

特力材料886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

SLPS259 - DECEMBER 2011

N-Channel NexFET™ Power MOSFET

Check for Samples: CSD16415Q5

FEATURES

- **Ultralow Qg and Qgd**
- **Very Low On-Resistance**
- **Low Thermal Resistance**
- Avalanche Rated
- **Pb Free Terminal Plating**
- **RoHS Compliant**
- **Halogen Free**

APPLICATIONS

- Point-of-Load Synchronous Buck Converter for Applications in Networking, Telecom and **Computing Systems**
- **Optimized for Synchronous FET Applications**

DESCRIPTION

The NexFET™ power MOSFET has been designed to minimize losses in power conversion applications.

PRODUCT SUMMARY

V _{DS}	Drain-to-source voltage	25		V
Q_g	Gate charge, total (4.5 V)	21		nC
Q _{gd}	Gate charge, gate-to-drain	5.2		nC
	Drain to source on registeres	$V_{GS} = 4.5 \text{ V}$	1.5	mΩ
r _{DS(on)}	Drain-to-source on-resistance	V _{GS} = 10 V	0.99	mΩ
V _{GS(th)}	Threshold voltage	1.5	•	V

ORDERING INFORMATION

Device	Package	Media	Qty	Ship
CSD16415Q5	SON 5-mm × 6-mm plastic package	13-inch (33-cm) reel	2500	Tape and reel

ABSOLUTE MAXIMUM RATINGS

$T_A = 2$	5°C unless otherwise stated	VALUE	UNIT
V_{DS}	Drain-to-source voltage	25	V
V_{GS}	Gate-to-source voltage	+16/-12	V
- T	Continuous drain current, T _C = 25°C	100	Α
ID	Continuous drain current ⁽¹⁾	38	Α
I _{DM}	Pulsed drain current, T _A = 25°C ⁽²⁾	200	Α
P_D	Power dissipation ⁽¹⁾	3.2	W
T _J , T _{STG}	Operating junction and storage temperature range	-55 to 150	°C
E _{AS}	Avalanche energy, single-pulse $I_D = 100 \text{ A}, L = 0.1 \text{ mH}, R_G = 25 \Omega$	500	mJ

- $R_{\theta JA} = 40^{\circ} \text{C/W on } 1 \text{in}^2 (6.45 \text{cm}^2) \text{ Cu } [2 \text{ oz. } (0.071 \text{mm})]$ thick)] on 0.060-inch (1.52-mm) thick FR4 PCB.
- Pulse duration ≤300 µs, duty cycle ≤2%

Gate Charge

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

NexFET is a trademark of Texas Instruments.

SLPS259 – DECEMBER 2011 www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ELECTRICAL CHARACTERISTICS

(T_A = 25°C unless otherwise stated)

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
naracteristics	ON:14	V. I. A.	,	
Drain-to-source voltage	V _{GS} = 0 V, I _D = 250 μA	25		V
Drain-to-source leakage current	V _{GS} = 0 V, V _{DS} = 20 V	WT	1	μΑ
Gate-to-source leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = -12 \text{ V to } 16 \text{ V}$	OM.	100	nA
Gate-to-source threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.2 1.5	1.9	V
Drain to source on registernes	$V_{GS} = 4.5 \text{ V}, I_D = 40 \text{ A}$	1.5	1.8	$m\Omega$
Drain-to-source on-resistance	$V_{GS} = 10 \text{ V}, I_D = 40 \text{ A}$	0.99	1.15	$m\Omega$
Transconductance	V _{DS} = 15 V, I _D = 40 A	168		S
Characteristics	001. W.I.M. M. 100	T. COM'I'	4	
Input capacitance	100 K.CO. TW WWW.	3150	4100	pF
Output capacitance	$V_{GS} = 0 \text{ V}, V_{DS} = 12.5 \text{ V}, f = 1 \text{ MHz}$	2530	3300	pF
Reverse transfer capacitance	N.100 . COM: I. LANN'I	175	230	pF
Series gate resistance	1100X.C.M.TW	1.2	2.4	Ω
Gate charge total (4.5 V)	W. OOX.CO. THE WAY	21	29	nC
Gate charge, gate-to-drain	V 42.5 V ID 40.4	5.2	TV	nC
Gate charge, gate-to-source	V _{DS} = 12.5 V, ID = 40 A	8.3	1.1	nC
Gate charge at Vth	TIOOY.COMITW WY	4.8	M.I	nC
Output charge	V _{DS} = 15 V, V _{GS} = 0 V	55	117	nC
Turnon delay time	TAIN TO TO COMP.	16.6	O_{Lar}	ns
Rise time	$V_{DS} = 12.5 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 40 \text{ A}$	30	-OM	ns
Turnoff delay time	$R_G = 2 \Omega$	20		ns
Fall time	NAM. TON COM TAN	12.7	.Co.	ns
naracteristics	TNN TO ST COM.	MW.Io.	V.CO	Mr.
Diode forward voltage	I _S = 40 A, V _{GS} = 0 V	0.85	1	V
Reverse recovery charge	V _{DD} = 15 V, I _F = 40 A, di/dt = 300 A/μs	72	01.0	nC
Reverse recovery time	$V_{DD} = 15 \text{ V}, I_F = 40 \text{ A}, di/dt = 300 \text{ A/}\mu\text{s}$	45	onY.	ns
	Drain-to-source voltage Drain-to-source leakage current Gate-to-source leakage current Gate-to-source threshold voltage Drain-to-source on-resistance Transconductance Characteristics Input capacitance Output capacitance Reverse transfer capacitance Series gate resistance Gate charge total (4.5 V) Gate charge, gate-to-drain Gate charge at Vth Output charge Turnon delay time Rise time Turnoff delay time Fall time haracteristics Diode forward voltage Reverse recovery charge	paracteristics V _{GS} = 0 V, I _D = 250 μA Drain-to-source leakage current V _{GS} = 0 V, V _{DS} = 20 V Gate-to-source leakage current V _{DS} = 0 V, V _{DS} = -12 V to 16 V Gate-to-source threshold voltage V _{DS} = V _{GS} , I _D = 250 μA Drain-to-source on-resistance V _{DS} = V _{SS} , I _D = 250 μA V _{SS} = 4.5 V, I _D = 40 A V _{DS} = 10 V, I _D = 40 A V _{DS} = 10 V, I _D = 40 A V _{DS} = 15 V, I _D = 40 A Characteristics Input capacitance V _{DS} = 0 V, V _{DS} = 12.5 V, f = 1 MHz Reverse transfer capacitance V _{DS} = 0 V, V _{DS} = 12.5 V, ID = 40 A Series gate resistance V _{DS} = 12.5 V, ID = 40 A Gate charge total (4.5 V) V _{DS} = 15 V, V _{GS} = 0 V Gate charge, gate-to-source V _{DS} = 15 V, V _{GS} = 0 V Gate charge at Vth V _{DS} = 15 V, V _{GS} = 4.5 V, I _D = 40 A Output charge V _{DS} = 12.5 V, V _{GS} = 4.5 V, I _D = 40 A Rise time V _{DS} = 12.5 V, V _{GS} = 0 V Turnoff delay time R _G = 2 Ω Fall time V _{DD} = 15 V, I _F = 40 A, di/dt = 300 A/μs	Drain-to-source voltage V _{GS} = 0 V, I _D = 250 μA 25 Drain-to-source leakage current V _{GS} = 0 V, V _{DS} = 20 V Gate-to-source leakage current V _{DS} = 0 V, V _{GS} = −12 V to 16 V Gate-to-source threshold voltage V _{DS} = 0 V, V _{GS} = −12 V to 16 V Gate-to-source threshold voltage V _{DS} = V _{GS} , I _D = 250 μA 1.2 1.5 Drain-to-source on-resistance V _{GS} = 4.5 V, I _D = 40 A 0.99 Transconductance V _{DS} = 15 V, I _D = 40 A 168 Characteristics Input capacitance 3150 Output capacitance V _{SS} = 0 V, V _{DS} = 12.5 V, f = 1 MHz 2530 Reverse transfer capacitance 1.2 2530 Reverse transfer capacitance 1.2 2530 Series gate resistance 1.2 2530 Gate charge total (4.5 V) 21 21 Gate charge, gate-to-drain V _{DS} = 12.5 V, ID = 40 A 8.3 Gate charge, gate-to-source 0 8.3 Gate charge at Vth 0 4.8 Output charge V _{DS} = 15 V, V _{DS} = 0 V 55	Drain-to-source voltage V _{GS} = 0 V, I _D = 250 μA 25 Drain-to-source leakage current V _{GS} = 0 V, V _{DS} = 20 V 1 Gate-to-source leakage current V _{DS} = 0 V, V _{DS} = 20 V 100 Gate-to-source leakage current V _{DS} = 0 V, V _{DS} = -12 V to 16 V 100 Gate-to-source threshold voltage V _{DS} = V _{GS} , I _D = 250 μA 1.2 1.5 1.9 Drain-to-source on-resistance V _{GS} = 4.5 V, I _D = 40 A 0.99 1.15 1.8 Transconductance V _{DS} = 15 V, I _D = 40 A 0.99 1.15 Characteristics Input capacitance 3150 4100 Output capacitance 3150 4100 Coutput capacitance 7253 3300 Reverse transfer capacitance 1.2 2.4 Gate charge total (4.5 V) 21 29 Gate charge, gate-to-drain 5.2 3.3 Gate charge, gate-to-source 8.3 3.3 Gate charge at Vth 5.5 3.3 Output charge V _{DS} = 15 V, V _{GS} = 0 V 55 Turnor dela

THERMAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$

	PARAMETER	MIN	TYP	MAX	UNIT
R _{0JC}	Thermal resistance, junction-to-case ⁽¹⁾	TANAN TA CO	DIVI	1.1	°C/W
R _{θJA}	Thermal resistance, junction-to-ambient (1) (2)	W. 100 F.	OMIT	50	°C/W

⁽¹⁾ R_{θJC} is determined with the device mounted on a 1-inch (2.54-cm) square, 2-oz. (0.071-mm thick) Cu pad on a 1.5-inch × 1.5-inch (3.81-cm × 3.81-cm), 0.060-inch (1.52-mm) thick FR4 board. R_{θJC} is specified by design, whereas R_{θJA} is determined by the user's board design.

Submit Documentation Feedback

⁽²⁾ Device mounted on FR4 material with 1 inch² (6.45 cm²) of 2-oz. (0.071-mm thick) Cu.

www.ti.com

WWW.100Y.COM.T

Max $R_{\theta JA} = 50^{\circ}C/W$ when mounted on 1 inch2 (6.45 cm2) of 2-oz. (0.071-mm thick) Cu.

WWW.100Y.COM.T

WWW.100Y.CONI.T

Max $R_{\theta JA} = 121^{\circ}C/W$ when mounted on minimum pad area of 2-oz. (0.071-mm thick) Cu.

TYPICAL MOSFET CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$

Figure 1. Transient Thermal Impedance

WWW.100Y.C WWW.100Y.COM.TW SLPS259 – DECEMBER 2011 www.ti.com

TYPICAL MOSFET CHARACTERISTICS (continued)

 $(T_A = 25^{\circ}C \text{ unless otherwise stated})$

Figure 2. Saturation Characteristics

INSTRUMENTS

Figure 3. Transfer Characteristics

Figure 4. Gate Charge

Figure 5. Capacitance

Figure 6. Threshold Voltage vs. Temperature

Figure 7. On-Resistance vs. Gate Voltage

www.ti.com SLPS259 – DECEMBER 2011

TYPICAL MOSFET CHARACTERISTICS (continued)

(T_A = 25°C unless otherwise stated)

Figure 8. On-Resistance vs. Temperature

Figure 9. Typical Diode Forward Voltage

Figure 10. Maximum Safe Operating Area

Figure 11. Single-Pulse Unclamped Inductive Switching

Figure 12. Maximum Drain Current vs. Temperature

MECHANICAL DATA

Q5 Package Dimensions

DIM ON!	MILLIM	ETERS	INC	CHES	COMIT
DIM	MIN V	MAX	MIN	MAX	T.COM.TN
V COM.	0.950	1.050	0.037	0.039	N.CO. TW
b	0.360	0.460	0.014	0.018	COM.
C	0.150	0.250	0.006	0.010	m. COWIL
c1 (1)	0.150	0.250	0.006	0.010	100Y.C. OM.TW
D1	4.900	5.100	0.193	0.201	. CON.CO. TY
D2	4.320	4.520	0.170	0.178	N. To. COM.
E 1007	4.900	5.100	0.193	0.201	7 100 r. COM:1
E1	5.900	6.100	0.232	0.240	1100Y.
E2	3.920	4.12	0.154	0.162	M. YOUX COM
e 100	1.27	TYP	100 ON 0.	.050	M. In COM
K	0.760	N.	0.030		17.100 r. COL
TEN NO.	0.510	0.710	0.020	0.028	MW 1001.
θ	0.00		M. r. COn		WWW. COV.CO

www.ti.com SLPS259 – DECEMBER 2011

Figure 13. Recommended PCB Pattern

500Y.	MILLIM	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
F1	6.205	6.305	0.244	0.248
F2	4.460	4.560	0.176	0.180
F3	4.460	4.560	0.176	0.180
F4	0.650	0.700	0.026	0.028
F5	0.620	0.670	0.024	0.026
F6	0.630	0.680	0.025	0.027
F7	0.700	0.800	0.028	0.031
F8	0.650	0.700	0.026	0.028
F9	0.620	0.670	0.024	0.026
F10	4.900	5.000	0.193	0.197
F11	4.460	4.560	0.176	0.180
•	-11/			

For recommended circuit layout for PCB designs, see application note SLPA005 – Reducing Ringing Through PCB Layout Techniques.

Q5 Tape and Reel Information

Notes:

- 1. 10 sprocket hole pitch cumulative tolerance ±0.2
- 2. Camber not to exceed 1 mm IN 100 mm, noncumulative over 250 mm
- 3. Material:black static dissipative polystyrene
- 4. All dimensions are in mm (unless otherwise specified)
- 5. A0 and B0 measured on a plane 0.3 mm above the bottom of the pocket
- 6. MSL1 260°C (IR and Convection) PbF Reflow Compatible

PACKAGE OPTION ADDENDUM

24-Dec-2011

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
CSD16415Q5	ACTIVE	SON	DQH	8	2500	Pb-Free (RoHS	CU SN	Level-1-260C-UNLIM	
						Exempt)			

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

WWW.100Y.C PACKAGE MATERIALS INFORMATION

NW.100Y.COM.TW WW.100Y.C COM.TW 20-Dec-2011 www.ti.com

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

B0 Dimension designed to accommodate the component leng K0 Dimension designed to accommodate the component thick W Overall width of the carrier tape	
	ickness
W Overall width of the carrier tane	
VV Overdil modifier the conflor tape	
P1 Pitch between successive cavity centers	Mrs

100Y.COM.TW

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadran
CSD16415Q5	SON	DQH	8	2500	330.0	12.8	6.5	5.3	1.4	8.0	12.0	Q1

WWW.100Y.C

V.COM.TW 20-Dec-2011 www ti com

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CSD16415Q5	SON	DQH	8	2500	335.0	335.0	32.0

WWW.100Y.COM.TW

WWW.100Y.C

WWW.100Y.COM.TW

100Y.COM.TW

- NOTES: All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
 - This drawing is subject to change without notice.
 - Small Outline No-Lead (SON) package configuration.
 - The package thermal pad must be soldered to the board for thermal and mechanical performance.
 - See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
 - Metalized features are supplier options and may not be on the package.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	W 100 x 10 J. W
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		DM. TAN MAN TO COMP.
OMAP Mobile Processors	www.ti.com/omap		ONITY WITH TOWN
Wireless Connectivity	www.ti.com/wirelessconnectivity		TITY WWW. TIOOY. COM.T
	TI E2E Commun	nity Home Page	e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated