Table 1：General Features

TYPE	V $_{\text {DSS }}$	R$_{\text {DS（on）}}$	$\mathbf{I D}_{\mathbf{D}}$	Pw $_{\mathbf{W}}$
STW28NK60Z	600 V	<0.1857	27 A	350 W

－TYPICAL R $\mathrm{RSS}^{(o n)}=0.1557$
－EXTREMELY HIGH dv／dt CAPABILITY
－100\％AVALANCHE TESTED
－GATE CHARGE MINIMIZED
－VERY LOW INTRINSIC CAPACITANCES
－VERY GOOD MANUFACTURING REPEATIBILITY

DESCRIPTION

The SuperMESH ${ }^{\text {TM }}$ series is obtained through an extreme optimization of ST＇s well established strip－based PowerMESH ${ }^{\text {TM }}$ layout．In addition to pushing on－resistance significantly down，special care is taken to ensure a very good dv／dt capability for the most demanding application．Such series complements ST full range of high vitage MOS－ FETs including revolutionary MSmesh ${ }^{\text {TM }}$ products．

APPLICATIONS

－HIGH CURRENT，HIGH SPEED SVVI－ハHIVG
－IDEAL FOR OFF－LINE POWER S．IF＇PLIES
－WELDING MACHINES
－LIGHTING

Figure 1：Package

Figure 2：In｀ol r．al Schematic Diagram

「こole 2：Order Codes

PART NUMBER	MARKING	PACKAGE	PACKAGING
STW28NK60Z	W28NK60Z	TO－247	TUBE

勝 特 力 材 料 886－3－5753170
胜特力电子（上海）86－21－34970699
胜特力电子（深圳）86－755－83298787
Http：／／www． 100 y ．com．tw

Rev． 1

Table 3: Absolute Maximum ratings

Symbol	Parameter	Value	Unit
V_{DS}	Drain-source Voltage $\left(\mathrm{V}_{\mathrm{GS}}=0\right)$	600	V
$\mathrm{~V}_{\mathrm{DGR}}$	Drain-gate Voltage (RGS $=20 \mathrm{~K} 7$	600	V
$\mathrm{~V}_{\mathrm{GS}}$	Gate- source Voltage	$\pi 30$	V
I_{D}	Drain Current (continuous) at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	27	A
I_{D}	Drain Current (continuous) at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	17	A
$\left.\mathrm{I}_{\mathrm{DM}}{ }^{*}\right)$	Drain Current (pulsed)	108	A
$\mathrm{P}_{\text {TOT }}$	Total Dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	350	W
	Derating Factor	2.77	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ESD(G-S) }}$	Gate source ESD (HBM-C $=100 \mathrm{pF}, \mathrm{R}=1.5 \mathrm{~K} 7$	6000	V
$\mathrm{dv} / \mathrm{dt}(1)$	Peak Diode Recovery voltage slope	4.5	$\mathrm{~V} / \mathrm{ns}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature T_{j}	Operating Junction Temperature	-55 to 150
${ }^{\circ} \mathrm{C}$			

(*) Pulse width limited by safe operating area
(1) ISD $\beta 27 \mathrm{~A}$, di/dt $\beta 200 \mathrm{~A} / \mu \mathrm{s}, \mathrm{VDD} \beta \mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}, \mathrm{T}_{\mathrm{J}} \beta \mathrm{T}_{\mathrm{JMAX}}$

Table 4: Thermal Data

Rthj-case	Thermal Resistance Junction-case Max	0.36	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Rthj-amb	Thermal Resistance Junction-ambient Max	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
T_{I}	Maximum Lead Temperature For Soldering Purpose	300	${ }^{\circ} \mathrm{C}$

Table 5: Avalanche Characteristics

Symbol	Parameter	Max Value	Unit
$I_{\text {AR }}$	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by $\left.T_{j} m a x\right)$	27	A
$\mathrm{E}_{A S}$	Single Pulse Avalanche Energy $\left(\right.$ starting $\left.T_{j}=25^{\circ} \mathrm{C}, I_{D}=I_{A R}, V_{D D}=50 \mathrm{~V}\right)$	500	mJ

Table 6: Gate-Source Zener Diode

Symbol	Parameter	Test Condition	Min.	Typ.	Max	Unit
$\mathrm{BV}_{\text {GSO }}$	Gate-Source Breakdown Voltage	Igs $=\pi 1 \mathrm{~mA}$ (Open Drain)	30			A

PROTECTION FEATURES OF GATE-TO-SOURCE ZENER DIODES

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

TABLE 7: ELECTRICAL CHARACTERISTICS (TCASE $=25^{\circ} \mathrm{C}$ UNLESS OTHERWISE SPECIFIED) On /Off

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {(BR) }}$ DSS	Drain-source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0$				S
Idss	Zero Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{GS}}=0\right)$	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=\text { Max Rating } \\ & \mathrm{V}_{\mathrm{DS}}=\text { Max Rating, }, \mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} 1 \\ 50 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Igss	Gate-body Leakage Current ($V_{D S}=0$)	$\mathrm{V}_{G S}= \pm 20 \mathrm{~V}$			± 10	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=150 \mu \mathrm{~A}$	3	3.75	4.5	V
R DS(on	Static Drain-source On Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=13.5 \mathrm{~A}$		0.155	0.185	7

Table 8: Dynamic

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{gfs}_{\text {(}}(1)$	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=13.5 \mathrm{~A}$		26		S
$\mathrm{C}_{\text {iss }}$ Coss $\mathrm{C}_{\text {rss }}$	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{GS}}=0$		$\begin{gathered} 6350 \\ 615 \\ 125 \end{gathered}$		pF pF pF
$t_{d}(o n)$ t_{r} t_{d} (off) t_{f}	Turn-on Delay Time Rise Time Turn-off-Delay Time Fall Time	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{DD}}=300 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=14 \mathrm{~A}, \\ \mathrm{R}_{\mathrm{G}}=4.77 \quad \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \\ \text { (Resistive Load see Figure 17)) } \end{array}$		$\begin{gathered} \hline 50 \\ 45 \\ 135 \\ 32 \end{gathered}$		ns ns ns ns
Q_{g} $Q_{g s}$ $Q_{g d}$	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=480 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=28 \mathrm{~A}, \\ & \mathrm{~V}_{G S}=10 \mathrm{~V} \end{aligned}$		$\begin{gathered} 189 \\ 34 \\ 103 \end{gathered}$	264	$\begin{aligned} & \mathrm{nC} \\ & \mathrm{nC} \\ & \mathrm{nC} \end{aligned}$

Table 9: Source Drain Diode

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\begin{gathered} \text { ISD } \\ \text { ISDM (2) } \end{gathered}$	Source-drain Current Source-drain Current (pulsed)				$\begin{gathered} \hline 27 \\ 108 \end{gathered}$	A
$\mathrm{V}_{\text {SD }}$ (1)	Forward On Voltage	$\mathrm{I}_{S D}=27 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$			1.6	V
	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$\begin{aligned} & \mathrm{I}_{\mathrm{SD}}=28 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mathrm{s} \\ & \mathrm{~V}_{\mathrm{DD}}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \text { (see test circuit Figure 5) } \end{aligned}$		$\begin{gathered} 820 \\ 10 \\ 23.5 \end{gathered}$		$\begin{gathered} \mathrm{ns} \\ \mu \mathrm{C} \\ \mathrm{~A} \end{gathered}$
$\begin{gathered} \mathrm{t}_{\mathrm{rr}} \\ \mathrm{Q}_{\mathrm{rr}} \\ \text { IRRM }^{2} \end{gathered}$	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$\begin{aligned} & \text { ISD }=28 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~V}_{\mathrm{DD}}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$ (see test circuit Figure 5)		$\begin{gathered} 1020 \\ 14 \\ 27.5 \end{gathered}$		$\begin{gathered} \mathrm{ns} \\ \mu \mathrm{C} \\ \mathrm{~A} \end{gathered}$

[^0]Figure 3: Safe Operating Area

Figure 4: Output Characteristics

Figure 5: Transconductance

Figure 6: Thermal Impedance

Figure 7: Transfer Characteristics

Figure 8: Static Drain-source On Resistance

Figure 9: Gate Charge vs Gate-source Voltage

Figure 10: Normalized Gate Thereshold Voltage vs Temperature

Figure 11: Source-Drain Diode Forward Characteristics

Figure 12: Capacitance Variations

Figure 13: Normalized On Resistance vs Temperature

Figure 14: Normalized BV ${ }_{\text {DSs }}$ vs Temperature

Figure 15: Maximum Avalanche Energy vs
Temperature

Figure 16: Unclamped Inductive Load Test Circuit

Figure 17: Switching Times Test Circuit For Resistive Load

Figure 18: Test Circuit For Inductive Load Switching and Diode Recovery Times

Figure 19: Unclamped Inductive Wafeform

Figure 20: Gate Charge Test Circuit

TO-247 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A	4.85		5.15	0.19		0.20
A1	2.20		2.60	0.086		0.102
b	1.0		1.40	0.039		0.055
b1	2.0		2.40	0.079		0.094
b2	3.0		3.40	0.118		0.134
c	0.40		0.80	0.015		0.03
D	19.85		20.15	0.781		0.793
E	15.45		15.75	0.608		0.620
e		5.45			0.214	
L	14.20		14.80	0.560		0.582
L1	3.70		4.30	0.14		0.17
L2		18.50			0.728	
$ø \mathrm{P}$	3.55		3.65	0.140		0.143
øR	4.50		5.50	0.177		0.216
S		5.50			0.216	

Table 10: Revision History

Date	Revision		Description of Changes
05-Nov-2004	1	First Release.	

Information furnished is believed to be accurate and reliable．However，STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use．No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics．Specifications mentioned in this publication are subject to change without notice．This publication supersedes and replaces all information previously supplied．STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics．

The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners
© 2004 STMicroelectronics－All Rights Reserved
STMicroelectronics group of companies
Australia－Belgium－Brazil－Canada－China－Czech Republic－Finland－France－Germany－Hong Kong－India－Israel－Italy－Japan－ Malaysia－Malta－Morocco－Singapore－Spain－Sweden－Switzerland－United Kingdom－United States of America

[^0]: (1) Pulsed: Pulse duration $=300 \mu \mathrm{~s}$, duty cycle 1.5%.
 (2) Pulse width limited by safe operating area.

