

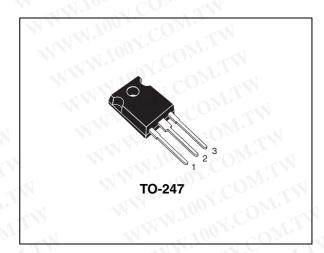
勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

STW26NM50

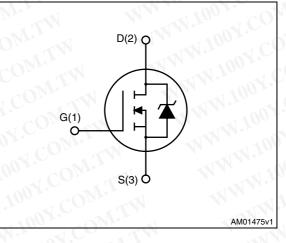
N-channel 500 V, 0.10 Ω, 30 A TO-247 MDmesh™ Power MOSFET

Features

Туре	V _{DSS}	R _{DS(on)} max	Ι _D
STW26NM50	500 V	< 0.12 Ω	30 A


- High dv/dt and avalanche capabilities
- Improved ESD capability
- Low input capacitance and gate charge

Application


Switching applications

Description

MDmesh[™] technology applies the benefits of the multiple drain process to STMicroelectronics' well-known PowerMESH[™] horizontal layout structure. The resulting product offers low onresistance, high dv/dt capability and excellent avalanche characteristics.

Figure 1. Internal schematic diagram

Order codes	Marking	Package	Packaging	-1
STW26NM50	W26NM50	TO-247	Tube	

COM Contents

CONT.IM

1 🔨	Electrical ratings
2	Electrical characteristics
	2.1 Electrical characteristics (curves)
3	Test circuits
4	Package mechanical data
5.1	Revision history

WWW.100Y.COM.TW

EW.100Y.COM.TW

N.COM.TW

WWW.1001.

WWW.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100X.COM.TV

WWW.100X.COM

57

11

Electrical ratings

Table 2.	Absolute maximum ratings	LCON TW	
Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)	500	V
V _{GS}	Gate-source voltage	±30	V
I _D	Drain current (continuous) at $T_C = 25 \text{ °C}$	30	А
ID	Drain current (continuous) at $T_C = 100 \ ^{\circ}C$	18.9	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	120	Α
P _{TOT}	Total dissipation at $T_{C} = 25 \text{ °C}$	313	W
No.	Derating factor	2.5	W/°C
V _{ESD(G-S)}	Gate source ESD (HBM-C=100 pF, R=1.5 kΩ)	6000	V
dv/dt ⁽²⁾	Peak diode recovery voltage slope	15	V/ns
T _{stg}	Storage temperature	-55 to 150	°C
- sig			

WWW.100Y.COM.TW

IN.100Y.COM.TW

LCON.TW

WWW.100

Tuble of Thermal data	Table	3.	Thermal	data
-----------------------	-------	----	---------	------

Table 3.	Thermal data	WWW.IC	JU ×
Symbol	Parameter	Value	Un
R _{thj-case}	Thermal resistance junction-case max	0.4	°C
R _{thj-amb}	Thermal resistance junction-ambient max	62.5	°C/
CDM	Maximum lead temperature for soldering purpose	300	°C

Table 4.

WWW.100

Symbol	Parameter	Value	Uni
I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by $T_{j max}$)	13	Α
E _{AS}	Single pulse avalanche energy (starting T_J =25 °C, I_D = I_{AR} , V_{DD} =50 V)	740	mJ

WWW.100Y.COM.TW

WWW.100Y.COM.TW

WWW.1001.

WW

NICONATIV

WWW.100Y.COM

WW.100Y.C

NWW.100X

2

Electrical characteristics WW.100Y.COM.TW

N.100X.COM.TW (T_{CASE} = 25 °C unless otherwise specified)

Table 5.	On/off states	N. IV. IV. CO.				
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_{D} = 250 \ \mu A, \ V_{GS} = 0$	500	TW	1	v
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V_{DS} = Max rating V_{DS} = Max rating, T _C =125 °C	1.00	MT	10 100	μΑ μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	$V_{GS} = \pm 20 V$	N.C	-01/ 01/2-	± 10	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10 V, I _D = 13 A	100	0.10	0.12	Ω

WWW.100Y.COM.TW

1.100X.COM.TW

100X.CON

CONTA

Table 5 **On/off states**

Dvnamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.
9 _{fs} ⁽¹⁾	Forward transconductance	V _{DS} =15 V, I _D =13 A	-	20	
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer Capacitance	V _{DS} = 25 V, f = 1 MHz, V _{GS} = 0	44	3000 700 50	1005
C _{oss eq.} (2	Equivalent output capacitance	$V_{GS} = 0, V_{DS} = 0$ to 400 V	-	300	N ⁱ .V
Q _g Q _{gs} Q _{qd}	Total gate charge Gate-source charge Gate-drain charge	$V_{DD} = 400 \text{ V}, I_D = 26 \text{ A},$ $V_{GS} = 10 \text{ V},$ <i>(see Figure 15)</i>	-	76 20 36	NNN NNN

WWW.100Y.CON WWW.2. $C_{oss~eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DS}

Table 7.	Switching times
ladie 7.	Switching times

WWW.100

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 250 V, I _D = 13 A,		28		ns
tr	Rise time	$R_{G} = 4.7 \ \Omega, V_{GS} = 10 \ V,$	COM-	15		ns
t _{d(off)}	Turn-off-delay time	(see Figure 15)		13	N	ns
t _f	Fall time			19		ns

WWW.100Y.COM

WWW.1001.

Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
I _{SD} I _{SDM} ⁽¹⁾	Source-drain current Source-drain current (pulsed)	WWW.100X.COM	TN		26 104	A A
V _{SD} ⁽²⁾	Forward on voltage	$I_{SD} = 26 \text{ A}, V_{GS} = 0$	1.5		1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} = 26 A, di/dt = 100 A/μs V _{DD} = 100 V (<i>see Figure 16</i>)	N. N.	400 5.5 27.8	J	ns μC Α
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{SD} = 26 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s}$ $V_{DD} = 100 \text{ V, T}_{j} = 150 \text{ °C}$ (see Figure 16)	. <u>.</u>	492 7 28.8	W.	ns μC Α

Table 8. Source drain diode

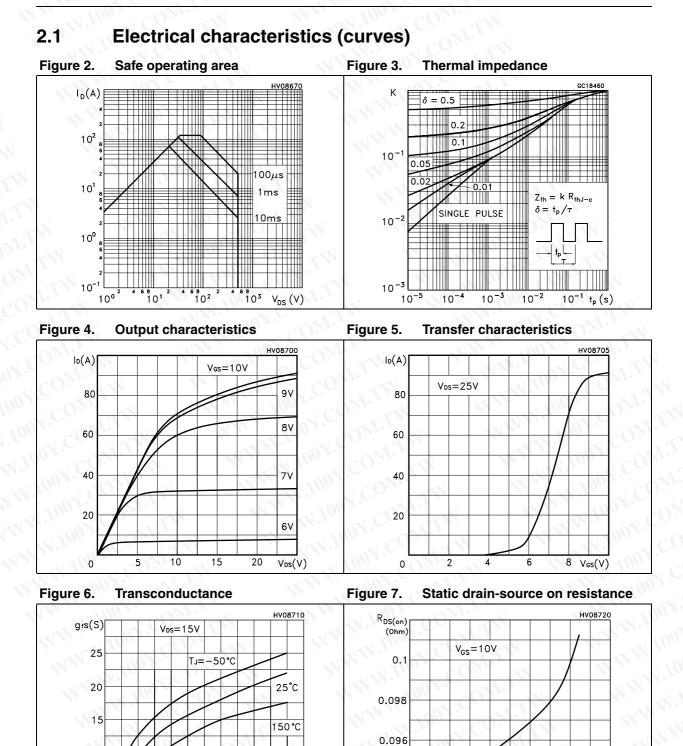
Pulse width limited by safe operating area 1.

Pulsed: pulse duration = 300 µs, duty cycle 1.5% 2.

Tab	ble	9	
IUN		<u>v</u> .	

STW26NM50

Gate-source Zener diode


Table 9.	Gate-source Zener diode					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
BV _{GSO}	Gate-source breakdown voltage	Igs=± 1 mA (open drain)	30	1001		v

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

WWW.100Y.COM

WWW.100

Doc ID 8291 Rev 11

0.094

10

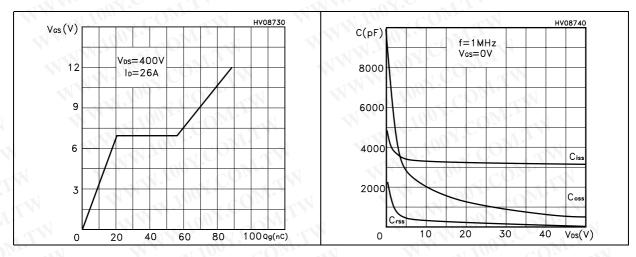
5

15

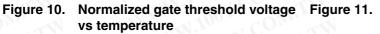
WWW.100Y.COM

 $I_D(A)$

20


10

5


0

5

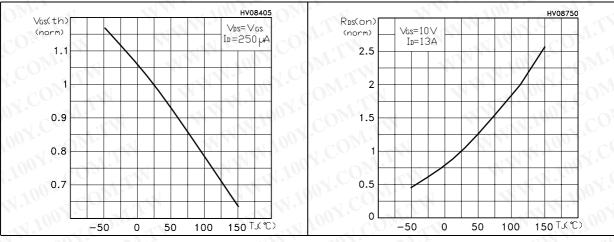

10

Figure 8. Gate charge vs gate-source voltage Figure 9. Capacitance variations

HV08760

25°C

150°C

25 ISD(A)

TJ=-50℃

Figure 12. Source-drain diode forward characteristics

Vsd(V)

0.9

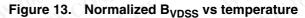
0.8

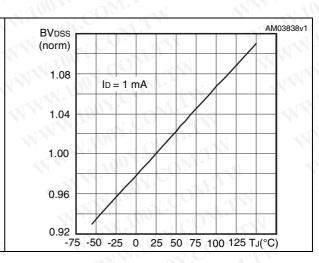
0.7

0.6

0.5

57

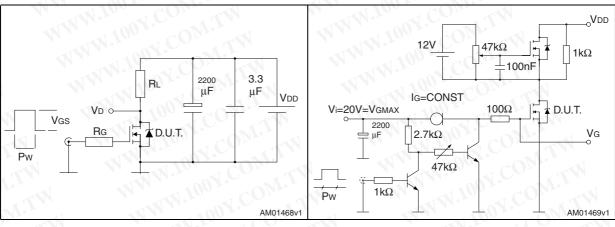

0


5

10

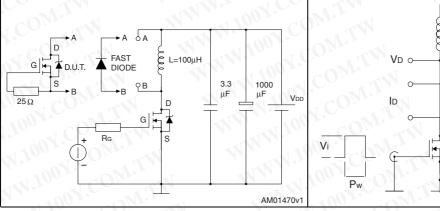
15

20



WWW.100Y.CON

Doc ID 8291 Rev 11


7/12

3 Test circuits

Figure 14. Switching times test circuit for Figure 15. Gate charge test circuit resistive load

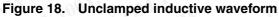


Figure 19. Switching time waveform

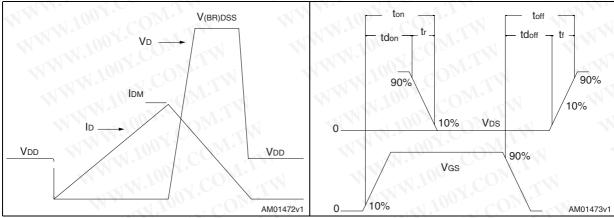
JJJJ

🛣 D.U.T.

2200

μF

WWW.100X.CON


3.3

μF

VDD

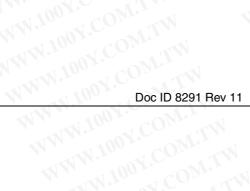
AM01471v1

57

Doc ID 8291 Rev 11

4

Package mechanical data


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

WWW.100Y.COM.TW

N.100X.COM.TW

00X.COM

CONTLAN

WWW.100

WWW.100Y.COM.TW

WWW.1001.

N.100X.COM.TW

WWW.100X.COM

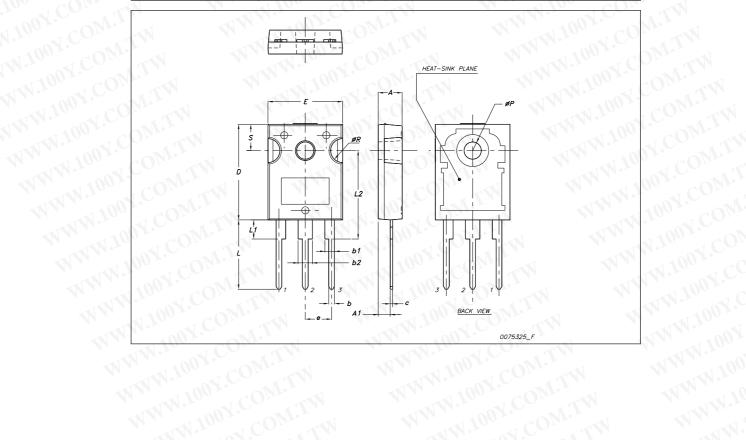
M.T.W

DNITW

COM TW

WW.100Y.CC

WWW.100Y.C


Package mechanical data WWW.IOU

NW 1901	COMPT	TO-247 med	chanical data	N
WW NO0	E COMPANY		1.100 mm. 011	
WWW.	Dim.	Min.	Тур.	Max.
N. N. N.	A	4.85	W.P. S.Cor	5.15
	A1	2.20	N.100 CON	2.60
NN	b	1.0	1001.	1.40
VAN	b1	2.0	WW. ON.	2.40
	b2	3.0	N. IV. IV	3.40
AL.	c	0.40	WW 1001.	0.80
	D	19.85	1001	20.15
	E.	15.45	N.W.	15.75
V V	e	COMM	5.45	CONTRA
	NNL 100	14.20	ANN 10	14.80
L.	L1	3.70	ALW	4.30
WT.	L2	N.CON TW	18.50	COpre
1	øP	3.55		3.65
M.I.	øR	4.50		5.50
	S		5.50	N.M. N.CO

WWW.100Y.COM.TW

EN.100Y.COM.TW

<u>1 C</u>OM.TW

WWW.100Y.COM.TW

WWW.1001.

VIOOX.COM.TW

WWW.100Y.COM

57

WWW.100Y.COM.TW

WWW.100X.

WWW.100X.CON

WWW.10

WWW

t.WWW

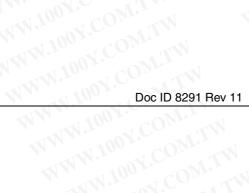
5 WWW.

57

Revision history

CONT.TW

WWW.100Y.COM Table 10.


Date	ument revisio Revision	Changes
4-Jun-2004	9	New stylesheet.
7-Feb-2005	10	I _D value changed
2-Oct-2009	11	Modified: test condition of V _{(BR)DSS} in <i>Table 5</i>

WWW.100Y.COM.TW

WWW.100

W.100Y.COM.TW

ACON.TW

WWW.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100X.COM

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 8291 Rev 11