

Dual Low Power Operational Amplifier, Single or Dual Supply

OP221

FEATURES

Excellent TCV_{OS} Match, 2 μV/°C Max Low Input Offset Voltage, 150 μV Max Low Supply Current, 550 μA Max Single Supply Operation, 5 V to 30 V Low Input Offset Voltage Drift, 0.75 μV/°C High Open-Loop Gain, 1500 V/mV Min High PSRR, 3 μV/V Wide Common-Mode Voltage Range, V- to within 1.5 V of V+ Pin Compatible with 1458, LM158, LM2904 Available in Die Form

PIN CONNECTIONS

8-Lead SOIC (S-Suffix)

GENERAL DESCRIPTION

The OP221 is a monolithic dual operational amplifier that can be used either in single or dual supply operation. The wide supply voltage range, wide input voltage range, and low supply current drain of the OP221 make it well-suited for operation from batteries or unregulated power supplies.

The excellent specifications of the individual amplifiers combined with the tight matching and temperature tracking between channels

provide high performance in instrumentation amplifier designs. The individual amplifiers feature very low input offset voltage, low offset voltage drift, low noise voltage, and low bias current. They are fully compensated and protected.

Matching between channels is provided on all critical parameters including input offset voltage, tracking of offset voltage vs. temperature, non-inverting bias currents, and common-mode rejection.

SIMPLIFIED SCHEMATIC

REV. C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700 www.analog.com
Fax: 781/326-8703 © Analog Devices, Inc., 2002

胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

$\begin{tabular}{ll} \textbf{OP221-SPECIFICATIONS} & \textbf{(Electrical Characteristics at V}_s = \pm 2.5 \ V \ to \ \pm 15 \ V, \ T_A = 25 ^{\circ} C, \ unless \ otherwise \ noted.) \end{tabular}$

WWW.100Y.COM.TW N.COM.TW

D.	OP221G					
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Input Offset Voltage	Vos	CON'IL	COM	250	500	μV
Input Offset Current	Ios	$V_{CM} = 0$	1001.	1.5	7	nA
Input Bias Current	I_B	$V_{CM} = 0$	1007	70	120	nA
Input Voltage Range	IVR	$V+ = 5 V, V- = 0 V^1$ $V_S = \pm 15 V$	0/3.5 -15/13.5	OM.TV		V
Common-Mode Rejection Ratio	CMRR	$V+ = -5 \text{ V}, V- = 0 \text{ V}$ $0 \text{ V} \le \text{V}_{\text{CM}} \le 3.5 \text{ V}$ $V_{\text{S}} = \pm 15 \text{ V}$ $-15 \text{ V} \le \text{V}_{\text{CM}} \le 13.5 \text{ V}$	75 80	85 90	rw .TW	dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 2.5 \text{ V to } \pm 15 \text{ V}$ V-= 0 V, V+ = 5 V to 30 V	WWW.100	32 57	100 180	μV/V
Large-Signal Voltage Gain	Avo	$V_S = \pm 15 \text{ V}, R_L = 10 \text{ k}\Omega$ $V_O = \pm 10 \text{ V}$	800	OOY.CC	WIIM	V/m
Output Voltage Swing	Vo	V+ = 5 V, V- = 0 V $R_L = 10 kΩ$ $V_S = 15 V, R_L = 10 kΩ$	0.8/4 ±13.5	N.100X.	COM.TW	V
Slew Rate	SR	$R_{\rm L} = 10 \text{ k}\Omega^2$	0.2	0.3	OWIN	V/µS
Bandwidth	BW	WW. T100X.COM.TW	A. A.	600	T.MOM.T	kHz
Supply Current (Both Amplifiers)	I_{SY}	$V_S = \pm 2.5 \text{ V}$, No Load $V_S = \pm 15 \text{ V}$, No Load	W	550 850	650 900	μА

WWW.100Y.COM.TW WWW.100Y.COM.TW 100Y.C-2-1.TW REV. C

WWW.100Y.COM.TW

$\begin{tabular}{ll} \textbf{SPECIFICATIONS} & \textbf{(Electrical Characteristics at V}_S = \pm 2.5 \ V \ to \ \pm 15 \ V, \ -40 ^{\circ}C \le T_A \le +85 ^{\circ}C, \ unless \ otherwise \ noted.) \\ \end{tabular}$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Average Input Offset Voltage Drift ¹	TCVos	X'CON'IM MMM'	TOOX.COM	2	3	μV/°C
Input Offset Voltage	Vos	WY.COM WWW	100 Y.CO	400	700	μV
Input Offset Current	I _{OS}	$V_{CM} = 0$	W. TOON.CC	2	10	nA
Input Bias Current	I _B	$V_{CM} = 0$	W. Poor C	80	140	nA
Input Voltage Range	IVR	$V+ = 5 V, V- = 0 V^2$ $V_S = \pm 15 V$	0/3.2 -15/13.2	COM.T	N	V
Common-Mode Rejection Ratio	CMRR	$V+ = -5 \text{ V}, V- = 0 \text{ V}$ $0 \text{ V} \le \text{V}_{\text{CM}} \le 3.5 \text{ V}$ $V_{\text{S}} = \pm 15 \text{ V}$ $-15 \text{ V} \le \text{V}_{\text{CM}} \le 13.5 \text{ V}$	70 75	80 85	TW TW	dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 2.5 \text{ V to } \pm 15 \text{ V}$ V- = 0 V, V+ = 5 V to 30 V	MMM.	57 100	180 320	μV/V
Large-Signal Voltage Gain	A _{VO}	$V_S = \pm 15 \text{ V}, R_L = 10 \text{ k}\Omega$ $V_O = \pm 10 \text{ V}$	600	100 Y.C	OM.TW	V/mV
Output Voltage Swing	Vo	$V+ = 5 \text{ V}, V- = 0 \text{ V}$ $R_L = 10 \text{ k}\Omega$ $V_S = 15 \text{ V}, R_L = 10 \text{ k}\Omega$	0.9/3.7	M.100A.	COM.TW	V
Supply Current (Both Amplifiers)	I _{SY}	$V_S = \pm 2.5 \text{ V}$, No Load $V_S = \pm 15 \text{ V}$, No Load	W	600 950	750 1000	μΑ

Matching Characteristics at $V_s=\pm 15$ V, $T_A=25^{\circ}\text{C}$, unless otherwise noted.

MAIN TON COMPANY COM			Mr.	OP221G	V. POOV.C	DIAT.
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Input Offset Voltage Match	ΔV_{OS}	TW WWW.1007.	CONTA	250	600	μV
Average Noninverting Bias Current	I _B +	MITH WWW.1007	COM.TW		120	nA
Noninverting Input Offset Current	I _{os} +	OM.TW WWW.100	OY.COM.T	4	10	nA
Common-Mode Rejection Ratio Match ¹	ΔCMRR	$V_{CM} = -15 \text{ V to } 13.5 \text{ V}$	72	TW	WWW.	dB
Power Supply Rejection Ratio Match ²	ΔPSRR	$V_S = \pm 2.5 \text{ V to } \pm 15 \text{ V}$	A'TOOX'COD	I.TW M.TW	140	μV/V

NOTES

WWW.100Y.COM.TW WWW.100Y.COM.TW 100X COM 37 REV. C

²Guaranteed by CMRR test limits.

MMM.100X.COJ $^{1}\Delta CMRR$ is 20 $\log_{10}~V_{CM}/\Delta CME$, where V_{CM} is the voltage applied to both noninverting inputs and ΔCME is the difference in common-mode input-referred error. WWW.100Y.COM. ²ΔPSRR is: <u>Input-Referred Differential Error</u>

OP221—SPECIFICATIONS (Matching Characteristics at $V_s = \pm 15 \text{ V}$, $-40^{\circ}\text{C} \le T_A \le +85^{\circ}\text{C}$ for OP221G, unless otherwise noted. G is sample tested.)

				OP221G		
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Input Offset Voltage Match	ΔV_{OS}	oy.com.rw	MMM:700	400	N 800	μV
Average Noninverting Bias Current	I _B +	$V_{CM} = 0$	MAM	TOOX.COM.T	140	nA
Input Offset Voltage Tracking	ICΔV _{OS}	V.100Y.COM.TW	MMM	100 3 COM	5	μV°C
Noninverting Input Offset Current	I _{OS} +	$V_{CM} = 0$	WW	W.106 V.CO	12	nA
Common-Mode Rejection Ratio Match ¹	ΔCMRR	$V_{CM} = -15 \text{ V to } 13.2 \text{ V}$	72	80 Y.C	OM.TW OM.TW	dB
Power Supply Rejection Ratio Match ²	ΔPSRR	MAM.TOOX.COM.L	W.	140	.COM.TW	μV/V

WWW.100Y.COM.

WWW.100Y.COM.TW WWW.100Y.COM.TW THE TOWN TOWN, C-41. TW REV. C

¹ΔCMRR is 20 log₁₀ V_{CM}/ΔCME, where V_{CM} is the voltage applied to both noninverting inputs and ΔCME is the difference in common-mode input-referred error. WWW.100X.COM ²ΔPSRR is: <u>Input-Referred Differential Error</u> <u>υν)iffe</u> ΔV_S

ABSOLUTE MAXIMUM RATINGS (Note 1)

	ABSOLUTE MILAMONI KATINGS (NOIC 1)
	Supply Voltage
	Differential Input Voltage30 V or Supply Voltage
- 01	Input Voltage Supply Voltage
-1100Y.C	Output Short-Circuit Duration Indefinite
N.I.	Storage Temperature Range65°C to +150°C
2X 100 1.	Operating Temperature Range
1001	OP221G40°C to +85°C
MW.IOO	Lead Temperature (Soldering 60 sec)300°C
100	Junction Temperature (T_I)65°C to +150°C
TWW.	V.COM WWW. ON.COM. TW
10.10	
MM.	
· WW.	
W V	

Package Type	θ _{JA} (Note 2)	$\theta_{ m JC}$	Unit
8-Lead SOIC(S)	158	43	°C/W

NOTES

¹Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.

ORDERING GUIDE

$T_A = +25^{\circ}C$ $V_{OS} MAX$ (μV)	Plastic 8-Lead	Operating Temperature Range	Package Options
150	1.100 - CO	1.1	
150	VI 100 Y.	M.T.V	
300	M. CC	W	
500	W.100	$O_{M^{*T}}$	
500	100X.C	TIM	
500	OP221GS	XIND	RN-8

1. INVERTING INPUT (A)
2. NONINVERTING INPUT (A)
3. BALANCE (A)
4. V5. BALANCE (B)
6. INVERTING INPUT (B)
7. NONINVERTING INPUT (B)
8. BALANCE (B)
9. V+
10. OUT (B)
11. V+
12. OUT (A)
13. V+
14. BALANCE (A)

WWW.100Y.COM.

DIE SIZE 0.097 X 0.063 INCH, 6111 SQ. MILS (2.464 X 1.600 MM, 3.94 SQ. MM)

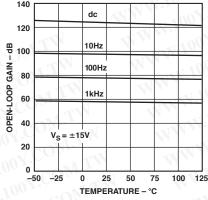
NOTE: ALL V+ PADS ARE INTERNALLY CONNECTED.

Figure 1. Dice Characteristics

rigaro I. Bioc characteri

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the OP221 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.



WWW.100Y.COM.TW

REV. C WWW.1007.COM-TW

 $^{^2\}theta_{JA}$ is specified for device soldered to printed circuit board for SOIC package.

OP221-Typical Perfomance Characteristics

B 100 OPEN-LOOP GAIN 80 60 40 20

TPC 1. Open-Loop Gain at ±15 V vs. Temperature

TPC 3. Open-Loop Gain at vs. Supply Voltage

TPC 4. Open-Loop Gain at ±15 V vs. Frequency

TPC 5. Closed-Loop Gain vs. Frequency

TPC 6. Gain and Phase Shift vs. Frequency

TPC 7. Phase Margin, Gain Bandwidth, and Slew Rate vs. Temperature

TPC 8. PSRR vs. Frequency

TPC 9. CMRR vs. Frequency

WWW.100Y.COM.TW 100V.C=64.TW REV. C

OP221

TPC 10. Maximum Output Swing vs. Frequency

TPC 13. Voltage Noise Density vs. Frequency

TPC 11. Maximum Output Voltage vs. Load Resistance

TPC 13. Current Noise Density vs. Frequency

TPC 12. Maximum Output Voltage vs. Load Resistance

REV. C

Figure 2a. Noninverting Step Response

Figure 2b. Noninverting Step Response

Figure 4. Noninverting Test Circuit WWW.100Y.COM.

Figure 3a. Inverting Step Response

Figure 3b. Inverting Step Response

Figure 5. Inverting Test Circuit WWW.100Y.COM.TW WWW.100Y.CON

WWW.100Y.COM.TW WWW.100Y.COM.TW THE TOWN CONTRACTOR REV. C

SPECIAL NOTES ON THE APPLICATION OF DUAL MATCHED OPERATIONAL AMPLIFIERS

Advantages of Dual Monolithic Operational Amplifiers

Dual matched operational amplifiers provide the engineer with a powerful tool for designing instrumentation amplifiers and many other differential-input circuits. These designs are based on the principle that careful matching between two operational amplifiers can minimize the effect of dc errors in the individual amplifiers.

Reference to the circuit shown in Figure 6, a differential-in, differential-out amplifier, shows how the reductions in error can be accomplished. Assuming the resistors used are ideally matched, the gain of each side will be identical. If the offset voltages of each amplifier are perfectly matched, then the net differential voltage at the amplifier's output will be zero. Note that the output offset error of this amplifier is not a function of the offset voltage of the individual amplifiers, but only a function of the difference (degree of matching) between the amplifiers' offset voltages. This error-cancellation principle holds for a considerable number of input referred error parameters—offset voltage, offset voltage drift, inverting and noninverting bias currents, common mode and power supply rejection ratios. Note also that the impedances of each input, both common-mode and differential-mode, are high and tightly matched, an important feature not practical with single operation amplifier circuits.

Figure 6. Differential-In, Differential-Out Amplifier

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

INSTRUMENTATION AMPLIFIER APPLICATIONS Two-Op Amp Configuration

The two-op amp circuit (Figure 7) is recommended where the common-mode input voltage range is relatively limited; the common-mode and differential voltage both appear at V1. The high open-loop gain of the OP221 is very important in achieving good CMRR in this configuration. Finite open-loop gain of A1 (Ao1) causes undesired feedthrough of the common-mode input. For Ad/Ao, << 1, the common-mode error (CME) at the output due to this effect is approximately (2 Ad/Ao1) x VCM. This circuit features independent adjustment of CMRR and differential gain.

Three-Op Amp Configuration

The three-op amp circuit (Figure 8) has increased common-mode voltage range because the common-mode voltage is not amplified as it is in Figure 7. The CMR of this amplifier is directly proportional to the match of the CMR of the input op amps. CMRR can be raised even further by trimming the output stage resistors.

Figure 7. Two-Op Amp Circuit

Figure 8. Three-Op Amp Circuit

REV. C -9-

OOY.COM.TW WWW.100Y.COM.TW **OUTLINE DIMENSIONS**

WWW.100X.COM. WW.100Y 8-Lead Standard Small Outline Package [SOIC] Narrow Body

(RN-8)

Dimensions shown in millimeters and (inches)

WWW.100Y.COM.TW **COMPLIANT TO JEDEC STANDARDS MS-012AA** CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN WWW.100Y.COM.TW

WWW.100Y.COM.TW WWW.100Y.COM.TW 100 Y.C-104 REV. C