2N3771, 2N3772

High Power NPN Silicon Power Transistors

These devices are designed for linear amplifiers, series pass regulators, and inductive switching applications.

Features

- Forward Biased Second Breakdown Current Capability $I_{S/b} = 3.75 \text{ Adc} @ V_{CE} = 40 \text{ Vdc} - 2N3771$ $= 2.5 \text{ Adc} @ V_{CE} = 60 \text{ Vdc} - 2N3772$
- These Devices are Pb-Free and are RoHS Compliant

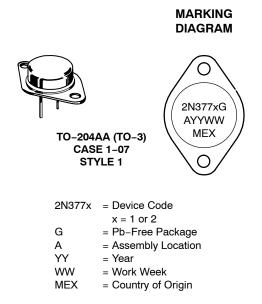
MAXIMUM RATINGS (Note 1)

Rating	Symbol	2N3771	2N3772	Unit
Collector-Emitter Voltage	V _{CEO}	40	60	Vdc
Collector-Emitter Voltage	V _{CEX}	50	80	Vdc
Collector-Base Voltage	V _{CB}	50	100	Vdc
Emitter-Base Voltage	V _{EB}	5.0	7.0	Vdc
Collector Current – Continuous Peak	Ι _C	30 30	20 30	Adc
Base Current – Continuous Peak	Ι _Β	7.5 15	5.0 15	Adc
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above 25°C	PD	150 0.855		W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to	+200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction-to-Case	θJC	1.17	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. Indicates JEDEC registered data.

ON Semiconductor®

www.onsemi.com

20 and 30 AMPERE POWER TRANSISTORS NPN SILICON 40 and 60 VOLTS, 150 WATTS

ORDERING INFORMATION

Device	Package	Shipping
2N3771G	TO–204 (Pb–Free)	100 Units / Tray
2N3772G	TO–204 (Pb–Free)	100 Units / Tray

勝特力電材超市-龍;	山店 886-3-5773766	
勝特力電材超市-光谷	度店 886-3-5729570	
胜特力电子(上海)	86-21-34970699	
胜特力电子(深圳)	86-755-83298787	
http://www.100y.com.tw		

2N3771, 2N3772

ELECTRICAL CHARACTERISTICS (T_C = 25° C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
	000(303)	40 60		Vdc
		50 80		Vdc
	011(303)	45 70		Vdc
			10 10	mAdc
	2 7	- - - -	2.0 5.0 4.0 10 10	mAdc
Collector Cutoff Current (Note 2) $(V_{CB} = 50 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 100 \text{ Vdc}, I_E = 0)$ $2N3772$			2.0 5.0	mAdc
Emitter Cutoff Current (Note 2) $(V_{BE} = 5.0 \text{ Vdc}, I_C = 0)$ 2N3772 $(V_{BE} = 7.0 \text{ Vdc}, I_C = 0)$ 2N3772			5.0 5.0	mAdc
ON CHARACTERISTICS (Note 2)			-	
	2	15 15	60 60	-
		5.0 5.0		
	2	- - - -	2.0 1.4 4.0 4.0	Vdc
$ \begin{array}{l} \text{Base-Emitter On Voltage} \\ (I_{C} = 15 \; \text{Adc}, V_{CE} = 4.0 \; \text{Vdc}) \\ (I_{C} = 10 \; \text{Adc}, V_{CE} = 4.0 \; \text{Vdc}) \\ (I_{C} = 8.0 \; \text{Adc}, V_{CE} = 4.0 \; \text{Vdc}) \end{array} $			2.7 2.2	Vdc
*DYNAMIC CHARACTERISTICS (Note 2)	·			•
Current-Gain — Bandwidth Product (I _C = 1.0 Adc, V _{CE} = 4.0 Vdc, f _{test} = 50 kHz)	f _T	0.2	-	MHz
Small–Signal Current Gain ($I_C = 1.0 \text{ Adc}, V_{CE} = 4.0 \text{ Vdc}, f = 1.0 \text{ kHz}$)	h _{fe}	40	-	-
SECOND BREAKDOWN	·			
Second Breakdown Energy with Base Forward Biased, t = 1.0 s (non-repetitive) $(V_{CE} = 40 \text{ Vdc})$ 2N3772 $(V_{CE} = 60 \text{ Vdc})$ 2N3772		3.75 2.5		Adc
		1	1	1

Indicates JEDEC registered data.
Pulse Test: 300 μs, Rep. Rate 60 cps.

2N3771, 2N3772

Figure 2. Thermal Response — 2N3771, 2N3772

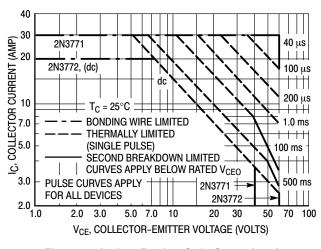
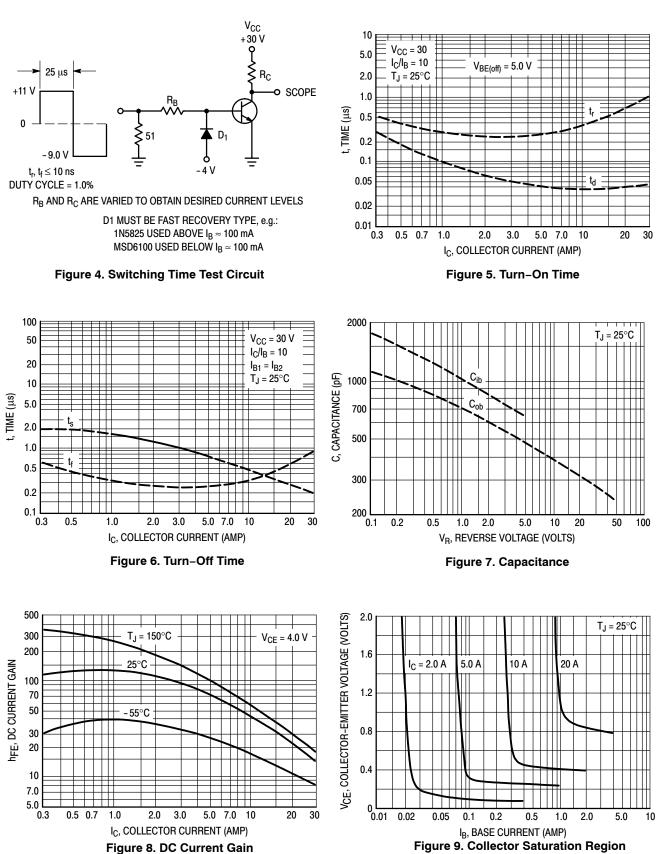



Figure 3. Active-Region Safe Operating Area — 2N3771, 2N3772

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation: i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

Figure 3 is based on JEDEC registered Data. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} < 200^{\circ}$ C. $T_{J(pk)}$ may be calculated from the data of Figure 2. Using data of Figure 2 and the pulse power limits of Figure 3, $T_{J(pk)}$ will be found to be less than $T_{J(max)}$ for pulse widths of 1 ms and less. When using ON Semiconductor transistors, it is permissible to increase the pulse power limits until limited by $T_{J(max)}$.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

E DIMENSIONS				
	т	D–204 (TO–3) CASE 1–07 ISSUE Z		DATE 05/18/1988
SCALE 1:1 A A C C C C C C C C C C C C C		Y (W)	Y14 2. COI 3. ALL	A 1.550 REF 39.37 REF 3 1.050 26.67 2 0.250 0.335 6.35 8.51 0 0.038 0.43 0.97 1.09 2 0.055 0.070 1.40 1.77 3 0.430 0.5C 10.92 BSC 4 0.215 BSC 5.46 BSC 4 0.400 0.480 11.18 12.19 - 0.665 BSC 16.89 BSC 4 0.830 21.08 1 0.151 0.165 3.84 4.19 1 1.187 BSC 30.15 BSC
STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR	STYLE 2: PIN 1. BASE 2. COLLECTOR CASE: EMITTER	STYLE 3: PIN 1. GATE 2. SOURCE CASE: DRAIN	Style 4: Pin 1. ground 2. input Case: output	STYLE 5: PIN 1. CATHODE 2. EXTERNAL TRIP/DELAY CASE: ANODE
STYLE 6: PIN 1. GATE 2. EMITTER CASE: COLLECTOR	STYLE 7: PIN 1. ANODE 2. OPEN CASE: CATHODE	STYLE 8: PIN 1. CATHODE #1 2. CATHODE #2 CASE: ANODE	STYLE 9: PIN 1. ANODE #1 2. ANODE #2 CASE: CATHODE	

勝特力電材超市-龍	山店 886-3-5773766	
勝特力電材超市-光祥	復店 886-3-5729570	
胜特力电子(上海)	86-21-34970699	
胜特力电子(深圳)	86-755-83298787	
http://www.100y.com.tw		

ON Semiconductor and **W** are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.