700x - | 45 | - 1 | WW.10 | 45 | WILL | nC | | CJ | V _R = 10V, I _F = 0A | 1.1007 | 15 | - | - W. | 15 | 0 M $_{1}$ M | pF | | $R_{\theta JC}$ | COM.TW WW | W.1007. | ONITY | 3 | WY | 1001. | 0 3 | °C/W | #### **DEFINITIONS** V_F = Instantaneous forward voltage (pw = 300 μ s, D = 2%). I_R = Instantaneous reverse current. t_{rr} = Reverse recovery time (See Figure 9), summation of t_a + t_b. ta = Time to reach peak reverse current (See Figure 9). t_b = Time from peak I_{RM} to projected zero crossing of I_{RM} based on a straight line from peak I_{RM} through 25% of I_{RM} (See Figure 9). Q_{RR} = Reverse recovery charge. C_J = Junction Capacitance. $R_{\theta,JC}$ = Thermal resistance junction to case. pw = Pulse width. D = Duty cycle. 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw # **Typical Performance Curves** FIGURE 1. FORWARD CURRENT vs FORWARD VOLTAGE FIGURE 2. REVERSE CURRENT vs REVERSE VOLTAGE #### Typical Performance Curves (Continued) FIGURE 3. t_{rr} , t_a AND t_b CURVES vs FORWARD CURRENT FIGURE 4. t_{rr} , t_a AND t_b CURVES vs FORWARD CURRENT FIGURE 5. t_{rr}, t_a AND t_b CURVES vs FORWARD CURRENT FIGURE 6. CURRENT DERATING CURVE FIGURE 7. JUNCTION CAPACITANCE vs REVERSE VOLTAGE 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw #### Test Circuits and Waveforms FIGURE 8. t_{rr} TEST CIRCUIT FIGURE 9. t_{rr} WAVEFORMS AND DEFINITIONS FIGURE 10. AVALANCHE ENERGY TEST CIRCUIT FIGURE 11. AVALANCHE CURRENT AND VOLTAGE WAVEFORMS 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.