

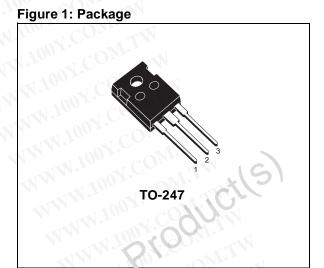
勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

STW29NK50ZD

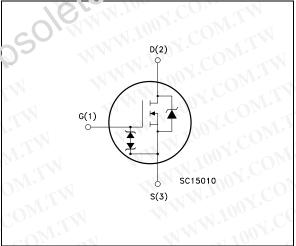
N-CHANNEL 500 V - 0.095Ω - 29A TO-247 Fast Diode SuperMESH™ MOSFET

Table 1: General Features

TYPE	V _{DSS}	R _{DS(on)}	ID	Pw	
STW29NK50ZD	500 V	< 0.13 Ω	29 A	350 W	


- TYPICAL R_{DS}(on) = 0.095 Ω
- HIGH dv/dt CAPABILITY
- 100% AVALANCHE TESTED
- GATE CHARGE MINIMIZED
- LOW INTRINSIC CAPACITANCES
- VERY GOOD MANUFACTURING REPEATIBILITY
- FAST INTERNAL RECOVERY TIME

DESCRIPTION


The Fast SuperMesh[™] series associates all advantages of reduced on-resistance, zener gate protection and very goog dv/dt capability with a Fast body-drain recovery diode. Such series complements the "FDmesh[™]" Advanced Technology.

APPLICATIONS

- HID BALLAST
- ZVS PHASE-SHIFT FULL BRIDGE.

Figure 2: Internal Schematic Diagram

Table 2. Order Codes

PART NUMBER	MARKING	PACKAGE	PACKAGING
STW29NK50ZD	W29NK50ZD	TO-247	TUBE

STW29NK50ZD

Table 3: Absolute Maximum ratings

Symbol	Parameter	Value	Unit
VDS	Drain-source Voltage (V _{GS} = 0)	500	V
VDGR	Drain-gate Voltage ($R_{GS} = 20 \text{ K}\Omega$)	500	V
VGS	Gate- source Voltage	± 30	V
I _D	Drain Current (continuous) at $T_C = 25^{\circ}C$	29	A
ID	Drain Current (continuous) at T _C = 100°C	18.27	A
I _{DM} (*)	Drain Current (pulsed)	116	A
P _{TOT}	Total Dissipation at $T_C = 25^{\circ}C$	350	W
NNY	Derating Factor	2.77	W/°C
V _{ESD(G-S)}	Gate source ESD (HBM-C = 100pF, R = 1.5 K Ω)	6000	V
dv/dt (1)	Peak Diode Recovery voltage slope	4.5	V/ns
T _{stg} T _j	Storage Temperature Operating Junction Temperature	-55 to 150	°C

(*) Pulse width limited by safe operating area

Table 4: Thermal Data

	li/dt≤ 200 A/µs, VDD≤ 400V	WWW.100X.COM.L	(5)
Table 4: Th	ermal Data	NWW. 100Y. CONF.CC	
Rthj-case	Thermal Resistance Junction-case Max	0.36	°C/W
Rthj-amb T _l	Thermal Resistance Junction-ambient Max Maximum Lead Temperature For Soldering Purpose	50 300	°C/W °C

Table 5: Avalanche Characteristics

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T _j max)	29	A
Eas	Single Pulse Avalanche Energy (starting $T_j = 25 \text{ °C}, I_D = I_{AR}, V_{DD} = 50 \text{ V}$)	500	mJ

Table 6: Gate-Source Zener Diode

Symbol	Parameter	Test Condition	Min.	Тур.	Max	Unit
BV _{GSO}	Gate-Source Breakdown Voltage	Igs= \pm 1mA (Open Drain)	30	WW	1005	A

PROTECTION FEATURES OF GATE-TO-SOURCE ZENER DIODES

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

on /Off	111					
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_{\rm D} = 1 \text{ mA}, V_{\rm GS} = 0$	500			S
IDSS	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating, T _C = 125°C	LIN T		1 50	μΑ μΑ
IGSS	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20 V	N.T.W		± 10	μA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 150 \ \mu A$	3	3.75	4.5	V
R _{DS(on}	Static Drain-source On Resistance	V _{GS} = 10 V, I _D = 14.5 A	ON.I	0.095	0.13	Ω

WW

100X.

TABLE 7: ELECTRICAL CHARACTERISTICS (TCASE = 25°C UNLESS OTHERWISE SPECIFIED)

Table 8: Dynamic

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	V _{DS} = 15 V, I _D = 14.5 A	N	28	*	S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25 V, f = 1 MHz, V _{GS} = 0	1007.0	6450 710 165		pF pF pF
t _{d(on)} t _r t _{d(off)} t _f	Turn-on Delay Time Rise Time Turn-off-Delay Time Fall Time	$V_{DD} = 400 \text{ V}, \text{ I}_{D} = 14.5 \text{ A}, \\ R_{G} = 4.7 \Omega, \text{ V}_{GS} = 10 \text{ V} \\ (\text{d see Figure 17})$	8.100	45 43 133 25	M.TY M.TY	ns ns ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} = 480 V, I _D = 14.5 A, V _{GS} = 10 V	WW.I	180 33 108	200	nC nC nC

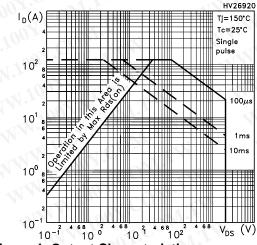
Table 9: Source Drain Diode

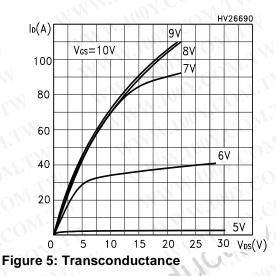
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (2)	Source-drain Current Source-drain Current (pulsed)	NOV.COM.TW		N.W.I	29 116	A A
V _{SD} (1)	Forward On Voltage	I _{SD} = 29 A, V _{GS} = 0		NN.	1.6	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$\begin{split} I_{SD} &= 29 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s} \\ V_{DD} &= 30\text{V, } \text{T}_{\text{j}} = 25^{\circ}\text{C} \\ (\text{see Figure 18}) \end{split}$		264 2.08 15.7	N.100	ns µC A
t _{rr} Qrr I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 29$ A, di/dt = 100 A/µs $V_{DD} = 30V$, $T_j = 150^{\circ}C$ (see Figure 18)	1	395 4.164 21.1	NW.10	ns µC A

WW.100X.C

WW

WW.100Y


00X.COM.T


ov.com.

WW.100Y

Figure 3: Safe Operating Area

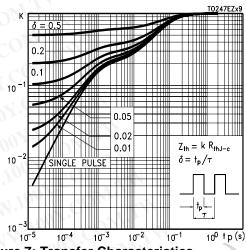


Figure 4: Output Characteristics

Figure 6: Thermal Impedance

Figure 7: Transfer Characteristics

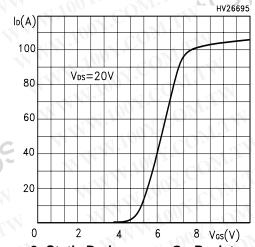


Figure 8: Static Drain-source On Resistance

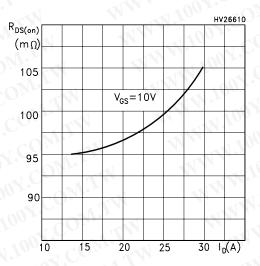


Figure 9: Gate Charge vs Gate-source Voltage

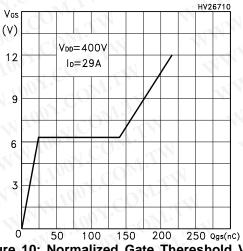


Figure 10: Normalized Gate Thereshold Voltage vs Temperature

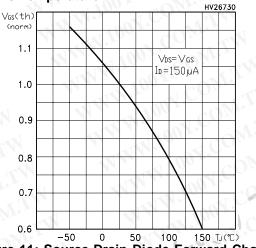
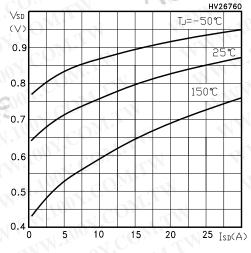



Figure 11: Source-Drain Diode Forward Characteristics

<u>____</u>

Figure 12: Capacitance Variations

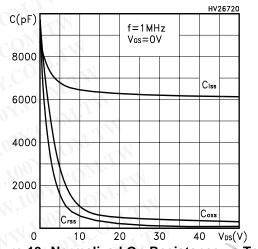


Figure 13: Normalized On Resistance vs Temperature

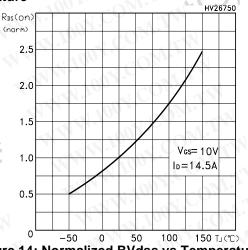
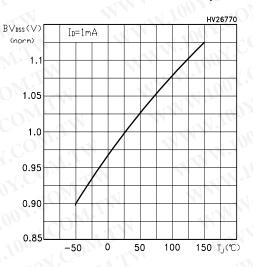
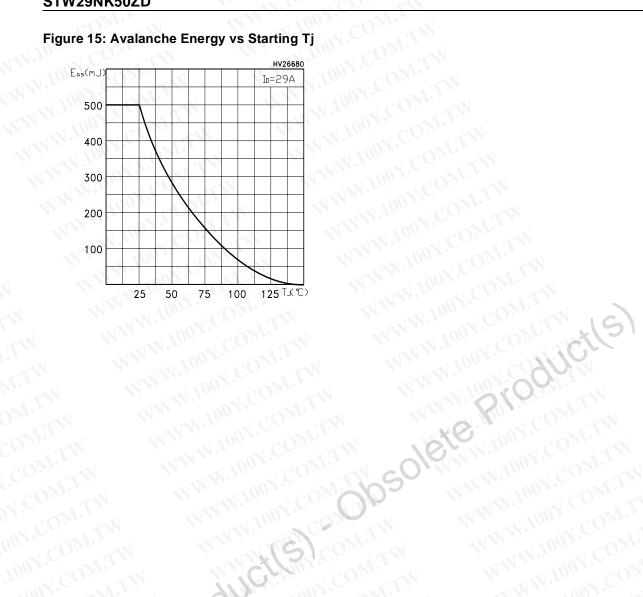




Figure 14: Normalized BVdss vs Temperature

STW29NK50ZD

etern product

WWW.100Y.COM.TW

WWW.100Y.COM.TW

THE TOTAL OF

Figure 15: Avalanche Energy vs Starting Tj

MMM.m.

WWW.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100Y.COM

WWW.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100Y.COM.TW

100Y.CU

COM.TW

WWW.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100Y.COM.TW

TATEN INDY.CONA.TW

W.100Y.COM.TW

WW.100Y.COM.TW

105016

W.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100X.C

Figure 16: Unclamped Inductive Load Test Circuit

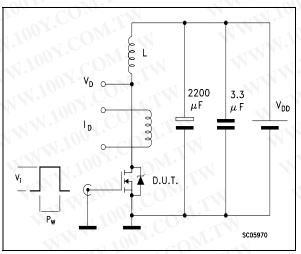
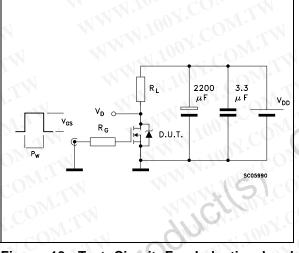
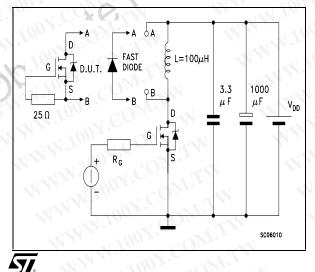
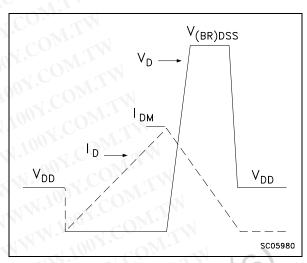


Figure 17: Switching Times Test Circuit For Resistive Load

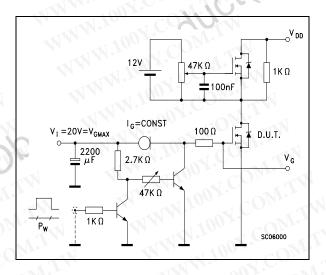
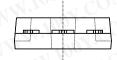

Figure 18: Test Circuit For Inductive Load Switching and Diode Recovery Times

Figure 19: Unclamped Inductive Wafeform



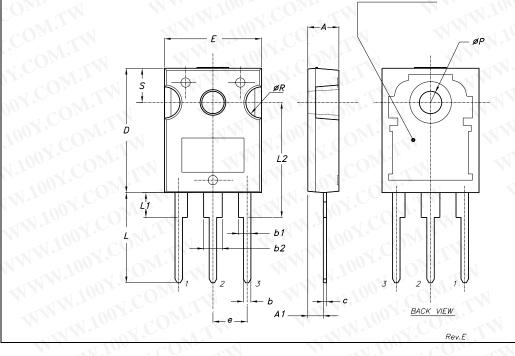
STW29NK50ZD

TO-247 MECHANICAL DATA

100						
DIM.		mm.	11. 001.	Milli	inch	
Diwi.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.85		5.15	0.19		0.20
A1	2.20		2.60	0.086		0.102
b	1.0		1.40	0.039		0.055
b1	2.0	127	2.40	0.079	W	0.094
b2	3.0	M	3.40	0.118	Mr.	0.134
c	0.40		0.80	0.015	N. A	0.03
D	19.85	A.T.Y	20.15	0.781	The	0.793
Е	15.45	WT.	15.75	0.608	MT.	0.620
е	100 1.	5.45	AN N	100	0.214	
L	14.20	M.T.	14.80	0.560	M.T.	0.582
L1	3.70		4.30	0.14		0.17
L2	W.Ioo	18.50	< Q	N.100	0.728	N
øP	3.55	COM.	3.65	0.140	COM.	0.143
øR	4.50	Mr. M	5.50	0.177	Mr. Yon	0.216
S	N.W.Y	5.50	TW		0.216	N N

HEAT-SINK PLANE

10X.C


WW.

WWW

WWW.M

57.

.com.

N.I.M

DM.TW

5X.CO

NNN

Table 10: Revision History

W.100Y.COM.TW

WW.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100X.C

WWW.100Y.COM.TW

OM.TW

Nov COM.T

WWW.100XC

Date	Revision	Description of Changes
05-Feb-2004	1	First Release.
06-Dec-2004	2	Some electrical value changed
20-Jul-2005	3	Complete version

WWW.100Y.COM.TW

WWW.100Y.COM.TW

WW 100X.C

WWW.100Y.COM.TW

ON.TW

COM.T

where production of the produc

COM.TW

1001.001

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

