

FEATURES

Space-saving SC70 and SOT-23 packaging Wide bandwidth: 8 MHz @ 5 V Low offset voltage: 1.2 mV maximum Rail-to-rail output swing 2.9 V/µs slew rate Unity gain stable Single-supply operation: 2.7 V to 12 V

APPLICATIONS

Portable communications Microphone amplifiers Portable phones Sensor interface Active filters PCMCIA cards ASIC input drivers Wearable computers Battery-powered devices Voltage reference buffers Personal digital assistants

8 MHz Rail-to-Rail Operational Amplifiers AD8519/AD8529

PIN CONFIGURATIONS

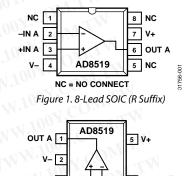


Figure 2. 5-Lead SC70 and SOT-23 (KS and RJ Suffixes)

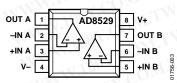


Figure 3. 8-Lead SOIC and MSOP (R and RM Suffixes)

GENERAL DESCRIPTION

The AD8519 and AD8529 are rail-to-rail output bipolar amplifiers with a unity gain bandwidth of 8 MHz and a typical voltage offset of less than 1 mV. The AD8519 brings precision and bandwidth to the SC70 and SOT-23 packages. The low supply current makes the AD8519/AD8529 ideal for batterypowered applications. The rail-to-rail output swing of the AD8519/AD8529 is larger than standard video op amps, making them useful in applications that require greater dynamic range than standard video op amps. The 2.9 V/ μ s slew rate makes the AD8519/AD8529 a good match for driving ASIC inputs such as voice codecs. The small SC70 package makes it possible to place the AD8519 next to sensors, reducing external noise pickup.

The AD8519/AD8529 is specified over the extended industrial (-40°C to +125°C) temperature range. The AD8519 is available in 5-lead SC70 and 5-lead SOT-23 packages, and an 8-lead SOIC surface-mount package. The AD8529 is available in 8-lead SOIC and 8-lead MSOP packages.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Rev. D

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

 Tel: 781.329.4700
 www.analog.com

 Fax: 781.461.3113
 ©1998–2007 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS

TTWW. COMMENT	WWW
TABLE OF CONTENTS	
Features 1	E
Applications1	Турі
Pin Configurations 1	App
General Description 1	М
Revision History 2	P1
Specifications	10
Electrical Characteristics	Т
Absolute Maximum Ratings7	Out
Thermal Resistance	0
REVISION HISTORY	

DY.COM.TW

100Y.CO

REVISION HISTORY

REVISION HISTORY	
5/07—Rev. C to Rev. D	
Changes to Features	
Changes to General Description	
Changes to Two-Element Bridge Amplifier	Section 13
Updated Outline Dimensions	
2/03—Rev. B to Rev. C	
Changed µSOIC to MSOP	Universal

2/03—Rev. B to Rev. C

Changed µSOIC to MSOP	Universal
Changed SO-8 to R-8	Universal
Changes to Precision Full-Wave Rectifier section	
Changes to 10× Microphone Preamp Meets PC99	
Specifications section	
Updated Outline Dimensions	

WW.100Y.	CONTW	
ESD Caution	COMIN	,
	nance Characteristics	
Applications In	formation	
Maximum Po	ower Dissipation	
Precision Ful	1-Wave Rectifier	
10× Microph	one Preamp Meets PC99 Specifications	s 11
Two-Element	t Varying Bridge Amplifier	
Outline Dimens	sions	14
Ordering Gu	ide	

100Y.COM.TW

100Y.COM.T

WWW.100Y.C

SPECIFICATIONS

V.COM.TW **ELECTRICAL CHARACTERISTICS**

WWW.100Y.COM.TW $V_s = 5.0 \text{ V}, \text{ V}_{-} = 0 \text{ V}, \text{ V}_{CM} = 2.5 \text{ V}, \text{ }T_A = 25^{\circ}\text{C}, \text{ unless otherwise noted.}$

DY.COM.TW

Table 1.

Table 1. Parameter	Symbol	Conditions	Min	(Тур	Max	Unit
INPUT CHARACTERISTICS	1001.	11, 1003.	M.T			
Offset Voltage	Vos	AD8519AKS, AD8519ART	TA	600	1100	μV
COM.	V.10 - CO	$-40^{\circ}C \le T_A \le +125^{\circ}C$	ON	800	1300	μV
	N 100Y.	AD8519AR (R-8), AD8529	Mon	600	1000	μV
	V.C.	$-40^{\circ}C \le T_A \le +125^{\circ}C$			1100	μV
Input Bias Current	IB	DNT. MANNAN MANNA	1.CON		300	nA
1002. NITH W	N.1001.	$-40^{\circ}C \le T_A \le +125^{\circ}C$	- c0		400	nA
Input Offset Current	los	NTW WT	1.00		±50	nA
N.100 COM.	W.Loc	$-40^{\circ}C \le T_A \le +125^{\circ}C$	V.C		()±100	nA
Input Voltage Range	Vсм	CONT.	0		4	v
Common-Mode Rejection Ratio	CMRR	$0 \text{ V} \le \text{V}_{CM} \le 4.0 \text{ V}, -40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$	63	100		dB
Large Signal Voltage Gain	Avo	$R_L = 2 k\Omega, 0.5 V < V_{OUT} < 4.5 V$	Va	30		V/mV
N100X. OMAN	1.1	$R_L = 10 k\Omega, 0.5 V < V_{OUT} < 4.5 V$	50	100		V/mV
	NW V	$R_L = 10 \text{ k}\Omega, -40^{\circ}\text{C} \le T_A \le +125^{\circ}\text{C}$	30			V/mV
Offset Voltage Drift	ΔVos/ΔT	WW COMMENT		2		μV/°C
Bias Current Drift	ΔΙ _Β /ΔΤ	LIOU T. CONCI T	W.10	500		pA/°C
OUTPUT CHARACTERISTICS	N. C.	1002.0001.110 911		JOX -	M.TY	F · · ·
Output Voltage Swing High	Voн	$I_L = 250 \ \mu A$	111-			N
	- OII	$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	4.90			V
	AL A	$I_L = 5 \text{ mA}$	4.80			v
Output Voltage Swing Low	Vol Vol	$I_L = 250 \ \mu A$				WT
output foldage stilling zon	• OL	$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	-		80	mV
	N	$I_L = 5 \text{ mA}$	/N		200	mV
Short-Circuit Current	Isc	Short to ground, instantaneous	WV	±70	1.00	mA
Maximum Output Current	lout			±25		mA
POWER SUPPLY		N 100 CON.TH				DN-
Power Supply Rejection Ratio	PSRR	$V_{s} = 2.7 V \text{ to } 7 V$	V	110		dB
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$		80		dB
Supply Current/Amplifier	Isy	$V_{\text{OUT}} = 2.5 \text{ V}$		600	1200	μΑ
sappi, carend, inpline	WT .	$-40^{\circ}C \le T_{A} \le +125^{\circ}C$		000	1400	μΑ
DYNAMIC PERFORMANCE	ON			WW		
Slew Rate	SR	$1 V < V_{OUT} < 4 V, R_L = 10 k\Omega$		2.9		V/µs
Settling Time	ts	To 0.01%		1200		ns
Gain Bandwidth Product	GBP	I STANDARD COMPANY	N	8		MHz
Phase Margin	Φ _m	MONTH COM		60		Degree
NOISE PERFORMANCE			510		N. Y.	Degree.
Voltage Noise	e. n-n	0.1 Hz to 10 Hz	W	0.5		μV р-р
Voltage Noise Density	en p-p	f = 1 kHz	1.1	10		nV/√Hz
Current Noise Density	en i	f = 1 kHz	MT.M	0.4		pA/√Hz
Current Noise Delisity	in ON			0.4		PH/ VHZ

100Y.COM.TW

100Y.COM.TV

WWW.100Y.

WWW.100Y.C

W.COM.TW

Table 2.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS	N 1001.	M.I.M. M. 100	. M.			
Offset Voltage	Vos	AD8519AKS, AD8519ART	TIN	700	1200	μV
	W.100	$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	COM	900	1400	μV
	N.1001.	AD8519AR (R-8), AD8529	- doM.	700	1100	μV
	YOOL	$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	Y.		1200	μV
Input Bias Current	I _B	CONT. IN MANY	V.COm		300	nA
Input Offset Current	los	COMPT LAW 10	- CO		±50	nA
Input Voltage Range	V _{см}	N.C. MITH WILL	0		2	V
Common-Mode Rejection Ratio	CMRR	$0 \text{ V} \leq V_{\text{CM}} \leq 2.0 \text{ V},$	NY.CL			
	L.WW.	$-40^{\circ}C \le T_A \le +125^{\circ}C$	55	75		dB
Large Signal Voltage Gain	Avo	$R_L = 2 \ k\Omega, 0.5 \ V < V_{\text{OUT}} < 2.5 \ V$	1.1001.0	20		V/mV
WW.IC COM. ON	WWW.	$R_L = 10 \text{ k}\Omega$	20	30	WT	V/mV
OUTPUT CHARACTERISTICS	WW	LOON. WWW	N.L.			
Output Voltage Swing High	V _{OH}	$I_L = 250 \ \mu A$	2.90			V
	WW	$I_L = 5 \text{ mA}$	2.80			V
Output Voltage Swing Low	V _{OL}	$I_L = 250 \mu\text{A}$	WW.		100	mV
W		$I_L = 5 \text{ mA}$	1.1		200	mV
POWER SUPPLY	W	TIOOY.CONTRACT				
Power Supply Rejection Ratio	PSRR	$V_{S} = 2.5 V$ to 7 V, $-40^{\circ}C \le T_{A} \le +125^{\circ}C$	60	80		dB
Supply Current/Amplifier	Isy	Vout = 1.5 V	WW	600	1100	μΑ
WW 100Y.CO.	N.	$-40^{\circ}C \le T_A \le +125^{\circ}C$		N 1001	1300	μA
DYNAMIC PERFORMANCE	W	WWW. OOY.COM TW	N.W.			WT.
Slew Rate	SR	$R_L = 10 k\Omega$	WW	1.5		V/µs
Settling Time	ts	То 0.01%		2000		ns
Gain Bandwidth Product	GBP	WW TOOY.CONTW	N	6		MHz
Phase Margin	Φm	NAM . COM.	-	55		Degrees
	M.T.Y	COM.I				CO
Voltage Noise Density	en	f = 1 kHz		10		nV/√Hz
Current Noise Density	in	f = 1 kHz	I	0.4		pA/√Hz

100Y.COM.TW

100X.COM.TV

WWW.100Y.C

M.TW

DY.COM.T

Parameter	Symbol	Conditions	Min	Тур Ма	x Un
INPUT CHARACTERISTICS	001.001	11, 100, 001	1.		
Offset Voltage	Vos	AD8519AKS, AD8519ART	WITN	700 14	00 μV
COMPT	LOD IN COL	$-40^{\circ}C \le T_A \le +125^{\circ}C$	W	900 16	00 μV
	11001.0	AD8519AR (R-8), AD8529	071.1	700 12	00 μV
	. I OOY.CC	$-40^{\circ}C \le T_A \le +125^{\circ}C$	TIM	13	ο 10 μV
Input Bias Current	IB C	ONT. MANNAN MANNAN	20 34	30	0 nA
Input Offset Current	los	ON.1	COM.	±5	0 nA
Input Voltage Range	Vсм	TW WW 100Y	0	2	V
Common-Mode Rejection Ratio	CMRR	$0 \text{ V} \le \text{V}_{CM} \le 1.7 \text{ V}, -40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$	55	75	dB
Large Signal Voltage Gain	Avo	$R_L = 2 \ k\Omega, 0.5 \ V < V_{OUT} < 2.2 \ V$	CON	20	V/n
TW N	100	$R_L = 10 k\Omega$	20	30	V/n
OUTPUT CHARACTERISTICS	N N N	N.CONTRA WW	MY.CU	WTI	
Output Voltage Swing High	Voн	I _L = 250 μA	2.60		V
1002.001.17	VIII III	$I_{L} = 5 \text{ mA}$	2.50		V
Output Voltage Swing Low	Vol	I _L = 250 μA	. Your	10) mV
W.100 1 COM. 1	WW	$I_L = 5 \text{ mA}$	1.10-	20) mV
POWER SUPPLY	N.	1001.001.1	W TOO	COM.	
Power Supply Rejection Ratio	PSRR	$V_{\rm S} = 2.5 {\rm V} {\rm to} 7 {\rm V}$	100		
	W	$-40^{\circ}C \le T_A \le +125^{\circ}C$	60	80	dB
Supply Current/Amplifier	lsy	V _{OUT} = 1.35 V	W.10	600 11	00 μA
	W	$-40^{\circ}C \le T_A \le +125^{\circ}C$	1	13	00 μA
DYNAMIC PERFORMANCE		MM. MONTON	N N N N N	MY.COM	NT.
Slew Rate	SR	$R_L = 10 \ k\Omega$	WW.	1.5	V/µ
Settling Time	ts	To 0.01%	W.	2000	ns
Gain Bandwidth Product	GBP	NWW. PONCOM	WWW	6	MH
Phase Margin	Φ_{m}	COM.		55	Deg
NOISE PERFORMANCE	IN	M. 1001. MITH		N.100 1.	-01A.3
Voltage Noise Density	en	f = 1 kHz	WW	10	nV/
Current Noise Density	in	f = 1 kHz		0.4	pA/

100Y.COM.TW

LOOY.COM.TV

WWW.100Y.C

DY.COM.TW

Table 4.

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
NPUT CHARACTERISTICS	1001.	ON.11	OW.	1		
Offset Voltage	Vos	AD8519AKS, AD8519ART	TIM	600	1100	μV
	N.L	$-40^{\circ}C \le T_A \le +125^{\circ}C$		800	1300	μV
	W.100 1	AD8519AR (R-8), AD8529	COM.	600	1000	μV
	100	$-40^{\circ}C \le T_A \le +125^{\circ}C$	Mon		1100	μV
Input Bias Current	IB	$V_{CM} = 0 V$	Y.COT		300	nA
	W.10	$V_{CM} = 0 V, -40^{\circ}C \le T_A \le +125^{\circ}C$			400	nA
Input Offset Current	los	$V_{CM} = 0 V$			±50	nA
	WWW	$V_{CM} = 0 V, -40^{\circ}C \le T_A \le +125^{\circ}C$	NOY.CO		±100	nA
Input Voltage Range	V _{см}	CONT.	-5		+4	V
Common-Mode Rejection Ratio	CMRR	$-4.9 \text{ V} \leq \text{V}_{\text{CM}} \leq +4.0 \text{ V},$	100 1.			
WW. DOLLOUT TW	WW Y	$-40^{\circ}C \le T_A \le +125^{\circ}C$	70	100		dB
Large Signal Voltage Gain	Avo	$R_L = 2 k\Omega$		30		V/mV
		$R_L = 10 k\Omega$	50	200		V/mV
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	25			V/mV
Offset Voltage Drift	$\Delta V_{os}/\Delta T$	WW.LOW.COM WY		2		μV/°C
Bias Current Drift OUTPUT CHARACTERISTICS	ΔΙ _Β /ΔΤ	NW 100 - CON	N.W.	500	011.	pA/°C
		1 250	L.W.I			-1
Output Voltage Swing High	Vон	$I_{L} = 250 \mu\text{A}$	4.90			v
	- 41	$-40^{\circ}C \le T_A \le +125^{\circ}C$ $I_L = 5 \text{ mA}$	4.90			V
Output Voltage Swing Low	Vol	$I_L = 5 \text{ mA}$ $I_L = 250 \mu\text{A}$	4.00			V
Output voltage Swing Low	VOL	$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	N		-4.90	
	IN	$I_{L} = 5 \text{ mA}$	WW		-4.90	V
Short-Circuit Current	lsc	Short to ground, instantaneous		±70	00	mA
Maximum Output Current	lout	Short to ground, instantaneous		±70		mA
POWER SUPPLY	.001	WWW. OOX.COM	N	0	1001.	
Power Supply Rejection Ratio	PSRR	$V_{s} = \pm 1.5 V$ to $\pm 6 V$, $-40^{\circ}C \le T_{A} \le +125^{\circ}C$	60 <	100		dB
Supply Current/Amplifier	lsy	$V_{OUT} = 0 V$		600	1200	μΑ
WWW CODY.C	WT	$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			1400	μΑ
DYNAMIC PERFORMANCE	COMPTE	WWWWWWWWWWWW		NN	100	N.C.
Slew Rate	SR	$-4 V < V_{OUT} < +4 V$, $R_L = 10 k\Omega$		2.9		V/µs
Settling Time	ts	To 0.01%		1000		ns
Gain Bandwidth Product	GBP	WWWWWWWWW	177	8 🔨		MHz
Phase Margin	Φm	THE	IN	60	WW.	Degrees
NOISE PERFORMANCE		L'I' WIN TON TON			WW	100 CO
Voltage Noise Density	en	f = 1 kHz	NTN	10		nV/√Hz
Current Noise Density	in CO	f = 1 kHz	WT	0.4		pA/√Hz

100Y.COM.TW

7.100Y.COM.TV

WWW.100Y.C

ABSOLUTE MAXIMUM RATINGS

Table 5.

Parameter	Rating
Supply Voltage	±6V
Input Voltage ¹	±6V
Differential Input Voltage ²	±0.6 V
Storage Temperature Range	-65°C to +150°C
Operating Temperature Range	-40°C to +125°C
Junction Temperature Range	-65°C to +150°C
Lead Temperature Range (Soldering, 60 sec)	300°C

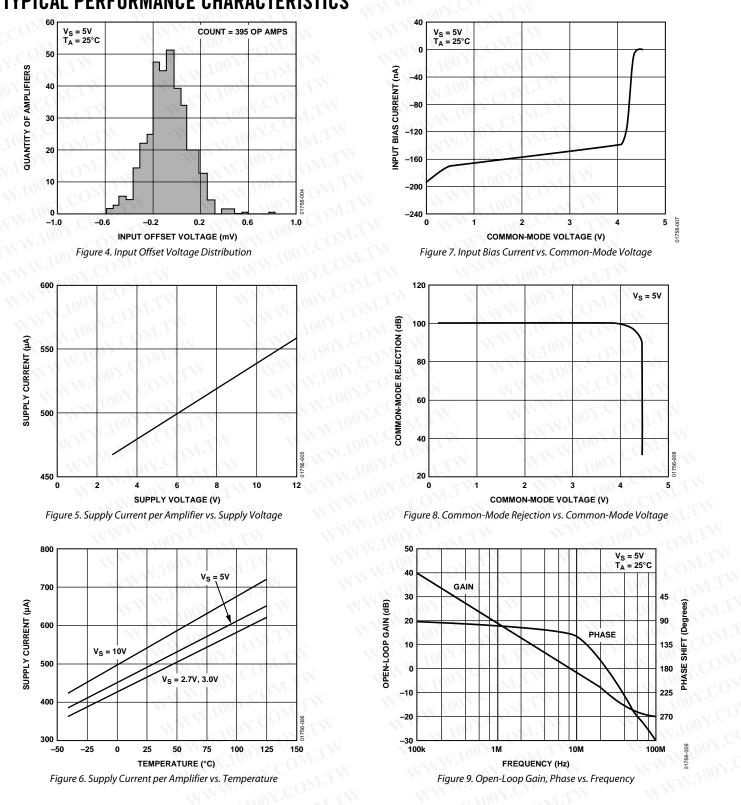
 1 For supply voltages less than ± 6 V, the input voltage is limited to less than or equal to the supply voltage.

 2 For differential input voltages greater than ± 0.6 V, the input current should be limited to less than 5 mA to prevent degradation or destruction of the input devices.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

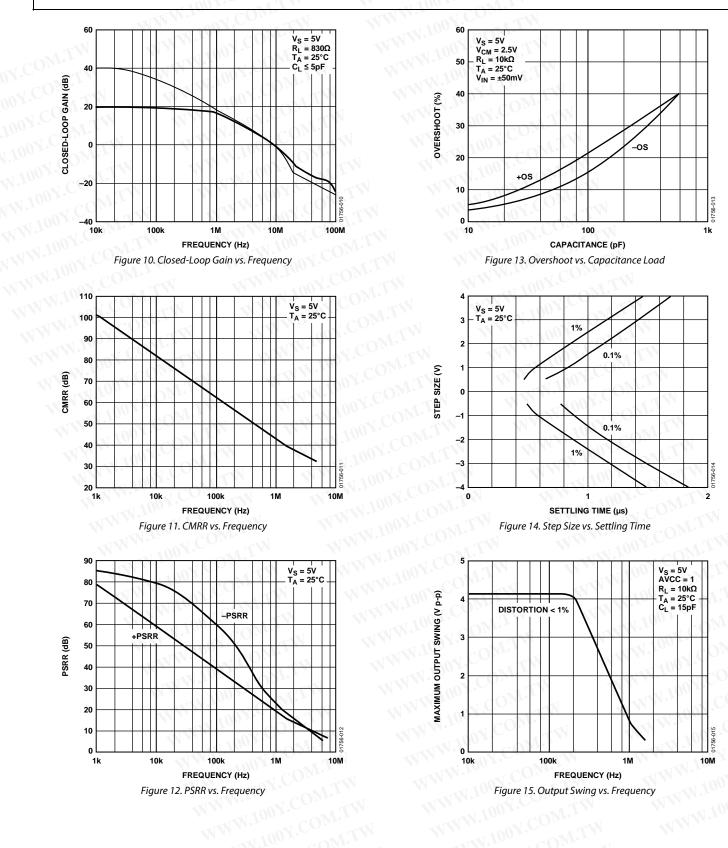
THERMAL RESISTANCE

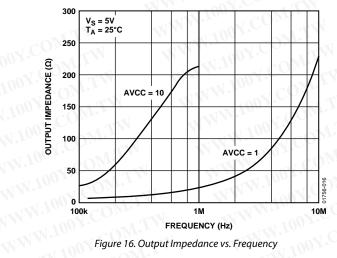
Table 6.

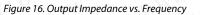

Package Type	θ _{JA} 1	οıc	Unit
5-Lead SC70 (KS)	376	126	°C/W
5-Lead SOT-23 (RJ)	230	146	°C/W
8-Lead SOIC (R)	158	43	°C/W
8-Lead MSOP (RM)	210	45	°C/W

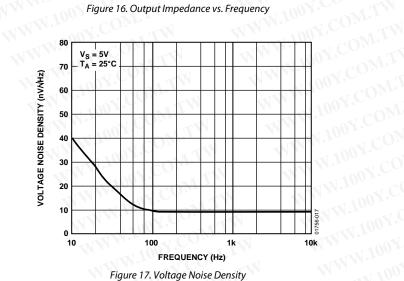
 $^1\theta_{JA}$ is specified for worst-case conditions, that is, θ_{JA} is specified for device soldered in circuit board for SOT-23 and SOIC packages.

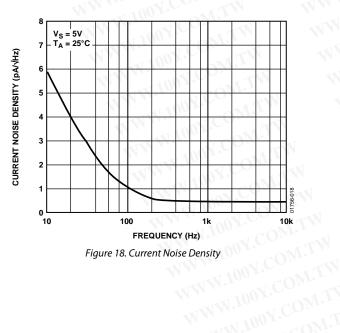
ESD CAUTION




ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.




TYPICAL PERFORMANCE CHARACTERISTICS


Rev. D | Page 8 of 16

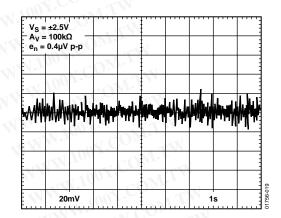


Figure 19. 0.1 Hz to 10 Hz Noise

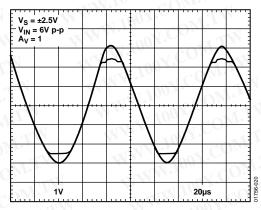


Figure 20. No Phase Reversal

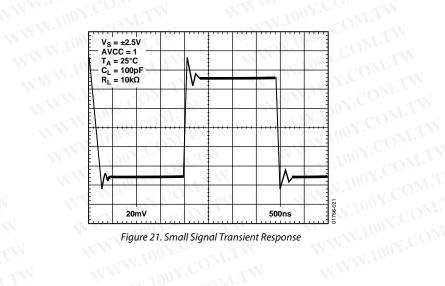


Figure 21. Small Signal Transient Response WWW.100Y WWW.100Y.COM.

100Y.COM.TW

100Y.COM.TV

WWW.100Y.COM.TW

WWW.100Y.C

WWW.100Y.C

MT.M

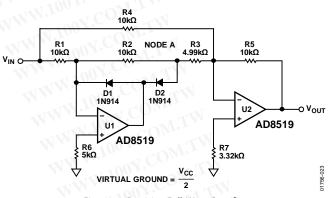
V _S = ±2.5V		Ś			-7 (0			3
AVCC = 1 — T _A = 25°C C _L = 100pF —				70,		cC	W.		
				v.1	903		N		
17			N		00	<u>.</u>		1	
M		~	NN	1.	10	Y.	90		
					1.1.0		Ċ	22.2	
M.				X	N.7	90-	1	0	
MITY					N.	100	3.0	~ 0	N.
M.L.M.			4			110	01.		52
500mV	Ń			V		50	μs		01756-022

DY.COM.TW

APPLICATIONS INFORMATION MAXIMUM POWER DISSIPATION

The maximum power that can be safely dissipated by the AD8519/AD8529 is limited by the associated rise in junction temperature. The maximum safe junction temperature is 150°C for these plastic packages. If this maximum is momentarily exceeded, proper circuit operation is restored as soon as the die temperature is reduced. Operating the product in an overheated condition for an extended period can result in permanent damage to the device.

PRECISION FULL-WAVE RECTIFIER


Slew rate is probably the most underestimated parameter when designing a precision rectifier. Yet without a good slew rate, large glitches are generated during the period when both diodes are off.

The operation of the basic circuit (shown in Figure 23) should be examined before considering the slew rate further. U1 is set up to have two states of operation. D1 and D2 diodes switch the output between the two states. State one is an inverter with a gain of +1, and state two is a simple unity gain buffer where the output is equal to the value of the virtual ground. The virtual ground is the potential present at the noninverting node of the U1. State one is active when V_{IN} is larger than the virtual ground. D2 is on in this condition. If V_{IN} drops below virtual ground, D2 turns off and D1 turns on. This causes the output of U1 to simply buffer the virtual ground and this configuration is state two. Therefore, the function of U1, which results from these two states of operation, is a half-wave inverter. The U2 function takes the inverted half wave at a gain of two and sums it into the original V_{IN} wave, which outputs a rectified full wave.

$$V_{OUT} = V_{IN} - 2 |V_{IN}^{-1} < 0|$$

This type of rectifier can be very precise if the following electrical parameters are adhered to:

- All passive components should be of tight tolerance, 1% for resistors and 5% for capacitors.
- If the application circuit requires high impedance (that is, direct sensor interface), then an FET amplifier is a better choice than the AD8519.
- An amp such as the AD8519, which has a great slew rate specification, yields the best result because the circuit involves switching.

Switching glitches are caused when D1 and D2 are both momentarily off. This condition occurs every time the input signal is equal to the virtual ground potential. When this condition occurs, the U1 stage is taken out of the V_{OUT} equation and V_{OUT} is equal to $V_{IN} \times R5 \times (R4 || R1 + R2 + R3)$. Note that Node A should be V_{IN} inverted or virtual ground, but in this condition, Node A is simply tracking V_{IN} . Given a sine wave input centered around virtual ground, glitches are generated at the sharp negative peaks of the rectified sine wave. If the glitches are hard to notice on an oscilloscope, raise the frequency of the sine wave until they become apparent. The size of the glitches is proportional to the input frequency, the diode turn-on potential (0.2 V or 0.65 V), and the slew rate of the op amp.

R6 and R7 are both necessary to limit the amount of bias current related voltage offset. Unfortunately, there is no perfect value for R6 because the impedance at the inverting node is altered as D1 and D2 switch. Therefore, there is also some unresolved bias current related offset. To minimize this offset, use lower value resistors or choose an FET amplifier if the optimized offset is still intolerable.

The AD8519 offers a unique combination of speed vs. power ratio at 2.7 V single supply, small size (SC70 and SOT-23), and low noise that makes it an ideal choice for most high volume and high precision rectifier circuits.

10× MICROPHONE PREAMP MEETS PC99 SPECIFICATIONS

This circuit, while lacking a unique topology, is anything but featureless when an AD8519 is used as the op amp. This preamp gives 20 dB gain over a frequency range of 20 Hz to 20 kHz and is fully PC99 compliant in all parameters including THD + N, dynamic range, frequency range, amplitude range, and crosstalk. Not only does this preamp comply with the PC99 specifications, it far surpasses them. In fact, when the input noise is 120 dB, this preamp has a V_{OUT} noise of around 100 dB, which is suitable for most professional 20-bit audio systems. At 120 dB THD + N in unity gain, the AD8519 is suitable for 24-bit professional audio systems. In other words, the AD8519 will not be the limiting performance factor in audio systems despite its small size and low cost.

Slew rate related distortion is not present at the lower voltages because the AD8519 is so fast at 2.1 V/ μ s. A general rule of thumb for determining the necessary slew rate for an audio system is to take the maximum output voltage range of the device, given the design's power rails, and divide by two. In Figure 24, the power rails are 2.7 V and the output is rail-to-rail. Enter these numbers into the equation: 2.7/2 = 1.35 V, and the minimum ideal slew rate is 1.35 V/ μ s.

While this data sheet gives only one audio example, many audio circuits are enhanced with the use of the AD8519. Examples include: active audio filters such as bass, treble, and equalizers; PWM filters at the output of audio DACs; buffers and summers for mixing stations; and gain stages for volume control.

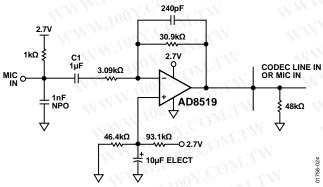


Figure 24. 10× Microphone Preamplifier

TWO-ELEMENT VARYING BRIDGE AMPLIFIER

There are a host of bridge configurations available to designers. For a complete analysis, look at the ubiquitous bridge and its different forms. Refer to the 1992 *Amplifier Applications Guide*¹.

Figure 25 is a schematic of a two-element varying bridge. This configuration is commonly found in pressure and flow transducers. With a two-element varying bridge, the signal is 2× as compared to a single-element varying bridge. The advantages of this type of bridge are gain setting range and single-supply application. Negative characteristics are nonlinear operation and required R matching. Given these sets of conditions, requirements, and characteristics, the AD8519 can be successfully used in this configuration because of its rail-to-rail output and low offset. Perhaps the greatest benefits of the AD8519, when used in the bridge configuration, are the advantages it can bring when placed in a remote bridge sensor. For example, the tiny SC70 and SOT-23 packages reduce the overall sensor size; low power allows for remote powering via batteries or solar cells, high output current drive to drive a long cable; and 2.7 V operation for two-cell operation.

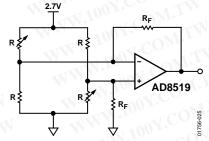
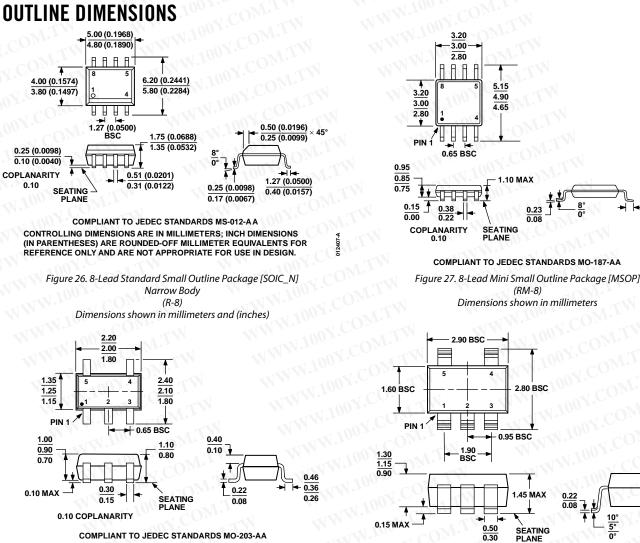



Figure 25. Two-Element Varying Bridge Amplifier

Adolfo Garcia and James Wong, Chapter 2, 1992, Amplifier Applications Guide.

COMPLIANT TO JEDEC STANDARDS MO-203-AA

Figure 28. 5-Lead Thin Shrink Small Outline Transistor Package [SC70] (KS-5) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-178-A A Figure 29. 5-Lead Small Outline Transistor Package [SOT-23] (RJ-5) Dimensions shown in millimeters

0.30

0.80

0.60

0.40

0.60 0.45

0.30

0

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding Information
AD8519AKS-REEL7	-40°C to +125°C	5-Lead SC70	KS-5	A3B
AD8519AKSZ-REEL71	-40°C to +125°C	5-Lead SC70	KS-5	A11
AD8519ART-REEL	–40°C to +125°C	5-Lead SOT-23	RJ-5	N A3A
AD8519ART-REEL7	-40°C to +125°C	5-Lead SOT-23	RJ-5	A3A
AD8519ARTZ-REEL ¹	-40°C to +125°C	5-Lead SOT-23	RJ-5	A3A#
AD8519ARTZ-REEL71	-40°C to +125°C	5-Lead SOT-23	RJ-5	A3A#
AD8519AR	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8519AR-REEL	-40°C to +125°C	8-Lead SOIC_N	R-8	V.L.
AD8519AR-REEL7	-40°C to +125°C	8-Lead SOIC_N	R-8	WT
AD8519ARZ ¹	-40°C to +125°C	8-Lead SOIC_N	R-8	N
AD8519ARZ-REEL	-40°C to +125°C	8-Lead SOIC_N	R-8	ONL'L'
AD8519ARZ-REEL71	-40°C to +125°C	8-Lead SOIC_N	R-8	MIM
AD8529AR	-40°C to +125°C	8-Lead SOIC_N	R-8	Nu -
AD8529AR-REEL	-40°C to +125°C	8-Lead SOIC_N	R-8	COM. L
AD8529ARZ ¹	-40°C to +125°C	8-Lead SOIC_N	R-8	WT.W
AD8529ARZ-REEL1	-40°C to +125°C	8-Lead SOIC_N	R-8	V.COM TW
AD8529ARM-REEL	-40°C to +125°C	8-Lead MSOP	RM-8	A5A
AD8529ARMZ-REEL ¹	-40°C to +125°C	8-Lead MSOP	RM-8	A5A#
¹ 7 – BoHS compliant part #	denotes BoHS compliant par	t may be top or bottom marked.		
Z = KOHS COMPLIANT Part, # 0	denotes nons compliant par	t may be top of bottom marked.		

100Y.COM.TW

LOON.COM.T

WWW.100X.C

 1 Z = RoHS compliant part, # denotes RoHS compliant part may be top or bottom marked. WWW.100Y.COM.TW WWW WWW.100Y.COM.TW WWW.100Y.C WWW.100Y.C

WY.COM.TW

NOTES W.100Y.COM.

WWW.100Y.COM.TW WWW.100Y.COM.TW 勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw WWW.100Y.COM.TW

W.100Y.COM.TW

OM.TW

100Y.COM.TW

100Y.COM.T

WWW.100Y.COM.TW

WWW.100Y.C

WWW.100Y.C

MY.COM.TW

WWW.100Y.COM.TW

WWW.100Y.CO

©1998–2007 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. C01756-0-5/07(D)

> Rev. D | Page 16 of 16 WWW.100 TALAN 100Y.COM.

ANALOG

DEVICES

WW.100Y.COM.T

www.analog.com

100X.COM.TW