Expertise Applied｜Answers Delivered

RoHS Oxx15xx \＆Oxx16xHx Series

Agency Approval

Agency	Agency File Number
®	L Package ：E71639

Main Features

Symbol	Value	Unit
$\mathrm{I}_{\text {T（RMS）}}$	$15 \& 16$	A
$\mathrm{~V}_{\text {DRM }} / \mathrm{V}_{\text {RRM }}$	400 to 1000	V
$\mathrm{I}_{\text {GT（Q1）}}$	10 to 80	mA

Schematic Symbol

Description

15 Amp and 16 Amp bi－directional solid state switch series is designed for AC switching and phase control applications such as motor speed and temperature modulation controls， lighting controls，and static switching relays．

Standard type devices normally operate in Quadrants I \＆III triggered from AC line．
Alternistor type devices only operate in quadrants I，II，\＆III and are used in circuits requiring high dv／dt capability．

Features \＆Benefits

－RoHS Compliant
－Glass－passivated junctions
－Voltage capability up to 1000 V
－Surge capability up to 200 A
－Electrically isolated ＂L－Package＂is UL recognized for 2500 Vrms
－Solid－state switching eliminates arcing or
contact bounce that create voltage transients
－No contacts to wear out from reaction of switching events
－Restricted（or limited）RFI generation，depending on activation point in sine wave
－Requires only a small gate activation pulse in each half－cycle

Applications

Excellent for AC switching and phase control applications such as heating，lighting，and motor speed controls．

Typical applications are AC solid－state switches，light dimmers，power tools，lawn care equipment，home／brown goods and white goods appliances．

Alternistor Triacs（no snubber required）are used in applications with extremely inductive loads requiring highest commutation performance．
Internally constructed isolated packages are offered for ease of heat sinking with highest isolation voltage．

勝 特 力 材 料 886－3－5753170胜特力电子（上海）86－21－34970699胜特力电子（深圳）86－755－83298787

Http：／／www． 100 y．com．tw

Teccor ${ }^{\circledR}$ brand Thyristors 15 Amp Standard \＆ 16 Amp Alternistor（High Commutation）Triacs

Expertise Applied｜Answers Delivered

Absolute Maximum Ratings－Standard Triac

Symbol	Parameter			Value	Unit
$\mathrm{I}_{\text {TRMSI }}$	RMS on－state current（full sine wave）	Qxx15Ly	$\mathrm{T}_{\mathrm{C}}=80^{\circ} \mathrm{C}$	15	A
		$\begin{aligned} & \text { Qxx15Ry } \\ & \text { Qxx15Ny } \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=90^{\circ} \mathrm{C}$		
$\mathrm{I}_{\text {TSM }}$	Non repetitive surge peak on－state current （full cycle， T_{j} initial $=25^{\circ} \mathrm{C}$ ）	$f=50 \mathrm{~Hz}$	$\mathrm{t}=20 \mathrm{~ms}$	167	A
		$\mathrm{f}=60 \mathrm{~Hz}$	$\mathrm{t}=16.7 \mathrm{~ms}$	200	
$1^{2} \mathrm{t}$	$1^{2} \mathrm{t}$ Value for fusing		$\mathrm{t}_{\mathrm{p}}=8.3 \mathrm{~ms}$	166	$A^{2} \mathrm{~s}$
$\mathrm{di} / \mathrm{dt}$	Critical rate of rise of on－state current	$\mathrm{f}=120 \mathrm{~Hz}$	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	100	A／$/ \mathrm{s}$
$I_{\text {GTM }}$	Peak gate trigger current	$\begin{aligned} & \mathrm{t}_{\mathrm{p}} \leq 10 \mu \mathrm{~s} \\ & \mathrm{I}_{\mathrm{GT}} \leq \mathrm{I}_{\text {GTM }} \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	2.0	A
$P_{\text {GIVV }}$	Average gate power dissipation		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	0.5	W
$\mathrm{T}_{\text {stg }}$	Storage temperature range			－40 to 150	${ }^{\circ} \mathrm{C}$
T_{J}	Operating junction temperature range			－40 to 125	${ }^{\circ} \mathrm{C}$

Note： $\mathrm{xx}=$ voltage, $\mathrm{y}=$ sensitivity

Absolute Maximum Ratings－Alternistor Triac（3 Quadrants）

Symbol	Parameter			Value	Unit
$\mathrm{I}_{\text {TRMS）}}$	RMS on－state current（full sine wave）	Qxx16LHy	$\mathrm{T}_{\mathrm{C}}=80^{\circ} \mathrm{C}$	16	A
		Qxx16RHy Oxx 16 NHy	$\mathrm{T}_{\mathrm{C}}=90^{\circ} \mathrm{C}$		
$\mathrm{I}_{\text {TSM }}$	Non repetitive surge peak on－state current （full cycle， $\mathrm{T}_{\text {，}}$ initial $=25^{\circ} \mathrm{C}$ ）	$f=50 \mathrm{~Hz}$	$\mathrm{t}=20 \mathrm{~ms}$	167	A
		$\mathrm{f}=60 \mathrm{~Hz}$	$\mathrm{t}=16.7 \mathrm{~ms}$	200	
$1^{2} \mathrm{t}$	${ }^{12} \mathrm{t}$ Value for fusing		$\mathrm{t}_{\mathrm{p}}=8.3 \mathrm{~ms}$	166	$A^{2} \mathrm{~S}$
di／dt	Critical rate of rise of on－state current	$\mathrm{f}=120 \mathrm{~Hz}$	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	100	A／$\mu \mathrm{s}$
$\mathrm{I}_{\text {GTM }}$	Peak gate trigger current	$\begin{aligned} & \mathrm{t}_{\mathrm{p}} \leq 10 \mu \mathrm{~S} ; \\ & \mathrm{i}_{\text {GT }} \leq \mathrm{I}_{\text {GTM }} \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	2.0	A
$P_{\text {GIAV }}$	Average gate power dissipation		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	0.5	W
$\mathrm{T}_{\text {stg }}$	Storage temperature range			-40 to 150	${ }^{\circ} \mathrm{C}$
T_{J}	Operating junction temperature range			-40 to 125	${ }^{\circ} \mathrm{C}$

Note：$x x=$ voltage，$y=$ sensitivity

Electrical Characteristics（ $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ ，unless otherwise specified）－Standard Triac

Symbol	Test Conditions	Quadrant		Value	Unit
$I_{G T}$	$V_{D}=12 \mathrm{~V} \quad R_{L}=60 \Omega$	I－II－III	MAX．	50	mA
$V_{G T}$		I－II－III	MAX．	2.0	V
$V_{G D}$	$V_{D}=V_{\text {DRM }} \mathrm{R}_{\mathrm{L}}=3.3 \mathrm{k} \Omega \mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	I－II－III	MIN．	0.2	\checkmark
I_{H}	$\mathrm{I}_{T}=100 \mathrm{~mA}$		MAX．	70	mA
dv／dt	$V_{D}=V_{\text {DRM }}$ Gate Open $\mathrm{T}_{j}=125^{\circ} \mathrm{C}$	400 V	MIN．	275	V／$/ \mathrm{s}$
		600 V		225	
		800 V		200	
	$V_{D}=V_{\text {DRM }}$ Gate Open $T_{j}=100^{\circ} \mathrm{C}$	1000 V		200	
（dv／dt）c	（di／dt） $\mathrm{c}=8.1 \mathrm{~A} / \mathrm{ms} \mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		MIN．	4	V／$/$ s
$\mathrm{tgt}_{\mathrm{gt}}$	$\mathrm{I}_{\mathrm{G}}=2 \times \mathrm{I}_{\mathrm{GT}} \quad \mathrm{PW}=15 \mu \mathrm{~s} \mathrm{I}_{T}=22.6 \mathrm{~A}(\mathrm{pk})$		TYP．	4	$\mu \mathrm{s}$

勝 特 力 材 料 886－3－5753170
胜特力电子（上海）86－21－34970699
胜特力电子（深圳）86－755－83298787

Expertise Applied｜Answers Delivered

Electrical Characteristics $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.$ ，unless otherwise specified）－Alternistor Triac（3 Quadrants）

Symbol	Test Conditions	Quadrant		Oxx16xH2	Oxx16xH3	Oxx16xH4	Oxx16xH6	Unit
$\mathrm{I}_{\text {GT }}$	$V_{D}=12 \mathrm{~V} \mathrm{R}_{\mathrm{L}}=60 \Omega$	I－II－III	MAX．	10	20	35	80	mA
$V_{\text {GT }}$		1－II－III	MAX．	1.3				V
$\mathrm{V}_{\text {GD }}$	$V_{D}=V_{\text {DRM }} \mathrm{R}_{\mathrm{L}}=3.3 \mathrm{k} \Omega \mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	I－II－III	MIN．	0.2				V
I_{H}	$\mathrm{I}_{\mathrm{T}}=100 \mathrm{~mA}$		MAX．	15	35	50	70	mA
dv／dt	$V_{\text {D }}=V_{\text {DRM }}$ Gate Open $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$	400V	MIN．	200	350	475	925	V／$/ \mathrm{s}$
		600 V		150	250	400	850	
		800 V		100	200	350	475	
	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\text {DRM }}$ Gate Open $\mathrm{T}_{\mathrm{J}}=100^{\circ} \mathrm{C}$	1000 V		100	200	300	350	
（dv／dt）c	（di／dt）c $=8.6 \mathrm{~A} / \mathrm{ms}^{\text {J }}=125^{\circ} \mathrm{C}$		MIN．	2	20	25	30	V／$/$ s
$\mathrm{tgt}_{\mathrm{gt}}$	$\mathrm{I}_{\mathrm{G}}=2 \times \mathrm{I}_{\mathrm{GT}} \mathrm{PW}=15 \mu \mathrm{~S} \mathrm{I}_{T}=22.6 \mathrm{~A}(\mathrm{pk})$		TYP．	3	3	3	5	$\mu \mathrm{s}$

Static Characteristics

Symbol	Test Conditions				Value	UnitV
$\mathrm{V}_{\text {TM }}$	15 A Device $\mathrm{I}_{T}=21.2 \mathrm{~A} \mathrm{t}_{0}=380 \mu \mathrm{~s}$			MAX	1.60	
	16 A Device $\mathrm{I}_{T}=22.6 \mathrm{~A} \mathrm{t}_{\rho}=380 \mu \mathrm{~s}$					
$\begin{aligned} & I_{\text {DRM }} \\ & I_{\text {RRM }} \end{aligned}$	$V_{D}=V_{\text {DRM }} / V_{\text {RRM }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	400－1000V	MAX	5	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	400－800V		2	mA
		$\mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C}$	1000 V		3	

Thermal Resistances

Symbol	Parameter		Value	Unit
$\mathrm{R}_{\theta(J-C)}$	Junction to case（AC）	Qxx15Ry Qxx15Ny Oxx16RHy Qxx16NHy	1.1	${ }^{\circ} \mathrm{C} / \mathrm{N}$
		$\begin{gathered} \text { Qxx15Ly } \\ \text { Oxx16LHy } \end{gathered}$	2.1	
$\mathrm{R}_{\theta(J-A)}$	Junction to ambient	$\begin{gathered} \text { Qxx15Ry } \\ \text { Qxx16RHy } \end{gathered}$	45	${ }^{\circ} \mathrm{C} / \mathrm{N}$
		$\begin{gathered} \text { Qxx15Ly } \\ \text { Oxx16LHy } \end{gathered}$	50	

Note：$x \mathrm{x}=$ voltage； $\mathrm{y}=$ sensitivity

Figure 1：Definition of Quadrants
Figure 2：Normalized DC Gate Trigger Current for All Quadrants vs．Junction Temperature

[^0]Figure 3：Normalized DC Holding Current vs．Junction Temperature

Figure 5：Power Dissipation（Typical） vs．RMS On－State Current

Figure 7：Maximum Allowable Case Temperature vs．On－State Current（16A devices）

Figure 4：Normalized DC Gate Trigger Voltage for All Quadrants vs．Junction Temperature

Figure 6：Maximum Allowable Case Temperature vs．On－State Current（15A devices）

Figure 8：Maximum Allowable Ambient Temperature vs．On－State Current

勝 特 力 材 料 886－3－5753170

Expertise Applied \｜Answers Delivered

Figure 9：On－State Current vs．On－State Voltage（Typical）

Figure 10：Surge Peak On－State Current vs．Number of Cycles

Soldering Parameters

Reflow Condition		Pb －Free assembly
Pre Heat	－Temperature Min（ $\mathrm{T}_{\text {s（min）}}$ ）	$150^{\circ} \mathrm{C}$
	－Temperature Max（ $\mathrm{T}_{\text {s（max })}$ ）	$200^{\circ} \mathrm{C}$
	－Time（min to max）（ t_{s} ）	60－180 secs
Average ramp up rate（Liquidus Temp） （ T_{L} ）to peak		$5^{\circ} \mathrm{C} /$ second max
$\mathrm{T}_{\mathrm{S}(\text { max })}$ to T_{L}－Ramp－up Rate		$5^{\circ} \mathrm{C} /$ second max
Reflow	－Temperature（ T_{L} ）（Liquidus）	$217^{\circ} \mathrm{C}$
	－Temperature（ t_{L} ）	60－150 seconds
Peak Temperature（ T_{p} ）		$260{ }^{+0 / 50} \mathrm{C}$
Time within $5^{\circ} \mathrm{C}$ of actual peak Temperature（ t_{p} ）		$20-40$ seconds
Ramp－down Rate		$5^{\circ} \mathrm{C} /$ second max
Time $25^{\circ} \mathrm{C}$ to peakTemperature（ T_{p} ）		8 minutes Max．
Do not exceed		$280^{\circ} \mathrm{C}$

勝 特 力 材 料 886－3－5753170
胜特力电子（上海）86－21－34970699
胜特力电子（深圳）86－755－83298787
Http：／／www． 100 y ．com．tw

Expertise Applied｜Answers Delivered
Physical Specifications

Terminal Finish	100% Matte Tin－plated
Body Material	UL recognized epoxy meeting flammability classification 94V－0
Terminal Material	Copper Alloy

Design Considerations

Careful selection of the correct device for the application＇s operating parameters and environment will go a long way toward extending the operating life of the Thyristor．Good design practice should limit the maximum continuous current through the main terminals to 75% of the device rating．Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions．Overheating， overvoltage（including $\mathrm{dv} / \mathrm{dt}$ ），and surge currents are the main killers of semiconductors．Correct mounting， soldering，and forming of the leads also help protect against component damage．

Environmental Specifications

Test	Specifications and Conditions
AC Blocking	MIL－STD－750，M－1040，Cond A Applied Peak AC voltage＠ $125^{\circ} \mathrm{C}$ for 1008 hours
Temperature Cycling	MIL－STD－750，M－1051， 100 cycles；$-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ ； 15 －min dwell time
Temperature／ Humidity	EIA／JEDEC，JESD22－A101 1008 hours；320V－DC： $85^{\circ} \mathrm{C}$ ； 85% rel humidity
High Temp Storage	MIL－STD－750，M－1031， 1008 hours； $150^{\circ} \mathrm{C}$
Low－Temp Storage	1008 hours；$-40^{\circ} \mathrm{C}$
Thermal Shock	MIL－STD－750，M－1056 10 cycles； $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ ； 5 －min dwell time at each temperature； 10 sec （max） transfer time between temperature
Autoclave	EIA／JEDEC，JESD22－A102 168 hours（ $121^{\circ} \mathrm{C}$ at 2 ATMs）and 100\％R／H
Resistance to Solder Heat	MIL－STD－750 Method 2031
Solderability	ANSI／J－STD－002，category 3，Test A
Lead Bend	MIL－STD－750，M－2036 Cond E

Dimensions－TO－220AB（R－Package）－Non－Isolated Mounting Tab Common with Center Lead

Dimension	Inches		Millimeters	
	Min	Max	Min	Max
A	0.380	0.420	9.65	10.67
B	0.105	0.115	2.66	2.92
C	0.230	0.250	5.84	6.35
D	0.590	0.620	14.99	15.75
E	0.142	0.147	3.61	3.73
F	0.110	0.130	2.79	3.30
G	0.540	0.575	13.72	14.61
H	0.025	0.035	0.64	0.89
J	0.195	0.205	4.95	5.21
K	0.095	0.105	2.41	2.67
L	0.060	0.075	1.52	1.91
M	0.085	0.095	2.16	2.41
N	0.018	0.024	0.46	0.61
O	0.178	0.188	4.52	4.78
P	0.045	0.060	1.14	1.52
R	0.038	0.048	0.97	1.22

勝 特 力 材 料 886－3－5753170
胜特力电子（上海）86－21－34970699
胜特力电子（深圳）86－755－83298787
Http：／／www．100y．com．tw

Dimensions－TO－220AB（L－Package）－Isolated Mounting Tab

Note：Maximum torque to be applied to mounting tab is 8 in －lbs．（ 0.904 Nm ）．

Dimension	Inches		Millimeters	
	Min	Max	Min	Max
A	0.380	0.420	9.65	10.67
B	0.105	0.115	2.67	2.92
C	0.230	0.250	5.84	6.35
D	0.590	0.620	14.99	15.75
E	0.142	0.147	3.61	3.73
F	0.110	0.130	2.79	3.30
G	0.540	0.575	13.72	14.60
H	0.025	0.035	0.64	0.89
J	0.195	0.205	4.95	5.21
K	0.095	0.105	2.41	2.67
L	0.060	0.075	1.52	1.91
M	0.085	0.095	2.16	2.41
O	0.018	0.024	0.46	0.61
P	0.178	0.188	4.52	4.78
R	0.045	0.060	1.14	1.52

Dimensions－TO－263AB（N－Package）－D²Pak Surface Mount

Dimension	Inches		Millimeters	
	Min	Max	Min	Max
A	0.360	0.370	9.14	9.40
B	0.380	0.420	9.65	10.67
C	0.178	0.188	4.52	4.78
D	0.025	0.035	0.64	0.89
E	0.045	0.060	1.14	1.52
F	0.060	0.075	1.52	1.91
G	0.095	0.105	2.41	2.67
H	0.092	0.102	2.34	2.59
J	0.018	0.024	0.46	0.61
K	0.090	0.110	2.29	2.79
S	0.590	0.625	14.99	15.88
V	0.035	0.045	0.89	1.14
U	0.002	0.010	0.05	0.25
W	0.040	0.070	1.02	1.78

勝 特 力 材 料 886－3－5753170胜特力 电子（上海）86－21－34970699
胜特力电子（深圳）86－755－83298787
Http：／／www．100y．com．tw

Expertise Applied｜Answers Delivered

Product Selector

Part Number	Voltage				Gate Sensitivity Quadrants	Type	Package
	400V	600 V	800 V	1000 V	I－｜｜－｜｜I		
Qxx15L5	X	X	X	X	50 mA	Standard Triac	TO－220L
Qxx15R5	X	X	X	X	50 mA	Standard Triac	TO－220R
Qxx15N5	X	X	X	X	50 mA	Standard Triac	TO－263 D2－PAK
Qxx16LH2	X	X	X	X	10 mA	Alternistor Triac	TO－220L
Qxx16RH2	X	X	X	X	10 mA	Alternistor Triac	TO－220R
Oxx16NH2	X	X	X	X	10 mA	Alternistor Triac	TO－263 D2－PAK
Qxx16LH3	X	X	X	X	20 mA	Alternistor Triac	TO－220L
Oxx16RH3	X	X	X	X	20 mA	Alternistor Triac	TO－220R
Oxx16NH3	X	X	X	X	20 mA	Alternistor Triac	TO－263 D2－PAK
Oxx16LH4	X	X	X	X	35 mA	Alternistor Triac	TO－220L
Qxx16RH4	X	X	X	X	35 mA	Alternistor Triac	TO－220R
Oxx16NH4	X	X	X	X	35 mA	Alternistor Triac	TO－263 D2－PAK
Qxx16LH6	X	X	X	X	80 mA	Alternistor Triac	TO－220L
Qxx16RH6	X	X	X	X	80 mA	Alternistor Triac	TO－220R
Qxx16NH6	X	X	X	X	80 mA	Alternistor Triac	TO－263 D2－PAK

Packing Options

Part Number	Marking	Weight	Packing Mode	Base Quantity
Qxx15L／Ry	Qxx15L／Ry	2.2 g	Bulk	500
Qxx15L／RyTP	Qxx15L／Ry	2.2 g	Tube Pack	500 （50 per tube）
Qxx15NyTP	Qxx15Ny	1.6 g	Tube	500 （50 per tube）
Qxx15NyRP	Oxx15Ny	1.6 g	Embossed Carrier	500
Qxx16L／RHy	Qxx16L／RHy	2.2 g	Bulk	500
Qxx16L／RHyTP	Qxx16L／RHy	2.2 g	Tube Pack	500 （50 per tube）
Qxx16NHyTP	Oxx16NHy	1.6 g	Tube	500 （50 per tube）
Oxx16NHyRP	Qxx16NHy	1.6 g	Embossed Carrier	500

Note：$x x=$ Voltage；$y=$ Sensitivity

勝 特 力 材 料 886－3－5753170
胜特力 电子（上海）86－21－34970699
胜特力 电子（深圳）86－755－83298787
Http：／／www．100y．com．tw

TO－263 Embossed Carrier Reel Pack（RP）
Meets all EIA－481－2 Standards

Part Numbering System

Part Marking System

TO－220 AB－（RPackage） TO－263 AB－（N Package）

勝 特 力 材 料 886－3－5753170
胜特力电子（上海）86－21－34970699
胜特力 电子（深圳）86－755－83298787
Http：／／www． $100 y$ ．com．tw

[^0]: Note：Alternistors will not operate in QIV

