FDS86141 # N-Channel PowerTrench[®] MOSFET 100 V, 7 A, 23 m Ω #### **Features** - Maximum $R_{DS(on)} = 23 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 7 \text{ A}$ - Maximum $R_{DS(on)} = 36 \text{ m}\Omega$ at $V_{GS} = 6 \text{ V}$, $I_D = 5.5 \text{ A}$ - High-Performance Trench Technology; Extremely Low R_{DS(on)} - 100% UIL Tested - RoHS Compliant # General Description This N-channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench® process that has been especially tailored to minimize the on-state resistance and maintain superior switching performance. 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw ## **Applications** ■ DC-DC Conversion # MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted | gs Units | Ratings | TIME | Parameter | Pa | Symbol | |----------|-------------------|-----------------|------------------------|---|-----------------------------------| | V | 100 | V.COm | WWW. | Drain to Source Voltage | V _{DS} | | V | ±20 | COM | 1111.100 | Gate to Source Voltage | V _{GS} | | 1000 | 7 | 101.0 M.I.M | WW 100Y | Drain Current -Continuous | . 1 | | A.C | 30 | ON.CO. | MW. | -Pulsed | D | | mJ | 121 | (Note 3) | AN TOO | Single Pulse Avalanche Energy | E _{AS} | | W | 5.0 | 25 °C (Note 1a) | T _A = 25 °C | Power Dissipation | D | | VV | 2.5 | 25 °C (Note 1b) | T _A = 25 °C | Power Dissipation | P_{D} | | -150 °C | -55 to +150 | Milan COM. | emperature Range | Operating and Storage Junction Terr | T _J , T _{STG} | |) | 121
5.0
2.5 | 25 °C (Note 1a) | T _A = 25 °C | Single Pulse Avalanche Energy Power Dissipation Power Dissipation | P_{D} | # Thermal Characteristics | $R_{\theta JC}$ | Thermal Resistance, Junction to Case | (Note 1) | 2.5 | 9004 | |-----------------|---|-----------|-----|------| | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | (Note 1a) | 50 | °C/W | ### **Package Marking and Ordering Information** | Device Marking | Device | Package | Reel Size | Tape Width | Quantity | |----------------|----------|---------|-----------|------------|------------| | FDS86141 | FDS86141 | SO-8 | 13 " | 12 mm | 2500 units | ## Electrical Characteristics T_J = 25 °C unless otherwise noted. | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Units | | |--|-----------------------------------|---|------|------|------|-------|--| | Off Chara | ff Characteristics | | | | | | | | BV _{DSS} | Drain-to-Source Breakdown Voltage | $I_D = 250 \mu A, V_{GS} = 0 V$ | 100 | | | V | | | $\begin{array}{cc} \underline{\Delta BV_{DSS}} \\ \underline{\Delta T_J} \end{array} \qquad \begin{array}{c} \text{Breakdown Voltage Temperature} \\ \text{Coefficient} \end{array}$ | | $I_D = 250 \mu A$, referenced to 25°C | MTW | 67 | | mV/°C | | | I _{DSS} | Zero Gate Voltage Drain Current | V _{DS} = 80 V, V _{GS} = 0 V | TIME | 1 | 1 | μΑ | | | I _{GSS} | Gate-to-Source Leakage Current | $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$ | DIVE | W | ±100 | nA | | # On Characteristics | $V_{GS(th)}$ | Gate-to-Source Threshold Voltage | $V_{GS} = V_{DS}, I_{D} = 250 \mu A$ | 2 | 3.1 | 4 | V | |--|--|---|---------|-----|-----|-------| | $\frac{\Delta V_{GS(th)}}{\Delta T_J}$ | Gate-to-Source Threshold Voltage Temperature Coefficient | I _D = 250 μA, Referenced to 25°C | I.CO | -10 | | mV/°C | | -OM- | TW. Too CO | V _{GS} = 10 V, I _D = 7 A | <1 CO | 19 | 23 | | | r _{DS(on)} | Static Drain to Source On Resistance | $V_{GS} = 6 \text{ V}, I_D = 5.5 \text{ A}$ | 01. | 27 | 37 | mΩ | | A COM | WWW. TOY.C' | $V_{GS} = 10 \text{ V}, I_D = 7 \text{ A}, T_J = 125^{\circ}\text{C}$ | MY.C | 33 | 40 | | | 9 _{FS} | Forward Transconductance | $V_{DS} = 10 \text{ V}, I_{D} = 7 \text{ A}$ | ~ \$7 (| 19 | -wX | S | ### **Dynamic Characteristics** | C _{iss} | Input Capacitance | 50,4,4, 0,4 | M.Io. | 703 | 934 | pF | |------------------|------------------------------|--|----------|-----|-----|----| | C _{oss} | Output Capacitance | $V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V},$
f = 1 MHz | 100 | 186 | 247 | pF | | C _{rss} | Reverse Transfer Capacitance | COM Z | 11/1 | 8.6 | 13 | pF | | R_g | Gate Resistance | In COM. | TVIVI.IO | 0.5 | Mr | Ω | ## **Switching Characteristics** | t _{d(on)} | Turn-On Delay Time | X 100x. ON.1 | | 8.3 | 17 | ns | |---------------------|-------------------------------|---|--------|------|-------|----| | t _r | Rise Time | $V_{DD} = 50 \text{ V, } I_{D} = 7 \text{ A,}$ $V_{GS} = 10 \text{ V, } R_{GEN} = 6 \Omega$ | | 3.2 | 10 | ns | | t _{d(off)} | Turn-Off Delay Time | | | 14.3 | 26 | ns | | t _f | Fall Time | | | 3.2 | 10 | ns | | Q _{g(TOT)} | Total Gate Charge | V _{GS} = 0 V to 10 V | 1/1/1/ | 11.8 | 16.5 | nC | | | Total Gate Charge | $V_{GS} = 0 \text{ V to 5 V}$ $V_{DD} = 50 \text{ V}$ | 4N V | 6.7 | 9.4 | nC | | Q _{gs} | Total Gate Charge | I _D = 7 A | | 3.4 | -7 (| nC | | Q _{qd} | Gate to Drain "Miller" Charge | WY TOOK OF THE | | 3.1 | 100 x | nC | #### **Drain-Source Diode Characteristics** | V _{SD} | Source to Drain Diade Forward Voltage | $V_{GS} = 0 \text{ V}, I_S = 7 \text{ A}$ (Note 2) | 0.8 | 1.3 | V | |-----------------|---------------------------------------|--|-----|-----|-------| | | Source-to-Drain Diode Forward Voltage | $V_{GS} = 0 \text{ V}, I_S = 2 \text{ A}$ (Note 2) | 0.8 | 1.2 | A.CO. | | t _{rr} | Reverse Recovery Time | 1 7 A di/dt 100 A/vo | 43 | 69 | ns | | Q _{rr} | Reverse Recovery Charge | I _F = 7 A, di/dt = 100 A/μs | 39 | 62 | nC | ^{1.} R_{0,1A} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0,1C} is guaranteed by design while R_{0,CA} is determined by the user's board design. a) 50 °C/W when mounted on a 1 in² pad of 2 oz copper. WW.100Y.COM.T b) 125 °C/W when mounted on a minimum pad. WWW.100Y - 2. Pulse Test: Pulse Width < 300 $\mu\text{s},$ Duty Cycle < 2.0 %. - 3. Starting T $_{J}$ = 25 $^{o}C;$ N-ch: L = 3 mH, I $_{AS}$ = 9 A, V $_{DD}$ = 100 V, V $_{GS}$ = 10 V. WWW.1 # **Typical Characteristics** $T_J = 25$ °C unless otherwise noted. Figure 1. On-Region Characteristics Figure 3. Normalized On-Resistance vs. Junction Temperature Figure 5. Transfer Characteristics Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage Figure 4. On-Resistance vs. Gate-to-Source Voltage Figure 6. Source-to-Drain Diode Forward Voltage vs. Source Current # **Typical Characteristics** $T_J = 25$ °C unless otherwise noted. Figure 7. Gate Charge Characteristics Figure 9. Unclamped Inductive Switching Capability Figure 11. Forward Bias Safe Operating Area Figure 8. Capacitance vs. Drain-to-Source Voltage Figure 10. Maximum Continuous Drain Current vs. Ambient Temperature Figure 12. Single-Pulse Maximum Power Dissipation Figure 13. Junction-to-Ambient Transient Thermal Response Curve WWW.100Y.COM.TW WWW.1 OX.COM. WW.100Y.COM.T MMM. MY.COM.TW WW.100Y.COM.TW WWW.100Y.COM Figure 1. 8-Lead, Small-Outline Integrated Circuit (SOIC), JEDEC MS-012, .150" Narrow Body Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/. 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw Sync-Lock™ #### TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. 2Cool™ AccuPower™ Auto-SPM™ AX-CAP™ BitSiC® Build it Now™ CorePLUS™ Gmax™ CorePOWER™ CROSSVOLT™ **CTL™** Current Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK® EfficientM ax™ ESBC™ Fairchild® Fairchild Semiconductor FACT Quiet Series™ FACT® FAST® FastvCore™ FETBench™ FlashWriter®* FPS™ F-PESTM FRFET® Global Power Resource Green FPS™ Green FPS™ e-Series™ GTO™ IntelliMAX™ ISOPLANAR™ Making Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ Motion-SPM™ mWSaver™ OptoHiT™ OPTOLOGIC® OPTOPLANAR® PDP SPM™ Power-SPM™ PowerTrench⁶ PowerXS™ Programmable Active Droop QFET' OSTM Quiet Series™ RapidConfigure™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartM ax™ SMART START™ Solutions for Your Success™ SPM[®] STEALTH™ SuperFFT® SuperSOT™3 SuperSOT™-6 SuperSOT**-8 SupreM OS® SyncFET™ SYSTEM GENERAL® The Power Franchise® wer TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic[®] TINYOPTO** TinyPower™ TinyPVVM™ TinyWire™ TranSiC® TriFault Detect™ TRUECURRENT®* µSerDes™ UHC Ultra FRFET UniFET™ VCXTM VisualMax™ XS™ FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS ### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. - 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user - 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. #### ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors #### PRODUCT STATUS DEFINITIONS #### Definition of Terms | Delillia oli oli Terrilia | | | |---------------------------|-----------------------|---| | Datasheet Identification | Product Status | Definition | | Advance Information | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | Preliminary | First Production | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. | | No Identification Needed | Full Production | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. | | Obsolete | Not In Production | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. | | | | | Rev. 156 ^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor