Dual Low Power Operational Amplifier, Single or Dual Supply

OP221

FEATURES

Excellent TCV ${ }_{\text {os }}$ Match, $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Max
Low Input Offset Voltage, $150 \mu \mathrm{~V}$ Max
Low Supply Current, $550 \mu \mathrm{~A}$ Max
Single Supply Operation, 5 V to 30 V
Low Input Offset Voltage Drift, $0.75 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
High Open-Loop Gain, 1500 V/mV Min
High PSRR, $3 \mu \mathrm{~V} / \mathrm{V}$
Wide Common-Mode Voltage
Range, V- to within 1.5 V of V_{+}
Pin Compatible with 1458, LM158, LM2904
Available in Die Form

PIN CONNECTIONS

8-Lead SOIC

(S-Suffix)

provide high performance in instrumentation amplifier designs. The individual amplifiers feature very low input offset voltage, low offset voltage drift, low noise voltage, and low bias current. They are fully compensated and protected.

Matching between channels is provided on all critical parameters including input offset voltage, tracking of offset voltage vs. temperature, non-inverting bias currents, and common-mode rejection.

GENERAL DESCRIPTION

The OP221 is a monolithic dual operational amplifier that can be used either in single or dual supply operation. The wide supply voltage range, wide input voltage range, and low supply current drain of the OP221 make it well-suited for operation from batteries or unregulated power supplies.

The excellent specifications of the individual amplifiers combined with the tight matching and temperature tracking between channels

SIMPLIFIED SCHEMATIC

REV. C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

OP221-SPECIFICATIONS

(Electrical Characteristics at $\mathrm{V}_{\mathrm{s}}= \pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

OP221G						
Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Input Offset Voltage	$\mathrm{V}_{\text {OS }}$			250	500	$\mu \mathrm{V}$
Input Offset Current	Ios	$\mathrm{V}_{\mathrm{CM}}=0$		1.5	7	nA
Input Bias Current	I_{B}	$\mathrm{V}_{\mathrm{CM}}=0$		70	120	nA
Input Voltage Range	IVR	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}^{1} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 / 3.5 \\ & -15 / 1 \end{aligned}$			V
Common-Mode Rejection Ratio	CMRR	$\begin{aligned} & \mathrm{V}+=-5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 3.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & -15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 13.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 75 \\ & 80 \end{aligned}$	$\begin{aligned} & 85 \\ & 90 \end{aligned}$		dB
Power Supply Rejection Ratio	PSRR	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V} \text { to } \pm 15 \mathrm{~V} \\ & \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}+=5 \mathrm{~V} \text { to } 30 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 32 \\ & 57 \end{aligned}$	$\begin{aligned} & 100 \\ & 180 \\ & \hline \end{aligned}$	$\mu \mathrm{V} / \mathrm{V}$
Large-Signal Voltage Gain	Avo	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \end{aligned}$	800			V/mV
Output Voltage Swing	V_{O}	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{S}}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 / 4 \\ & \pm 13.5 \end{aligned}$			V
Slew Rate	SR	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega^{2}$	0.2	0.3		V/ $\mu \mathrm{S}$
Bandwidth	BW			600		kHz
Supply Current (Both Amplifiers)	$\mathrm{I}_{\text {SY }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}, \text { No Load } \\ & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \text { No Load } \end{aligned}$		$\begin{aligned} & 550 \\ & 850 \end{aligned}$	$\begin{aligned} & 650 \\ & 900 \end{aligned}$	$\mu \mathrm{A}$

SPECIFICATIONS

(Electrical Characteristics at $\mathrm{V}_{S}= \pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, unless otherwise noted.)

NOTES
${ }^{1}$ Sample tested.
${ }^{2}$ Guaranteed by CMRR test limits.
Matching Characteristics at $\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

OP221G							
Parameter	Symbol	Conditions	Min	Typ	Max		
Input Offset Voltage Match	$\Delta \mathrm{V}_{\mathrm{OS}}$			Unit			
Average Noninverting Bias Current	$\mathrm{I}_{\mathrm{B}}+$		250	600	$\mu \mathrm{~V}$		
Noninverting Input Offset Current	$\mathrm{I}_{\mathrm{OS}}+$		4	120	nA		
Common-Mode Rejection Ratio Match				10	nA		
Power Supply Rejection Ratio Match 2	$\Delta \mathrm{CMRR}$						

NOTES
${ }^{1} \Delta C M R R$ is $20 \log _{10} \mathrm{~V}_{\mathrm{CM}} / \Delta \mathrm{CME}$, where V_{CM} is the voltage applied to both noninverting inputs and $\Delta \mathrm{CME}$ is the difference in common-mode input-referred error. ${ }^{2} \triangle \mathrm{PSRR}$ is: Input-Referred Differential Error

$$
\Delta \mathrm{V}_{\mathrm{S}}
$$

D291_SDER|F|RATANS (Matching Characteristics at $V_{s}= \pm 15 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ for OP221G, unless otherwise noted. G is sample tested.)

OP221G						
Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Input Offset Voltage Match	$\Delta \mathrm{V}_{\text {OS }}$			400	800	$\mu \mathrm{V}$
Average Noninverting Bias Current	$\mathrm{I}_{\mathrm{B}}+$	$\mathrm{V}_{\mathrm{CM}}=0$			140	nA
Input Offset Voltage Tracking	$\mathrm{IC} \Delta \mathrm{V}_{\text {OS }}$			3	5	$\mu \mathrm{V}^{\circ} \mathrm{C}$
Noninverting Input Offset Current	$\mathrm{I}_{\mathrm{OS}}{ }^{+}$	$\mathrm{V}_{\mathrm{CM}}=0$			12	nA
Common-Mode Rejection Ratio Match ${ }^{1}$	$\Delta \mathrm{CMRR}$	$\mathrm{V}_{\mathrm{CM}}=-15 \mathrm{~V}$ to 13.2 V	72	80		dB
Power Supply Rejection Ratio Match ${ }^{2}$	$\Delta \mathrm{PSRR}$			140		$\mu \mathrm{V} / \mathrm{V}$
NOTES ${ }^{1} \triangle C M R R$ is $20 \log _{10} \mathrm{~V}_{\mathrm{CM}} / \triangle \mathrm{CME}$, where V_{CM} is the voltage applied to both noninverting inputs and $\triangle C M E$ is the difference in common-mode input-referred error. ${ }^{2} \triangle$ PSRR is: Input-Referred Differential Error ΔV_{S}						

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage . ± 18 V
Differential Input Voltage 30 V or Supply Voltage
Input Voltage . Supply Voltage
Output Short-Circuit Duration Indefinite
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range
OP221G . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (Soldering 60 sec) $300^{\circ} \mathrm{C}$
Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right) \quad \ldots \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}$ (Note 2)	$\boldsymbol{\theta}_{\mathrm{JC}}$	Unit
8-Lead SOIC(S)	158	43	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES
${ }^{1}$ Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.
${ }^{2} \theta_{\text {IA }}$ is specified for device soldered to printed circuit board for SOIC package.
ORDERING GUIDE
$\left.\begin{array}{l|l|l|l}\hline \mathbf{T}_{\mathrm{A}}=+\mathbf{2 5 ^ { \circ }} \mathbf{C} & & \begin{array}{l}\text { Operating } \\ \mathbf{V}_{\mathbf{o s}} \mathbf{M A X} \\ (\mu \mathbf{V})\end{array} & \text { Plastic } \\ \text { 8-Lead }\end{array}\right)$

DIE SILE 0.097×0.063 INCH. $6111 \mathrm{SO} . \mathrm{Mm}$ LS

NOTE: ALL Y + PADS ARE INTERNALLY CONMECTED.
Figure 1. Dice Characteristics

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the OP221 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

OP221-Typical Perfomance Characteristics

TPC 1. Open-Loop Gain at $\pm 15 \mathrm{~V}$ vs. Temperature

TPC 4. Open-Loop Gain at $\pm 15 \mathrm{~V}$ vs. Frequency

TPC 2. Open-Loop Gain at $\pm 5 \mathrm{~V}$ vs. Temperature

TPC 5. Closed-Loop Gain vs. Frequency

TPC 8. PSRR vs. Frequency

TPC 3. Open-Loop Gain at vs. Supply Voltage

TPC 6. Gain and Phase Shift vs. Frequency

TPC 9. CMRR vs. Frequency

Figure 2a. Noninverting Step Response

Figure 2b. Noninverting Step Response

Figure 4. Noninverting Test Circuit

Figure 3a. Inverting Step Response

Figure 3b. Inverting Step Response

Figure 5. Inverting Test Circuit

SPECIAL NOTES ON THE APPLICATION OF DUAL MATCHED OPERATIONAL AMPLIFIERS

Advantages of Dual Monolithic Operational Amplifiers

Dual matched operational amplifiers provide the engineer with a powerful tool for designing instrumentation amplifiers and many other differential－input circuits．These designs are based on the principle that careful matching between two operational amplifiers can minimize the effect of dc errors in the individual amplifiers．
Reference to the circuit shown in Figure 6，a differential－in， differential－out amplifier，shows how the reductions in error can be accomplished．Assuming the resistors used are ideally matched， the gain of each side will be identical．If the offset voltages of each amplifier are perfectly matched，then the net differential voltage at the amplifier＇s output will be zero．Note that the output offset error of this amplifier is not a function of the offset voltage of the individual amplifiers，but only a function of the difference （degree of matching）between the amplifiers＇offset voltages．This error－cancellation principle holds for a considerable number of input referred error parameters－offset voltage，offset voltage drift，inverting and noninverting bias currents，common mode and power supply rejection ratios．Note also that the impedances of each input，both common－mode and differential－mode，are high and tightly matched，an important feature not practical with single operation amplifier circuits．

Figure 6．Differential－In，Differential－Out Amplifier

INSTRUMENTATION AMPLIFIER APPLICATIONS

Two－Op Amp Configuration

The two－op amp circuit（Figure 7）is recommended where the common－mode input voltage range is relatively limited；the common－mode and differential voltage both appear at V1．The high open－loop gain of the OP221 is very important in achieving good CMRR in this configuration．Finite open－loop gain of A1 （Ao1）causes undesired feedthrough of the common－mode input． For $\mathrm{Ad} / \mathrm{Ao}, \ll 1$ ，the common－mode error（CME）at the out－ put due to this effect is approximately（ $2 \mathrm{Ad} / \mathrm{Ao} 1$ ） x VCM．This circuit features independent adjustment of CMRR and differ－ ential gain．

Three－Op Amp Configuration

The three－op amp circuit（Figure 8）has increased common－ mode voltage range because the common－mode voltage is not amplified as it is in Figure 7．The CMR of this amplifier is directly proportional to the match of the CMR of the input op amps．CMRR can be raised even further by trimming the output stage resistors．

Figure 7．Two－Op Amp Circuit

Figure 8．Three－Op Amp Circuit

OUTLINE DIMENSIONS

8-Lead Standard Small Outline Package [SOIC]
 Narrow Body
 (RN-8)

Dimensions shown in millimeters and (inches)
 (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

