ANALOG DEVICES

High Performance Driver/Comparator on a Single Chip

AD53033

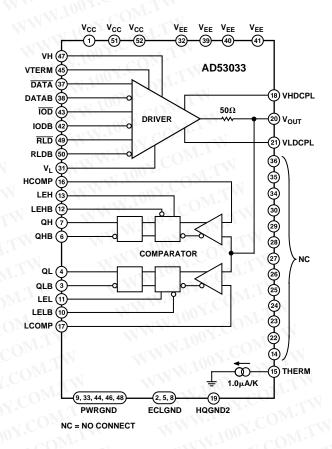
FEATURES

250 MHz Operation Driver/Comparator Included 52-Lead LQFP Package with Built-in Heat Sink

APPLICATIONS

Automatic Test Equipment Semiconductor Test Systems Board Test Systems Instrumentation and Characterization Equipment

PRODUCT DESCRIPTION


The AD53033 is a single chip that performs the pin electronics functions of driver and comparator (D-C) in ATE VLSI and memory testers.

The driver is a proprietary design that features three active states: Data High Mode, Data Low Mode and Term Mode as well as an Inhibit State. This facilitates the implementation of high speed active termination. The output voltage range is -3 V to +8 V to accommodate a wide variety of test devices. The output leakage is typically less than 250 nA over the entire signal range.

The dual comparator, with an input range equal to the driver output range, features built-in latches and ECL-compatible outputs. The outputs are capable of driving 50 Ω signal lines terminated to -2 V. Signal tracking capability is upwards of 5 V/ns.

Also included on the chip is an onboard temperature sensor whose purpose is to give an indication of the surface temperature of the D-C. This information can be used to measure θ_{JC} and θ_{IA} or flag an alarm if proper cooling is lost. Output from the

FUNCTIONAL BLOCK DIAGRAM

sensor is a current sink that is proportional to absolute temperature. The gain is trimmed to a nominal value of 1.0 μ A/K. As an example, the output current can be sensed by using a 10 k Ω resistor connected from +10 V to the THERM (IOUT) pin. A voltage drop across the resistor will be developed that equals: $10K \times 1 \mu$ A/K = 10 mV/K = 2.98 V at room temperature.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

REV.0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 1999

AD53033-SPECIFICATIONS

DRIVER SPECIFICATIONS

TN-100Y.COM.TW (All specifications are at $T_1 = +85^{\circ}C \pm 5^{\circ}C$, $+V_s = +12 V \pm 3\%$, $-V_s = -7 V = \pm 3\%$ unless otherwise noted. All temperature coefficients are measured at $T_1 = +75^{\circ}C$ to $+95^{\circ}C$). CHDCPL = CLDCPL = 39 nF.

arameter	Min	Тур	Max	Units	Test Conditions
DIFFERENTIAL INPUT CHARACTERISTICS	< CO	Nr		NW.	N.COM
(DATA to DATA, IOD to IOD, RLD to RLD)	101.				Ton CONT.T.
Input Voltage	-2		0	V	MY.CO. TW
Differential Input Range	100	ECL			V. TOO COM.
Bias Current	-250	202	+250	μA	$V_{IN} = -2 V, 0.0 V$
EFERENCE INPUTS		COb	- N	WIX	N. COMPANY
Bias Currents	-50		+50	μA	$V_L, V_H, V_T = 5 V$
		100			
OUTPUT CHARACTERISTICS	1.100				DATA WW CAN LOW
Logic High Range	-2		8	V	DATA = H, V_H = -2 V to +8 V
	NW.L		.O.M.		$V_{\rm L} = -3 V (V_{\rm H} = -2 V \text{ to } +6 V)$
Logic Low Range	2		E ON	V	$V_L = -1 V (V_H = +6 V to +8 V)$ DATA = L, $V_L = -3 V to +5 V$, $V_H = +6 V$
Amplitude (V_H and V_L)	$\begin{vmatrix} -3\\ 0.1 \end{vmatrix}$		5	V	$V_{\rm L} = 0.0 \text{ V}, V_{\rm H} = +0.1 \text{ V}, V_{\rm T} = 0 \text{ V}$
Absolute Accuracy	0.1		9	v	$V_{L} = 0.0 V, V_{H} = +0.1 V, V_{T} = 0 V$ $V_{L} = -2 V, V_{H} = +7 V, V_{T} = 0 V$
V _H Offset	-50		+50	mV	$V_L = -2 V, V_H = 17 V, V_T = 0 V$ DATA = H, V _H = 0 V, V _L = -3 V, V _T = +3 V
$V_{\rm H}$ Gain + Linearity Error	0.3 - 5		+0.3 + 5	% of $V_{\rm H}$ + mV	DATA = H, $V_H = -2$ V to +8 V, $V_L = -3$ V, $V_T = +3$ V
$V_{\rm L}$ Offset	-50		+50	mV	DATA = L, V_L = -3 V, V_H = +6 V, V_T = +7.5 V
V_L Gain + Linearity Error	-0.3 - 5		+0.3 + 5	% of V_L + mV	DATA = L, $V_L = 0$ V, $V_H = +6$ V, $V_T = +7.5$ V
Offset TC	0.5 5	0.5	.0.5 . 5	mV/°C	$V_{L} = 0 V, V_{H} = +5 V, V_{T} = 0 V$
Output Resistance	WW.	1.4	.No.	W	
$V_{\rm H} = -2 \text{ V}$	44	46	48	Ω	$V_L = -3 V, V_T = 0 V, I_{OUT} = 0, +1, +30 mA$
$V_{\rm H} = +8 \text{ V}$	44	46	48	Ω	$V_L = -1 V, V_T = 0 V, I_{OUT} = 0, -1, -30 mA$
$V_L = -3 V$	44	46	48	Ω	$V_{\rm H} = +6 \text{ V}, V_{\rm T} = 0 \text{ V}, I_{\rm OUT} = 0, +1, +30 \text{ mA}$
$V_{L} = +5 V$	44	46	48	Ω	$V_{\rm H} = +6 \text{ V}, V_{\rm T} = 0 \text{ V}, I_{\rm OUT} = 0, -1, -30 \text{ mA}$
$V_{\rm H} = +3 {\rm V}$	-	46	N.	Ω	$V_{L} = 0 V, V_{T} = 0 V, I_{OUT} = -30 mA$ (Trim Point)
Dynamic Current Limit	100		-xx1.100	mA	$C_{BYP} = 39 \text{ nF}, V_{H} = +7 \text{ V}, V_{L} = -2 \text{ V}, V_{T} = 0 \text{ V}$
Static Current Limit	-85		+85	mA	Output to $-3 V$, $V_{\rm H} = +8 V$, $V_{\rm L} = -1 V$, $V_{\rm T} = 0 V$
	-1		W.IV		DATA = H and Output to $+8 \text{ V}, \text{ V}_{\text{H}} = +6 \text{ V},$
			1		$V_L = -3 V$, $V_T = 0 V$, DATA = L
TERM		-	ANN.	N.CO.	The second secon
Voltage Range	-3		8.0	V	TERM MODE, $V_T = -3 V$ to $+8 V$, $V_I = 0 V$, $V_H = 3 V$
V _{TERM} Offset	-50		+50	mV	TERM MODE, $V_T = 0 V$, $V_L = 0 V$, $V_H = 3 V$
V _{TERM} Gain + Linearity Error	-0.3 + 5		+0.3 + 5	% of V _{SET} + mV	TERM MODE, $V_T = -3 V$ to $+8 V$, $V_L = 0 V$, $V_H = 3 V$
Offset TC	WT.	0.5	AN.	mV/°C	$V_{\rm T} = 0 \text{ V}, V_{\rm L} = 0 \text{ V}, V_{\rm H} = 3 \text{ V}$
Output Resistance	44	46	49	Ω	$I_{OUT} = +30 \text{ mA}, +1.0 \text{ mA}, V_T = -3.0 \text{ V}, V_H = 3 \text{ V}, V_L = 0$
	VT.				$I_{OUT} = -30 \text{ mA}, -1.0 \text{ mA}, V_T = +8.0 \text{ V}, V_H = 3 \text{ V}, V_L = 0 \text{ V}$
	I'm N		WV		$I_{OUT} = \pm 30 \text{ mA}, \pm 1.0 \text{ mA}, V_T = 0 \text{ V}, V_H = 3 \text{ V}, V_L = 0 \text{ V}$
YNAMIC PERFORMANCE, (V _H AND V _I)	NI.			N.I.	COMP.
Propagation Delay Time	1.1	1.6	2.1	ns	Measured at 50%, V_{H} = +400 mV, V_{L} = -400 mV
Propagation Delay TC	10NL	2		ps/°C	Measured at 50%, $V_{H} = +400 \text{ mV}$, $V_{L} = -400 \text{ mV}$
Delay Matching, Edge to Edge	LA.	<100		ps	Measured at 50%, $V_{H} = +400 \text{ mV}$, $V_{L} = -400 \text{ mV}$
Rise and Fall Times	COM			WW	V.COM NI WIN MAN
1 V Swing	Mon	0.6		ns	Measured 20%–80%, $V_L = 0 V$, $V_H = 1 V$
3 V Swing	N.COF	1.0		ns	Measured 20%–80%, $V_L = 0 V$, $V_H = 3 V$
5 V Swing	100	1.7		ns	Measured 10%–90%, $V_L = 0 V$, $V_H = 5 V$
9 V Swing	N.C.	3.0		ns	Measured 10%–90%, $V_L = -2 V$, $V_H = 7 V$
Rise and Fall Time Temperature Coefficient			1 Area		V.COM WWW
1 V Swing	001	±1		ps/°C	Measured 20%–80%, $V_L = 0 V$, $V_H = 1 V$
3 V Swing	J.V.	± 2	Wn	ps/°C	Measured 20%–80%, $V_L = 0 V$, $V_H = 3 V$
5 V Swing	Tan	±4		ps/°C	Measured 10%–90%, $V_L = 0 V$, $V_H = 5 V$
Overshoot and Preshoot	-3.0 - 50		+3.0 + 50	% of Step + mV	
	1.100		N1 XI		$V_L, V_H = 0.0 V, 3.0 V, V_L, V_H = 0.0 V, 5.0 V$
	1100Y		MT.M		$V_{\rm L}, V_{\rm H} = -2.0 \text{ V}, 7.0 \text{ V}$
	N.1	$_{1}C^{0}$	Jur. "		N. COM AN
Settling Time		<50		ns	$V_{\rm L} = 0 \text{ V}, V_{\rm H} = 0.5 \text{ V}$
Settling Time to 15 mV to 4 mV	N 100	<10		μs	$V_{\rm L} = 0 \text{ V}, V_{\rm H} = 0.5 \text{ V}$

AD53033

					AD53033
Parameter	Min	Тур	Max	Units	Test Conditions
Delay Change vs. Pulsewidth Minimum Pulsewidth	MIN	<50	N N	ps	$V_{\rm L} = 0 \text{ V}, V_{\rm H} = 2 \text{ V}$
3 V Swing	M.T	2		ns	$V_{L} = 0 V, V_{H} = 3 V, 90\%$ Reached, Measure @ 50%
5 V Swing		3		ns	$V_{\rm L} = 0$ V, $V_{\rm H} = 5$ V, 90% Reached, Measure @ 50%
Toggle Rate	COM.	250		MHz	$V_{\rm L} = 0 \text{ V}, V_{\rm H} = 5 \text{ V}, \text{VDUT} > 3.0 \text{ V p-p}$
DYNAMIC PERFORMANCE, INHIBIT	Mo	L.		N.100	CONTRACTOR
Delay Time, Active to Inhibit	1.5		4.0	ns	Measured at 50%, $V_{\rm H}$ = +2 V, $V_{\rm L}$ = -2 V
Delay Time, Inhibit to Active	1.5		3.5	ns	Measured at 50%, $V_{\rm H}$ = +2 V, $V_{\rm L}$ = -2 V
Delay Time Matching (Z)	N.C.		± 2.2	ns	Z = Delay Time Active to Inhibit Test (Above)—
				WW.	Delay Time Inhibit to Active Test (Above)
	JO 1.				(Of Worst Two Edges)
I/O Spike	J.C.	<200		mV, p-p	$V_{\rm H} = 0 \text{ V}, V_{\rm L} = 0 \text{ V}$
Rise, Fall Time, Active to Inhibit	100 1.		3.5	ns	$V_{\rm H}$ = +2 V, $V_{\rm L}$ = -2 V (Measured 20%/80% of 1 V Output)
Rise, Fall Time, Inhibit to Active	. Non	, U =	2.2	ns	$V_{\rm H}$ = +2 V, $V_{\rm L}$ = -2 V (Measured 20%/80% of 1 V Output)
DYNAMIC PERFORMANCE , V _{term}	Local I			WW	N.L. ON.COM TW
Delay Time, V _H to V _{TERM}	N.100 1		3.0	ns	Measured at 50%, $V_L = V_H = +0.4 \text{ V}$, $V_{TERM} = -0.4 \text{ V}$
Delay Time, V _L to V _{TERM}			5.0	ns	Measured at 50%, $V_L = V_H = +0.4 \text{ V}$, $V_{TERM} = -0.4 \text{ V}$
Delay Time, V_{TERM} to V_{H} and V_{TERM} to V_{L}	1N.100		4.0	ns	Measured at 50%, $V_L = V_H = +0.4 \text{ V}$, $V_{TERM} = -0.4 \text{ V}$
Overshoot and Preshoot	-3.0 + 75	5	+3.0 + 75	% of Step + mV	$V_{\rm H}/V_{\rm L}$, $V_{\rm TERM}$ = (+0.4 V, -0.4 V), (0.0 V, -2.0 V), (0.0 V, +7.0 V)
V _{TERM} Mode Rise Time	11		4.0	ns	V_L , $V_H = 0$ V, $V_{TERM} = -2$ V, 20%-80%
V _{TERM} Mode Fall Time	WW.L		5.5	ns	V_L , $V_H = 0$ V, $V_{TERM} = -2$ V, 20%-80%
PSRR, DRIVE or TERM Mode	1	35		dB	$V_{S} = V_{S} \pm 3\%$
Specifications subject to change without notice.	NW Y		1.00	NTT.	WW. JODY.C. TW

COMPARATOR SPECIFICATIONS (All specifications are at T = 10000 (All specifications are at $T_1 = +85^{\circ}C \pm 5^{\circ}C$, $+V_s = +12 V \pm 3\%$, $-V_s = -7 V = \pm 3\%$ unless otherwise noted. All temperature coefficients are measured at $T_j = +75^{\circ}C$ to $+95^{\circ}C$).

Parameter	Min T	yp Max	Units	Test Conditions
DC INPUT CHARACTERISTICS Offset Voltage (V_{OS}) Offset Voltage (Drift) HCOMP, LCOMP Bias Current Voltage Range (V_{CM}) Differential Voltage (V_{DIFF}) Gain and Linearity	-25 -50 -3 -0.05	25 0 50 8.0 9.0 0.05	mV μV/°C μA V V % FSR	$CMV = 0 V$ $CMV = 0 V$ $V_{IN} = 0 V$ $V_{IN} = -3 V \text{ to } +8 V$
LATCH ENABLE INPUTS Logic "1" Current (I _{IH}) Logic "0" Current (I _{IL})	-250	250	μΑ μΑ	LE, $\overline{\text{LE}} = -0.8 \text{ V}$ LE, $\overline{\text{LE}} = -1.8 \text{ V}$
DIGITAL OUTPUTS Logic "1" Voltage (V _{OH}) Logic "0" Voltage (V _{OL}) Slew Rate	-0.98	-1.5	V V V/ns	Q or \overline{Q} , 50 Ω to -2 V Q or \overline{Q} , 50 Ω to -2 V
SWITCHING PERFORMANCE Propagation Delay Input to Output Latch Enable to Output Propagation Delay Temperature Coefficient Propagation Delay Change with Respect to Slew Rate: 0.5 V, 1.0 V, 3.0 V/ns Slew Rate: 5.0 V/ns Amplitude: 1.0 V, 3.0 V, 5.0 V Equivalent Input Rise Time Pulsewidth Linearity Settling Time Latch Timing Input Pulsewidth Setup Time	< 4 4 < < < <	2.5 ± 100 ± 350 ± 200 50 ± 200 25 1.5 1.0 1.0	ns ns ps/°C ps ps ps ps ps ns ns ns ns ns	$V_{IN} = 2 V p-p,$ HCOMP = +1 V, LCOMP = +1 V $V_{IN} = 0 V to 5 V$ $V_{IN} = 0 V to 5 V$ $V_{IN} = 1.0 V/ns$ $V_{IN} = 0 V to 3 V, 3 V/ns$ $V_{IN} = 0 V to 3 V, 3 V/ns, PW = 3 ns-8 ns$ Settling to ±8 mV, $V_{IN} = 1 V to 0 V$

AD53033-SPECIFICATIONS

TOTAL FUNCTION SPECIFICATIONS

(All specifications are at $T_1 = +85^{\circ}C \pm 5^{\circ}C$, $+V_5 = +12$ V $\pm 3\%$, $-V_5 = -7$ V $= \pm 3\%$ unless otherwise noted. All temperature coefficients are NOD. measured at $T_1 = +75^{\circ}C$ to $+95^{\circ}C$).

Parameter	Min	Тур	Max	Units	Test Conditions
OUTPUT CHARACTERISTICS			Ĩ	WW	N. COMP.
Output Leakage Current, $V_{OUT} = -2 V$ to +7 V	-500		+500	nA	1001. ON.1
Output Leakage Current, $V_{OUT} = -3$ V to +8 V	-2		+2	μA	NT NOV.
Output Capacitance		6		pF	Driver INHIBITED
POWER SUPPLIES	10Y.V	-M.	LM.	N.	1001. OM.TY
Total Supply Range		19		V V	W. COM TW
Positive Supply	100 2.	12		v	N.100 COM. I
Negative Supply	Yoo.	-7		v 🔨	WT 100Y.CONTW
Positive Supply Current	1.100		178	mA	Driver = Active
Negative Supply Current	100		195	mA	Driver = Active
Total Power Dissipation	11.10		3.5	W	Driver = Active
Temperature Sensor Gain Factor	0.7	1	1.4	μA/K	$R_{LOAD} = 10 \text{ k}\Omega, V_{SOURCE} = +10 \text{ V}$

NOTES

Specifications subject to change without notice. WWW.100Y.CO

Table I. Driver Truth Table

			Table I. Dri	iver fruur f	able	
DATA	DATA	IOD	IOD	RLD	RLD	OUTPUT STATE
0	1	1	0	X	X	VL
1	0	1	0	X	X	VH
X	X	0	1	0	1	INH
X	X	0	1.1.1.1	1.00	0	VTERM

Table II. Comparator Truth Table

WWW.1001.C		ON.T		N.W.I	10 1. Ol	OUTPUT STATES			COM. TW
Vou	T	LEH	LEH	LEL	LEL	QH	QH	QL	QL
>HCOMP	>LCOMP		0	1	0	1	0	1 100	0
>HCOMP	<lcomp< td=""><td>COM.</td><td>0</td><td>1</td><td>0</td><td></td><td>0</td><td>0</td><td>ALCONT.</td></lcomp<>	COM.	0	1	0		0	0	ALCONT.
<hcomp< td=""><td>>LCOMP</td><td>1 1</td><td>0</td><td>1</td><td>0</td><td>0</td><td>1</td><td>1 10</td><td>0</td></hcomp<>	>LCOMP	1 1	0	1	0	0	1	1 10	0
<hcomp< td=""><td><lcomp< td=""><td>CDM-</td><td>0</td><td>1</td><td>0</td><td>0</td><td>1</td><td>0</td><td>N.CO</td></lcomp<></td></hcomp<>	<lcomp< td=""><td>CDM-</td><td>0</td><td>1</td><td>0</td><td>0</td><td>1</td><td>0</td><td>N.CO</td></lcomp<>	CDM-	0	1	0	0	1	0	N.CO
Х	X	0	1	0		QH (t-1)	$\overline{\text{QH}}$ (t-1)	QL (t-1)	$\overline{\text{QL}}$ (t-1)

WWW.100Y.COM.TW WWW.100Y.COM.TW THE TONY COAL TW

AD53033

ABSOLUTE MAXIMUM RATINGS¹

Power Supply Voltage
$+V_{\rm S}$ to GND $+13$ V
-V _s to GND8 V
$+V_{s}$ to $-V_{s}$
PWR GND to ECL GND or HQ GND ±0.4 V
Inputs
DATA, $\overline{\text{DATA}}$, IOD, $\overline{\text{IOD}}$, RLD, $\overline{\text{RLD}}$ +5 V, -3 V
DATA to \overline{DATA} , IOD to \overline{IOD} , RLD to \overline{RLD} ± 3 V
$LEL, \overline{LEL}, LEH, \overline{LEH} \dots \dots \dots + 5 \text{ V}, -3 \text{ V}$
LEL to $\overline{\text{LEL}}$, LEH to $\overline{\text{LEH}}$ $\pm 3 \text{ V}$
VH, VL, VTERM to GND +9 V, -4 V
VH to VL±11 V
(VH - VTERM) and $(VTERM - VL)$ ±11 V
HCOMP +9 V, -4 V
LCOMP +9 V, -4 V
HCOMP, LCOMP to V_{OUT} ±11 V
Outputs
V _{OUT} Short Circuit DurationIndefinite ²
V _{OUT} Inhibit Mode
VHDCPL Do Not Connect Except for Cap to V _{CC}
VLDCPL Do Not Connect Except for Cap to V _{EE}
QH, $\overline{\text{QH}}$, QL, $\overline{\text{QL}}$ Maximum I _{OUT}
Continuous 50 mA
Surge100 mA
THERM

Environmental

Operating Temperature (Junction)	+175°C
Storage Temperature	$-65^{\circ}C$ to $+150^{\circ}C$
Lead Temperature (Soldering, 10 sec) ³	$\dots + 260^{\circ}C$
NOTES	

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Absolute maximum limits apply individually, not in combination. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

²Output short circuit protection to ground is guaranteed as long as proper heat sinking is employed to ensure compliance with the operating temperature limits. 3 To ensure lead coplanarity (±0.002 inches) and solderability, handling with bare hands should be avoided and the device should be stored in environments at 24 °C $\pm 5^{\circ}$ C (75°F $\pm 10^{\circ}$ F) with relative humidity not to exceed 65%.

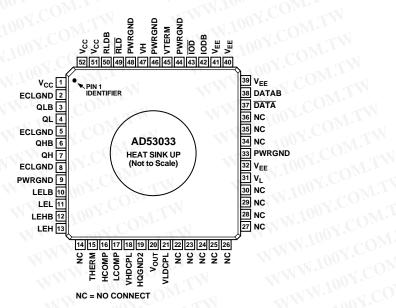
Table III. Package Thermal Characteristics

Air Flow, FM	θ _{JA} , °C/W
0	33
200	25
400	22

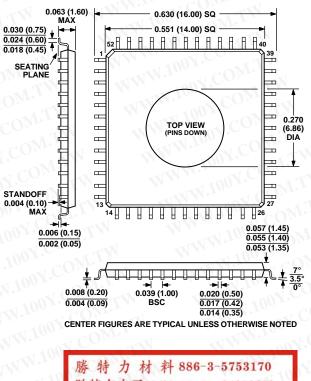
ORDERING GUIDE

	100 mA +13 V, 0 V		
	ORDERING O	GUIDE	
Model	Package Description	Shipment Method Quantity per Shipping Container	Package Option
AD53033JSTP	52-Lead LQFP-EDQUAD	90	SQ-52

CAUTION


ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD53033 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

> WWW.100Y.COM.TW WWW.100Y.COM.TW WW 100X.COM-5-


AD53033

PIN CONFIGURATION

OUTLINE DIMENSIONS Dimensions shown in inches and (mm).

52-Lead LQFP-EDQUAD with Integral Heat Slug (SQ-52)

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw