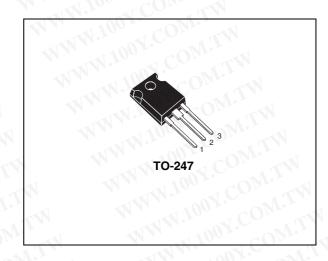


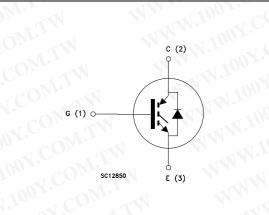
57

STGW40NC60WD

Features


- Low C_{RES} / C_{IES} ratio (no cross conduction susceptibility)
- IGBT co-packaged with ultra fast free-wheeling diode
- High frequency operation

Applications


- High frequency inverters, UPS
- Motor drivers
- HF, SMPS and PFC in both hard switch and resonant topologies
- Welding
- Induction heating

Description

This IGBT utilizes the advanced PowerMESH[™] process resulting in an excellent trade-off between switching performance and low on-state behavior.

Figure 1. Internal schematic diagram

Order code	Marking	Package	Packaging	N
STGW40NC60WD	GW40NC60WD	TO-247	Tube	

W.COM.TW Contents

COM Contents

<u>c</u>0M.TW

1 11	Electrical ratings	
2	Electrical characteristics	
	2.1 Electrical characteristics (curves)	
3	Test circuit	8
4	Package mechanical data	. 44 Un
5	Revision history	WT.

WWW.100Y.COM.TW

EW.100Y.COM.TW

N.COM.TW

m

WWW.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100X.COM.TV

WWW.100X.COM

57

WWW.100Y.COM.TW

NW100X.COM.TW

WWW.1001.COM.TW

WWW.100X.COM

WWW.100Y.COM.TW

11 WWW.I

Electrical ratings

Elect	trical ratings	WWW.1002.CON.TW
MMM-1003.	CONTRA	WWW.1001.CON.
Table 2	Absolute maximu	Im ratings

Symbol	Absolute maximum ratings Parameter	Value	Uni
V _{CES}	Collector-emitter voltage (V _{GE} = 0)	600	V
I _C ⁽¹⁾	Collector current (continuous) at 25 °C	070	A
I _C ⁽¹⁾	Collector current (continuous) at 100 °C	40	A
I _{CL} ⁽²⁾	Turn-off latching current	230	Α
I _{CP} ⁽³⁾	Pulsed collector current	230	A
V _{GE}	Gate-emitter voltage	±20	v
I _E	Diode RMS forward current at T _C =25 °C	30	A
I _{FSM}	Surge non repetitive forward current (tp=10 ms sinusoidal)	120	Α
P _{TOT}	Total dissipation at $T_{C} = 25 \text{ °C}$	250	W
Тj	Operating junction temperature	– 55 to 150	O°C
Т _ј . Calculate ^I c ^{(T} c ⁾ = _{Ятн} . . Vclamp =			

WWW.100Y.COM.TW

TN-100Y.COM.TW

WWW.100Y.COM

1COM.TW

$$I_{C}(T_{C}) = \frac{I_{JMAX} - I_{C}}{R_{THJ-C} \times V_{CESAT(MAX)}(T_{C}, I_{C})}$$

WWW.100Y.COM.TW

WWW.1002

NIOOX.COM.TW

WWW.100Y.COM.TW

WWW.100Y.COM

<u>-0</u>M.TW

able 3. Symbol	Thermal resistance Parameter	Value	
R _{thj-case}	Thermal resistance junction-case max (IGBT)	0.5	°C/
R _{thj-case}	Thermal resistance junction-case max (diode)	1.5	°C/
R _{thj-amb}	Thermal resistance junction-ambient max	50	°C/\

WWW.100Y.COM.TW

WWW.1001.

NN

NICONATIV

WWW.100Y.COM

W.100X.COM.TW **Electrical characteristics**

2	Electr	ical characterist	tics				
	(T _{CASE} =2 Table 4.	5 °C unless otherwise spec Static	ified)				
	Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	V _{(BR)CES}	Collector-emitter breakdown voltage ($V_{GE} = 0$)	I _C = 1 mA	600	LM		v
	V _{CE(sat)}	Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 30 A V _{GE} = 15 V, I _C = 30 A, T _C =125 °C	col	2.1 1.9	2.5	V V
	V _{GE(th)}	Gate threshold voltage	V _{CE} = V _{GE} , I _C = 250µA	3.75	122	5.75	V
	ICES	Collector-emitter cut-off current (V _{GE} = 0)	V _{GE} = 600 V V _{GE} = 600 V, T _C =125 °C	04.0	CO2 2024	500 5	μA mA
	I _{GES}	Gate-emitter cut-off current (V _{CE} = 0)	V _{GE} = ± 20 V	1002	N.C	±100	nA
	9 _{fs}	Forward transconductance	V _{CE} = 15 V _, I _C = 30 A		20		S
	Table 5.	Dynamic	OM. WY	N.Y	100%	N.CC	M
	Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit

WWW.100Y.COM.TW

N.100Y.COM.TW

100X.CON

<u>4 C</u>OM.TW

Table 4 Ctatio

Table 5.	Dynamic
----------	---------

WWW.100Y.COM.TW

WWW.1001.

TTIOOX.COM.TW

WWW.100Y.COM

WWW.100Y.COM.TW

.co_{M.TW}

C _{ies}	Input capacitance	CONTRA		2900		p
C _{oes}	Output capacitance Reverse transfer	$V_{CE} = 25 \text{ V}, \text{ f} = 1 \text{ MHz}, \text{ V}_{GE} = 0$	W.	298	100	р р
C _{res}	capacitance	TON TON COMPLETEN		59	N.10	р.
Qg	Total gate charge	$V_{CE} = 390 \text{ V}, I_{C} = 30 \text{ A},$		126	N.	nC
Q _{ge}	Gate-emitter charge	V _{GE} = 15 V		16		nC
Q _{gc}	Gate-collector charge	(see Figure 18)		46	NN	nC

WWW.100Y.COM.TW

WWWW.100Y.COM.TW

WWW.100Y.COM.TY

WWW.100Y.COM

/

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	$V_{CC} = 390 \text{ V}, I_C = 30 \text{ A}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V}$ (see Figure 17)	1.TV M.T	33 12 2600		ns ns A/µs
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay timE Current rise time Turn-on current slope	$V_{CC} = 390 \text{ V}, I_C = 30 \text{ A}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V},$ $T_C = 125 \text{ °C}$ <i>(see Figure 17)</i>	COV OW	32 14 2300		ns ns A/µs
t _r (V _{off}) t _d (_{off}) t _f	Off voltage rise time Turn-off delay time Current fall time	$V_{CC} = 390 \text{ V}, I_C = 30 \text{ A},$ $R_{GE} = 10 \Omega, V_{GE} = 15 \text{ V}$ <i>(see Figure 17)</i>	1.0 07.0	26 168 36	1.14	ns ns ns
t _r (V _{off}) t _d (_{off}) t _f	Off voltage rise time Turn-off delay time Current fall time	$V_{CC} = 390 \text{ V}, I_C = 30 \text{ A},$ $R_{GE}=10 \Omega, V_{GE} = 15 \text{ V},$ $T_C=125 \text{ °C} (see Figure 17)$	100	54 213 67	ON.	ns ns ns

100X.COM.TW

Switching on/off (inductive load) Table 6.

Table 7. Switching energy (inductive load)

Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
E _{on} ⁽¹⁾	Turn-on switching losses	$V_{\rm CC}$ = 390 V, I _C = 30 A	A	302	N.	μJ
E _{off} ⁽²⁾	Turn-off switching losses	R _G = 10 Ω, V _{GE} = 15 V		349	00	μJ
E _{off} ⁽²⁾ E _{ts}	Total switching losses	(see Figure 17)	W	651	100	μJ
E _{on} ⁽¹⁾ E _{off} ⁽²⁾ E _{ts}	Turn-on switching losses Turn-off switching losses Total switching losses	$V_{CC} = 390$ V, I _C = 30 A R _G = 10 Ω, V _{GE} = 15 V, T _C = 125 °C (see Figure 17)	4	553 750 1303	N.10	μJ μJ μJ

Eon is the turn-on losses when a typical diode is used in the test circuit in figure 2 Eon include diode recovery energy. If the IGBT is offered in a package with a co-pak diode, the co-pack diode is used as external diode. IGBTs & Diode are at the same temperature (25 °C and 125 °C)

2. Turn-off losses include also the tail of the collector current WW.100Y.COM

WWW.100Y.COM.TW

WWW.100

WWW.100Y.COM

100X.COM.TW

WWW.100Y.COM.TW

WWW.100X.COM

WWW.1001.

100X.COM.TW

Symbol	Parameter	Test conditions	Min	Тур.	Max	Uni
V _F	Forward on-voltage	I _F = 30 A I _F = 30 A, T _C = 125 °C	1.17	2.4 1.8		V V
t _{rr} Q _{rr} I _{rrm}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _F = 30 A, V _R = 50 V, di/dt =100 A/μs (<i>see Figure 20</i>)	DW.	45 56 2.55		ns nC A
t _{rr} Q _{rr} I _{rrm}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_F = 30 \text{ A}, V_R = 50 \text{ V},$ $T_C = 125 \text{ °C},$ di/dt =100 A/µs (see Figure 20)		100 290 5.8	N N N	ns nC A

WWW.100Y.COM.TW

TW.100Y.COM.TW

HCON.TW

TN

WWW.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100X.COM.TW

WWW.100X.COM

57

T COL	Wn	W W .100)
able 8.	Collector-e	mitter diode	

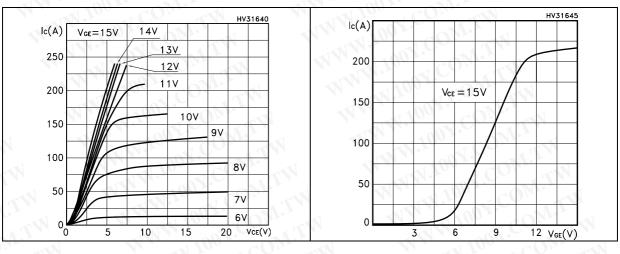
WWW.100Y.COM.TW

WW100X.COM.TW

WWW.1001.COM.TW

WWW.100X.COM

WWW.100Y.COM.TW


HV31690

STGW40NC60WD

Electrical characteristics (curves) 2.1

Output characteristics Figure 2.

Figure 3. Transfer characteristics

Vce=15V

T」=−50°C

150°C

15

 $g_{fS}(S)$

18

15

12

9

3L ()

Figure 5. Collector-emitter on voltage vs

temperature

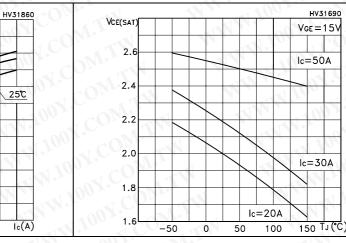
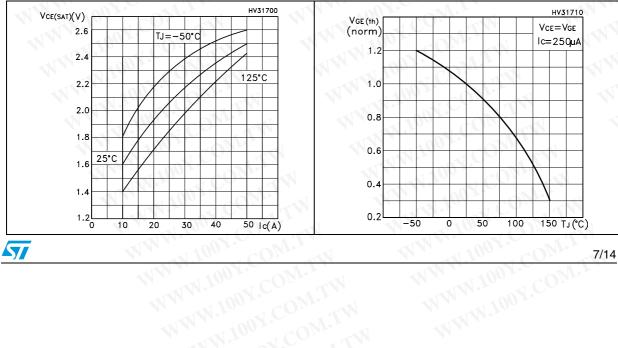
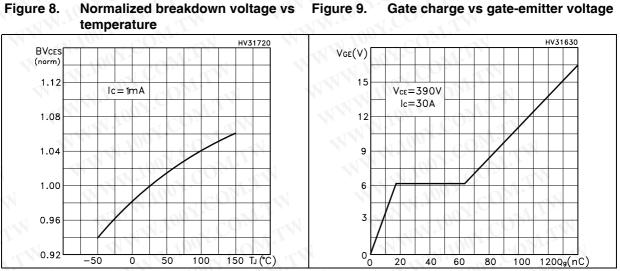



Figure 6. Collector-emitter on voltage vs collector current


Figure 7. Normalized gate threshold vs temperature

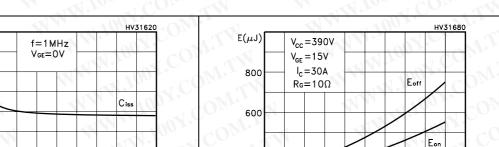


Electrical characteristics

57

WWW.100Y.COM

C(pF)


4000

3000

2000

1000

Crss

400

200

0 0 10 20 30 40 Vce(V) 50 100 T_J(°C) 25 75

Coss

Figure 12. Switching losses vs gate resistance Figure 13. Switching losses vs collector current

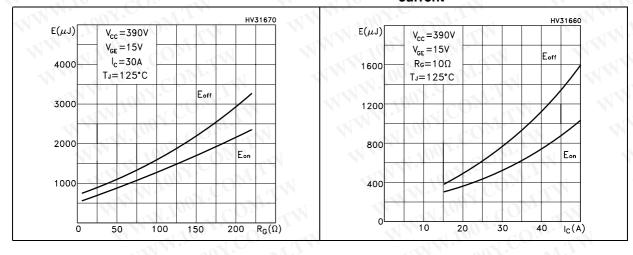
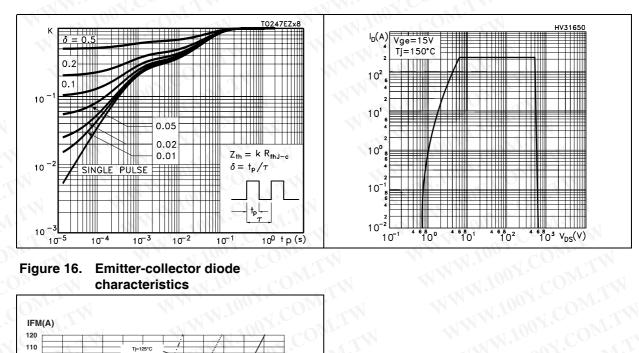
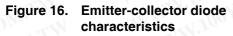


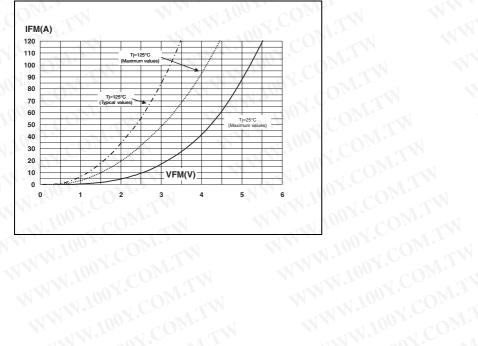
Figure 9. Gate charge vs gate-emitter voltage


Figure 11. Switching losses vs temperature

STGW40NC60WD

Figure 14. Thermal impedance


Figure 15. Turn-off SOA


CONTA

WWW.100Y.COM.TW

N.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100X

57

100Y.COM.TW

WWW.100Y.COM.TW

WWW.100Y.COM

9/14

WWW.100Y.COM.TW

WWW.1001.

100X.COM.TW

WWW.100Y.COM

ŧ

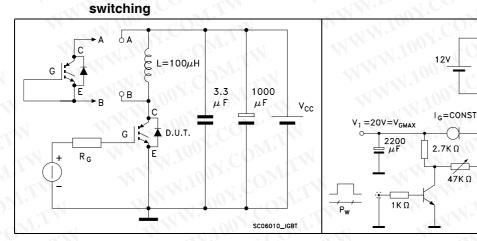
. D.U.T.

25% |RRM

VF

SC20030 IGBTs

°cc


1KΩ

۷_G

SC09910

Test circuit 3

Figure 17. Test circuit for inductive load

E

WWW.100Y.COM.T

Figure 18. Gate charge test circuit

 \frown 47ΚΩ

dV/dt

47K Ω

100nF

1ΚΩ

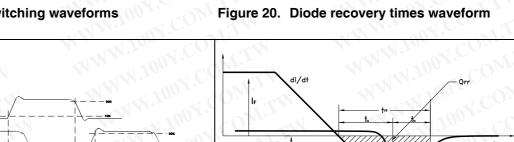


Figure 19. Switching waveforms

4

57

Package mechanical data

WWW.100Y.COM.TW

WWW.100Y.CON

WWW.1007

100X.COM.TW

WWW.100Y.COM.TW

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com WWW.100Y.COM

100X.COM.TW

ONL.TW

WWW.100Y.COM.TW

WWW.100X.COM

WWW.1001

TW

NICONATIV

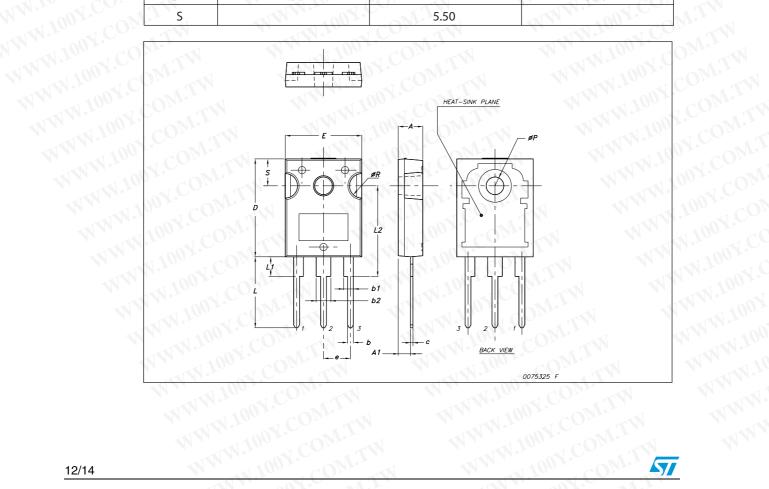

WWW.100Y.COM

WWW.1002.

WW

57

N. P. ONY.C	TO-24	47 mechanical data	
N. Jonal	CORTEN	W.W.W. CO.	THE STATE
Dim.	CONTRACT	mm.	Dive.
100	Min.	Тур	Max.
A	4.85	YOU.	5.15
A1	2.20	W. W. Local	2.60
b	1.0	W. W.100	1.40
b1	2.0	WW 100	2.40
b2	3.0		3.40
c	0.40		0.80
D	19.85	W W	20.15
E	15.45	W W	15.75
e	1 1001. ON	5.45	1001.001.1
L	14.20	N. W	14.80
L1	3.70	1.TM	4.30
L2	W.IO. CC	18.50	W.Io. COn
øP	3.55	ON. WY	3.65
øR	4.50	ON. I	5.50
S	ANN ON	5.50	ANN. N.



WWW.100Y.COM.TW

WWW.100

TN-100Y.COM.TW

<u>4 C</u>ONTA

NIOOX.COM.TW

WWW.100Y.COM.TW

WWW.100Y.COM

WWW.1001.

COM.TW

5WW.10 WWW.I

Revision history

Revisi	ion histor	y	
Table 9.	Document re	evision history	
			Revision history Table 9. Document revision history

WWW.100Y.COM.TW

WW100X.COM.TW

WWW.1001.COM.TW

WWW.100X.COM

WWW.100Y.COM.TW

Date	Revision	Changes
8-Jun-2006	1.1	First release
8-Nov-2006	2	Modified <i>Dynamic</i>
01-Feb-2008	3	Updated Table 7
09-Jul-2008	4	Added new feature

WWW.100Y.COM.TW

TW.100Y.COM.TW

HCON.TW

WWW.100Y.COM.TW

WWW.100X.COM

STGW40NC60WD

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com