Designer＇s ${ }^{\text {TM }}$ Data Sheet TMOS E－FET ${ }^{\text {TM }}$ Power Field Effect Transistor N－Channel Enhancement－Mode Silicon Gate

This advanced TMOS power FET is designed to withstand high energy in the avalanche and commutation modes．This new energy efficient design also offers a drain－to－source diode with fast recovery time．Designed for high voltage，high speed switching applications in power supplies，converters，PWM motor controls， and other inductive loads．The avalanche energy capability is specified to eliminate the guesswork in designs where inductive loads are switched and offer additional safety margin against unexpected voltage transients．
－Avalanche Energy Specified
－Diode is Characterized for Use in Bridge Circuits
－IDSS and VDS（on）Specified at Elevated Temperature

MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted）

Rating	Symbol	Value	Unit
Drain－Source Voltage	$\mathrm{V}_{\text {DSS }}$	200	Vdc
Drain－Gate Voltage（ $\mathrm{R}_{\mathrm{GS}}=1 \mathrm{M} \Omega$ ）	$V_{\text {DGR }}$	200	Vdc
Gate－Source Voltage－Continuous －Non－Repetitive（ $\mathrm{t}_{\mathrm{p}} \leq 10 \mathrm{~ms}$ ）	$\begin{gathered} \mathrm{V}_{\mathrm{GS}} \\ \mathrm{~V}_{\mathrm{GSM}} \end{gathered}$	$\begin{aligned} & \pm 20 \\ & \pm 40 \end{aligned}$	Vdc Vpk
Drain Current－Continuous＠ T C $=25^{\circ} \mathrm{C}$ —Single Pulse（ $\mathrm{t}_{\mathrm{p}} \leq 10 \mu \mathrm{~s}$ ）	$\begin{gathered} \hline \mathrm{ID} \\ \mathrm{IDM} \\ \hline \end{gathered}$	$\begin{gathered} \hline 55 \\ 165 \end{gathered}$	Adc Apk
Total Power Dissipation Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{aligned} & \hline 300 \\ & 2.38 \end{aligned}$	Watts W／${ }^{\circ} \mathrm{C}$
Operating and Storage Temperature Range	$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$	-55 to 150	${ }^{\circ} \mathrm{C}$
Single Pulse Drain－to－Source Avalanche Energy－Starting $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ $\left(\mathrm{V}_{\mathrm{DD}}=80 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=10 \mathrm{Vdc}\right.$ ，Peak $\left.\mathrm{I}_{\mathrm{L}}=110 \mathrm{Apk}, \mathrm{L}=0.3 \mathrm{mH}, \mathrm{R}_{\mathrm{G}}=25 \Omega\right)$	$\mathrm{EAS}_{\text {A }}$	3000	mJ
Thermal Resistance－Junction to Case －Junction to Ambient	$\mathrm{R}_{\theta \mathrm{JC}}$ $\mathrm{R}_{\theta \mathrm{JA}}$	$\begin{gathered} 0.42 \\ 40 \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Lead Temperature for Soldering Purposes，1／8＂from case for 10 seconds	T_{L}	260	${ }^{\circ} \mathrm{C}$

Designer＇s Data for＂Worst Case＂Conditions－The Designer＇s Data Sheet permits the design of most circuits entirely from the information presented．SOA Limit curves－representing boundaries on device characteristics－are given to facilitate＂worst case＂design．

E－FET and Designer＇s are trademarks of Motorola，Inc．
TMOS is a registered trademark of Motorola，Inc．

MTY55N20E

ELECTRICAL CHARACTERISTICS（ $\mathrm{T}=25^{\circ} \mathrm{C}$ unless otherwise noted）

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Drain－Source Breakdown Voltage $\begin{aligned} & \left(\mathrm{V}_{\mathrm{GS}}=0, \mathrm{ID}=250 \mu \mathrm{~A}\right) \\ & \text { Temperature Coefficient (Positive) } \end{aligned}$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	200	250	－	$\begin{gathered} \mathrm{Vdc} \\ \mathrm{mV} /{ }^{\circ} \mathrm{C} \end{gathered}$
Zero Gate Voltage Drain Current $\begin{aligned} & \left(\mathrm{V}_{\mathrm{DS}}=200 \mathrm{Vdc}, \mathrm{~V}_{G S}=0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{DS}}=200 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\right) \end{aligned}$	IDSS	－	－	$\begin{gathered} 10 \\ 200 \end{gathered}$	$\mu \mathrm{Adc}$
Gate－Body Leakage Current（ $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{Vdc}, \mathrm{V}_{\mathrm{DS}}=0$ ）	IGSS	－	－	100	nAdc

ON CHARACTERISTICS（1）

Gate Threshold Voltage $\left(\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{Adc}\right)$ Threshold Temperature Coefficient（Negative）	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	2	$\overline{7}$	4	$\begin{gathered} \mathrm{Vdc} \\ \mathrm{mV} /{ }^{\circ} \mathrm{C} \end{gathered}$
Static Drain－Source On－Resistance（ $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{Vdc}, \mathrm{ID}=27.5 \mathrm{Adc}$ ）	R DS（on）	－	－	0.028	Ohm
$\begin{aligned} & \text { Drain-Source On-Voltage }\left(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{Vdc}\right) \\ & (\mathrm{ID}=55 \mathrm{Adc}) \\ & \left(\mathrm{ID}=27.5 \mathrm{Adc}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\right) \end{aligned}$	$V_{\text {DS }}(\mathrm{on})$	－	1.3	$\begin{aligned} & 1.6 \\ & 1.8 \end{aligned}$	Vdc
Forward Transconductance（VDS＝ 10 Vdc ， $\mathrm{ID}=27.5 \mathrm{Adc}$ ）	gFS	30	37	－	mhos

DYNAMIC CHARACTERISTICS

Input Capacitance	$\begin{gathered} \left(V_{D S}=25 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc},\right. \\ \mathrm{f}=1 \mathrm{MHz}) \end{gathered}$	$\mathrm{C}_{\text {iss }}$	－	7200	10080	pF
Output Capacitance		$\mathrm{C}_{\text {Oss }}$	－	1800	2520	
Reverse Transfer Capacitance		Crss	－	460	920	

SWITCHING CHARACTERISTICS（2）

Turn－On Delay Time	$\begin{gathered} \left(\mathrm{V}_{\mathrm{DD}}=100 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=55 \mathrm{Adc},\right. \\ \mathrm{V}_{\mathrm{GS}}=10 \mathrm{Vdc}, \\ \left.\mathrm{R}_{\mathrm{G}}=4.7 \Omega\right) \end{gathered}$	$\mathrm{t}_{\mathrm{d}}(\mathrm{on})$	－	33	66	ns
Rise Time		tr_{r}	－	200	400	
Turn－Off Delay Time		$\mathrm{t}_{\mathrm{d} \text {（off）}}$	－	150	300	
Fall Time		tf_{f}	－	170	340	
Gate Charge （See Figure 8）	$\begin{gathered} (\mathrm{V} D S=160 \mathrm{Vdc}, \mathrm{ID}=55 \mathrm{Adc} \\ \left.\mathrm{V}_{\mathrm{GS}}=10 \mathrm{Vdc}\right) \end{gathered}$	QT	－	245	343	nC
		Q_{1}	－	33	－	
		Q_{2}	－	128	－	
		Q_{3}	－	79	－	

SOURCE－DRAIN DIODE CHARACTERISTICS

Forward On－Voltage	$\begin{gathered} \left(\mathrm{IS}=55 \mathrm{Adc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc}\right) \\ \left(\mathrm{IS}=55 \mathrm{Adc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\right) \end{gathered}$	$V_{\text {SD }}$	－	$\begin{gathered} 0.75 \\ 1.1 \end{gathered}$	1.2	Vdc
Reverse Recovery Time （See Figure 14）	$\begin{gathered} \left(\mathrm{IS}=55 \mathrm{Adc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc},\right. \\ \mathrm{dlS} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}) \end{gathered}$	trr	－	310	－	ns
		$\mathrm{ta}_{\text {a }}$	－	220	－	
		t_{b}	－	90	－	
Reverse Recovery Stored Charge		QRR	－	4.6	－	$\mu \mathrm{C}$

INTERNAL PACKAGE INDUCTANCE

Internal Drain Inductance （Measured from the drain lead 0.25 ＂from package to center of die）	L_{D}	-	4.5	-	nH
Internal Source Inductance （Measured from the source lead 0.25 ＂from package to source bond pad）	LS	-	13	-	nH

（1）Pulse Test：Pulse Width $\leq 300 \mu \mathrm{~s}$ ，Duty Cycle $\leq 2 \%$ ．
（2）Switching characteristics are independent of operating junction temperature．

TYPICAL ELECTRICAL CHARACTERISTICS

Figure 1．On－Region Characteristics

Figure 3．On－Resistance versus Drain Current and Temperature

Figure 5．On－Resistance Variation with Temperature

Figure 2．Transfer Characteristics

Figure 4．On－Resistance versus Drain Current and Gate Voltage

Figure 6．Drain－To－Source Leakage Current versus Voltage

勝 特 力 材 料 886－3－5753170胜特力 电子（上海）86－21－34970699胜特力电子（深圳）86－755－83298787

Http：／／www．100y．com．tw

POWER MOSFET SWITCHING

Switching behavior is most easily modeled and predicted by recognizing that the power MOSFET is charge controlled． The lengths of various switching intervals（ $\Delta \mathrm{t})$ are deter－ mined by how fast the FET input capacitance can be charged by current from the generator．
The published capacitance data is difficult to use for calculat－ ing rise and fall because drain－gate capacitance varies greatly with applied voltage．Accordingly，gate charge data is used．In most cases，a satisfactory estimate of average input current $(\mathrm{l} G(\mathrm{AV}))$ can be made from a rudimentary analysis of the drive circuit so that
$t=Q / G(A V)$
During the rise and fall time interval when switching a resis－ tive load， V_{GS} remains virtually constant at a level known as the plateau voltage， $\mathrm{V}_{\text {SGP }}$ ．Therefore，rise and fall times may be approximated by the following：
$\mathrm{t}_{\mathrm{r}}=\mathrm{Q}_{2} \times \mathrm{R}_{\mathrm{G}} /\left(\mathrm{V}_{\mathrm{GG}}-\mathrm{V}_{\mathrm{GSP}}\right)$
$\mathrm{t}_{\mathrm{f}}=\mathrm{Q}_{2} \times \mathrm{R}_{\mathrm{G}} / V_{\mathrm{GSP}}$
where
$\mathrm{V}_{\mathrm{GG}}=$ the gate drive voltage，which varies from zero to V_{GG} $\mathrm{R}_{\mathrm{G}}=$ the gate drive resistance and Q_{2} and $V_{G S P}$ are read from the gate charge curve．
During the turn－on and turn－off delay times，gate current is not constant．The simplest calculation uses appropriate val－ ues from the capacitance curves in a standard equation for voltage change in an RC network．The equations are：
$\mathrm{t}_{\mathrm{d}}(\mathrm{on})=\mathrm{R}_{\mathrm{G}} \mathrm{C}_{\text {iss }} \ln \left[\mathrm{V}_{\mathrm{GG}} /\left(\mathrm{V}_{\mathrm{GG}}-\mathrm{V}_{\mathrm{GSP}}\right)\right]$
$t_{d}($ off $)=R_{G} C_{i s s} \ln \left(V_{G G} / V_{G S P}\right)$

The capacitance（ $\mathrm{C}_{\mathrm{iss}}$ ）is read from the capacitance curve at a voltage corresponding to the off－state condition when cal－ culating $t_{d}(\mathrm{on})$ and is read at a voltage corresponding to the on－state when calculating t_{d}（off）．

At high switching speeds，parasitic circuit elements com－ plicate the analysis．The inductance of the MOSFET source lead，inside the package and in the circuit wiring which is common to both the drain and gate current paths，produces a voltage at the source which reduces the gate drive current． The voltage is determined by $\mathrm{Ldi} / \mathrm{dt}$ ，but since di／dt is a func－ tion of drain current，the mathematical solution is complex． The MOSFET output capacitance also complicates the mathematics．And finally，MOSFETs have finite internal gate resistance which effectively adds to the resistance of the driving source，but the internal resistance is difficult to mea－ sure and，consequently，is not specified．

The resistive switching time variation versus gate resis－ tance（Figure 9）shows how typical switching performance is affected by the parasitic circuit elements．If the parasitics were not present，the slope of the curves would maintain a value of unity regardless of the switching speed．The circuit used to obtain the data is constructed to minimize common inductance in the drain and gate circuit loops and is believed readily achievable with board mounted components．Most power electronic loads are inductive；the data in the figure is taken with a resistive load，which approximates an optimally snubbed inductive load．Power MOSFETs may be safely op－ erated into an inductive load；however，snubbing reduces switching losses．

GATE－TO－SOURCE OR DRAIN－TO－SOURCE VOLTAGE（VOLTS）
Figure 7．Capacitance Variation

Http：／／www．100y．com．tw

Figure 8．Gate Charge versus Gate－to－Source Voltage

Figure 9．Resistive Switching Time Variation versus Gate Resistance

DRAIN－TO－SOURCE DIODE CHARACTERISTICS

Figure 10．Diode Forward Voltage versus Current

SAFE OPERATING AREA

The Forward Biased Safe Operating Area curves define the maximum simultaneous drain－to－source voltage and drain current that a transistor can handle safely when it is for－ ward biased．Curves are based upon maximum peak junc－ tion temperature and a case temperature（ T_{C} ）of $25^{\circ} \mathrm{C}$ ．Peak repetitive pulsed power limits are determined by using the thermal response data in conjunction with the procedures discussed in AN569，＂Transient Thermal Resistance－General Data and Its Use．＂

Switching between the off－state and the on－state may tra－ verse any load line provided neither rated peak current（IDM） nor rated voltage（VDSS）is exceeded and the transition time （ $\mathrm{t}_{\mathrm{r}}^{\mathrm{t}} \mathrm{t}$ ）do not exceed $10 \mu \mathrm{~s}$ ．In addition the total power aver－ aged over a complete switching cycle must not exceed （ $\left.T_{J(M A X)}-T_{C}\right) /\left(R_{\theta J C}\right)$ ．

A Power MOSFET designated E－FET can be safely used in switching circuits with unclamped inductive loads．For reli－
able operation，the stored energy from circuit inductance dis－ sipated in the transistor while in avalanche must be less than the rated limit and adjusted for operating conditions differing from those specified．Although industry practice is to rate in terms of energy，avalanche energy capability is not a con－ stant．The energy rating decreases non－linearly with an in－ crease of peak current in avalanche and peak junction temperature．

Although many E－FETs can withstand the stress of drain－ to－source avalanche at currents up to rated pulsed current （IDM），the energy rating is specified at rated continuous cur－ rent（ID），in accordance with industry custom．The energy rat－ ing must be derated for temperature as shown in the accompanying graph（Figure 12）．Maximum energy at cur－ rents below rated continuous ID can safely be assumed to equal the values indicated．

Figure 11．Maximum Rated Forward Biased Safe Operating Area

Figure 12．Maximum Avalanche Energy versus Starting Junction Temperature

Figure 13．Thermal Response

Figure 14．Diode Reverse Recovery Waveform

PACKAGE DIMENSIONS

NOTES：
1．DIMENSIONING AND TOLERANCING PER ANSI Y14．5M， 1982.
2．CONTROLLING DIMENSION：MILLIMETER．

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	2.8	2.9	1.102	1.142
B	19.3	20.3	0.760	0.800
C	4.7	5.3	0.185	0.209
D	0.93	1.48	0.037	0.058
E	1.9	2.1	0.075	0.083
F	2.2	2.4	0.087	0.102
G	5.45 BSC	0.215		BSC
H	2.6	3.0	0.102	0.118
J	0.43	0.78	0.017	0.031
K	17.6	18.8	0.693	0.740
L	11.0	11.4	0.433	0.449
N	3.95	4.75	0.156	0.187
P	2.2	2.6	0.087	0.102
Q	3.1	3.5	0.122	0.137
R	2.15	2.35	0.085	0.093
U	6.1	6.5	0.240	0.256
W	2.8	3.2	0.110	0.125

CASE 340G－02
TO－264
ISSUE E

