勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw # FGH40T120SMD / FGH40T120SMD_F155 1200 V, 40 A FS Trench IGBT #### **Features** - FS Trench Technology, Positive Temperature Coefficient - High Speed Switching - Low Saturation Voltage: $V_{CE(sat)} = 1.8 \text{ V} @ I_C = 40 \text{ A}$ - 100% of the Parts tested for I_{LM}(1) - High Input Impedance - **RoHS Compliant** #### **Applications** · Solar Inverter, Welder, UPS & PFC applications. # **General Description** Using innovative field stop trench IGBT technology, Fairchild®s new series of field stop trench IGBTs offer the optimum performance for hard switching application such as solar inverter, UPS, welder and PFC applications. ## Absolute Maximum Ratings T_C = 25°C unless otherwise noted | Symbol | Description | 1.100 . COM: | Ratings | Unit | |---------------------|--|-------------------------|-------------|--------| | V _{CES} | Collector to Emitter Voltage | N.1001. | 1200 | CONV | | V _{GES} | Gate to Emitter Voltage | 1007.00 | ±25 | V | | V GES | Transient Gate to Emitter Voltage | MAN TO THE COM | ±30 | V.C. V | | I _C | Collector Current | $@ T_C = 25^{\circ}C$ | 80 | CA | | 'C | Collector Current | $@ T_C = 100^{\circ}C$ | 40 | A | | I _{LM} (1) | Clamped Inductive Load Current | $@ T_C = 25^{\circ}C$ | 160 | DOJ. A | | I _{CM} (2) | Pulsed Collector Current | MALLIONIC | 160 | (00 A | | I _F | Diode Continuous Forward Current | @ $T_C = 25^{\circ}C$ | 80 | A | | | Diode Continuous Forward Current | $@ T_C = 100^{\circ}C$ | 40 | A.C | | I _{FM} | Diode Maximum Forward Current | MW.Io. | 240 | A C | | P _D | Maximum Power Dissipation | @ T _C = 25°C | 555 | W C | | י ט | Maximum Power Dissipation | $@ T_C = 100^{\circ}C$ | 277 | W | | TJ | Operating Junction Temperature | MM | -55 to +175 | °C | | T _{stg} | Storage Temperature Range | MMW. | -55 to +175 | °C | | T _L | Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 second | ds WWY | 300 | °C | #### Thermal Characteristics | Symbol | Parameter | Тур. | Max. | Unit | |------------------------|---|-----------|------|------| | $R_{\theta JC}$ (IGBT) | Thermal Resistance, Junction to Case | M 71/10 2 | 0.27 | °C/W | | $R_{\theta JC}(Diode)$ | Thermal Resistance, Junction to Case | 11 100 7. | 0.89 | °C/W | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | - 100X | 40 | °C/W | 1. Vcc = 600 V,V_GE = 15 V, I_C = 160 A, R_G = 10 $\, \Omega_{\odot}$ Inductive Load 2. Limited by Tjmax Package Marking and Ordering Information | Device Marking | Device | Package | Reel Size | Tape Width | Quantity | |-----------------------|-------------------|------------|------------|------------|----------| | FGH40T120SMD | FGH40T120SMD | TO-247 A03 | W.100 1 CO | V. 1. | 30 | | FGH40T120SMD | FGH40T120SMD_F155 | TO-247G03 | 1001. | M.TV | 30 | # Electrical Characteristics of the IGBT T_C = 25°C unless otherwise noted | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |----------------------|---|---|-----------|--------|-----------|------| | Off Charac | eteristics (ON) | | | | | | | BV _{CES} | Collector to Emitter Breakdown Voltage | $V_{GE} = 0 \text{ V}, I_{C} = 250 \text{ uA}$ | 1200 | MIN | - | V | | I _{CES} | Collector Cut-Off Current | $V_{CE} = V_{CES}, V_{GE} = 0 V$ | TOUX.CE | TY. | 250 | uA | | I _{GES} | G-E Leakage Current | $V_{GE} = V_{GES}, V_{CE} = 0 V$ | · OTY.C | ON | ±400 | nA | | On Charac | eteristics Comments | | | | | | | V _{GE(th)} | G-E Threshold Voltage | $I_C = 40 \text{ mA}, V_{CE} = V_{GE}$ | 4.9 | 6.2 | 7.5 | V | | 100X.CC | W.TW WWW.100Y | $I_C = 40 \text{ A}, V_{GE} = 15 \text{ V}$
$T_C = 25^{\circ}\text{C}$ | 100 - 100 | 1.8 | 2.4 | V | | V _{CE(sat)} | Collector to Emitter Saturation Voltage | I _C = 40 A, V _{GE} = 15 V,
T _C = 175°C | WW.10 | 2.0 | W.I.M | V | | Dynamic C | Characteristics | OOY.COM. | WWW. | 100Y.C | ON.T | N | | C _{ies} | Input Capacitance | WY.COM. TW | MAN | 4300 | -11 | pF | | C _{oes} | Output Capacitance | $V_{CE} = 30 \text{ V}, V_{GE} = 0 \text{ V},$ | -N-I | 180 | Con. | pF | | C _{res} | Reverse Transfer Capacitance | f = 1MHz | -11 | 100 | a Coy | pF | | Switching | Characcteristics | W.100Y.COM.TW | W | NW. 10 | OX.CO | M.TV | | t _{d(on)} | Turn-On Delay Time | M. TAN | - 1/1 | 40 | 007- | ns | | t _r | Rise Time | MM. TOON COM | - < | 47 | 1007.C | ns | | t _{d(off)} | Turn-Off Delay Time | V_{CC} = 600 V, I_{C} = 40 A,
R_{G} = 10 Ω , V_{GE} = 15 V,
Inductive Load, T_{C} = 25°C | - | 475 | - ov. | ns | | t _f | Fall Time | | - | 10 | 1.700 | ns | | E _{on} | Turn-On Switching Loss | | - | 2.7 | W. 7-00 , | mJ | | E _{off} | Turn-Off Switching Loss | WWW 100Y.Com | 11/1 - | 1.1 | -100 | mJ | | E _{ts} | Total Switching Loss | WWW. TOOY.COM | TVI- | 3.8 | 110 | mJ | | t _{d(on)} | Turn-On Delay Time | MMM.TO OV.COM | W | 40 | MAIN | ns | | t _r | Rise Time | W.100 x CO | N. I | 55 | -W-1 | ns | | t _{d(off)} | Turn-Off Delay Time | $V_{CC} = 600 \text{ V}, I_{C} = 40 \text{ A},$ | WILL | 520 | Witne | ns | | t _f | Fall Time | $R_G = 10 \Omega$, $V_{GE} = 15 V$, | MITW | 50 | 11. | ns | | E _{on} | Turn-On Switching Loss | Inductive Load, T _C = 175°C | TI | 3.4 | MM | mJ | | E _{off} | Turn-Off Switching Loss | WWW. | COM | 2.5 | 4111 | mJ | | E _{ts} | Total Switching Loss | MW.100 | CON | 5.9 | -011 | mJ | | Q _g | Total Gate Charge | W. W. 100 | COM | 370 | - | nC | | Q _{ge} | Gate to Emitter Charge | $V_{CE} = 600 \text{ V}, I_{C} = 40 \text{ A},$ | TOW. | 23 | - 11 | nC | | Q _{gc} | Gate to Collector Charge | V _{GE} = 15 V | V. L. | 210 | - 1 | nC | ### Electrical Characteristics of the DIODE T_C = 25°C unless otherwise noted W.100Y.COM.TW | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |-----------------|-------------------------------------|--|--------------------|------|------|------| | V_{FM} | Diode Forward Voltage | $I_F = 40 \text{ A}, T_C = 25^{\circ}\text{C}$ | TV | 3.8 | 4.8 | V | | | | I _F = 40 A, T _C = 175°C | OM | 2.7 | - | V | | t _{rr} | Diode Reverse Recovery Time | $V_R = 600 \text{ V}, I_F = 40 \text{ A},$
$di_F/dt = 200 \text{ A/us}, T_C = 25^{\circ}\text{C}$ | CO _{Dr} . | 65 | - | ns | | l _m | Diode Peak Reverse Recovery Current | | CGM. | 7.2 | - | Α | | Q _{rr} | Diode Reverse Recovery Charge | W W 100 | MOD | 234 | - | nC | | t _{rr} | Diode Reverse Recovery Time | $V_R = 600 \text{ V}, I_F = 40 \text{ A},$ | 7.0 | 200 | - | ns | | Irr | Diode Peak Reverse Recovery Current | $di_F/dt = 200 \text{ A/us}, T_C = 175^{\circ}\text{C}$ | 01.00 | 18.0 | - | Α | | Q _{rr} | Diode Reverse Recovery Charge | T. WWW. | CU | 1800 | - | nC | WWW.100Y.COM.T .100Y.COM.TW **Figure 1. Typical Output Characteristics** Figure 3. Typical Saturation Voltage Characteristics Figure 5. Saturation Voltage vs. V_{GE} **Figure 2. Typical Output Characteristics** Figure 4. Saturation Voltage vs. Case Temperature at Variant Current Level Figure 6. Saturation Voltage vs. V_{GE} Figure 7. Capacitance Characteristics Figure 9. Turn-on Characteristics vs. Gate Resistance Figure 11. Swithcing Loss vs. Gate Resistance Figure 8. Load Current vs. Frequency Figure 10. Turn-off Characteristics vs. Gate Resistance Figure 12. Turn-on Characteristics vs. Collector Current Figure 13. Turn-off Characteristics vs. Collector Current Figure 15. Gate Charge Characteristics Figure 17. Forward Characteristics Figure 14. Swithcing Loss vs. Collector Current Figure 16. SOA Characteristics Figure 18. Reverse Recovery Current Figure 19. Reverse Recovery Time Figure 20. Stored Charge Figure 21. Transient Thermal Impedance of IGBT #### **Mechanical Dimensions** # TO-247G03 NOTES: LINLESS OTHERWISE SPECIFIED. - A. PACKAGE REFERENCE: JEDEC TO-247, ISSUE E, VARIATION AB, DATED JUNE, 2004. B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS. C. ALL DIMENSIONS ARE IN MILLIMETERS. - D. DRAWING CONFORMS TO ASME Y14.5 1994 DOES NOT COMPLY JEDEC STANDARD VALUE F. DRAWING FILENAME: MKT-TO247G03_REV01 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw #### **TRADEMARKS** The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. ® 2Cool™ AccuPower™ AX-CAP® BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ Current Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK® EfficentMax™ ESBC™ Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore[™] FETBench™ FPS™ F-PFS™ FRFET® Global Power ResourceSM Green Bridge™ Green FPS™ Green FPS™ e-Series™ $\mathsf{G} \mathsf{max}^{\mathsf{TM}}$ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver™ OptoHiT™ OPTOLOGIC® OPTOPLANAR® PowerTrench® PowerXS™ Programmable Active Droop OFFT QSTM Quiet Series™ RapidConfigure™ Saving our world, 1mW/W/kW at a time™ SignalWiseTM SmartMax™ SMART START™ Solutions for Your Success™ SPM[®] STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SvncFETTM SYSTEM ®* GENERAL TipyBoost™ TinyBoost TinyBuck™ TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC[®] TriFault Detect™ TRUECURRENT® μSerDes™ Sync-Lock™ UHC® Ultra FRFET™ UniFET™ VCXTM VisualMax™ VoltagePlus™ XS™ *Trademarks of System General Corporation, used under license by Fairchild Semiconductor FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. **LIFE SUPPORT POLICY**FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. - A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness #### ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild of from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. #### PRODUCT STATUS DEFINITIONS **Definition of Terms** | Datasheet Identification | Product Status | Definition | |--------------------------|-----------------------|---| | Advance Information | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | Preliminary | First Production | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. | | No Identification Needed | Full Production | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. | | Obsolete | Not In Production | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. | Rev 164