2．7GHz，5V，Low Noise，

勝 特 力 材 料 886－3－5753170
胜特力电子（上海）86－21－34970699
胜特力电子（深圳）86－755－83298787

FGATURES

Http：／／www．100y．com．tw
－Low Noise： $1.6 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ RTI
－Low Power： 18 mA at 5 V
－Low Distortion（HD2／HD3）：
$-82 \mathrm{dBc} /-65 \mathrm{dBc}$ at $50 \mathrm{MHz}, 2 \mathrm{~V}$ P－P $-97 \mathrm{dBc} /-91 \mathrm{dBc}$ at $25 \mathrm{MHz}, 2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
－Rail－to－Rail Differential Input
－4．5V to 5．5V Supply Voltage Range
－Fully Differential Input and Output
－Adjustable Output Common Mode Voltage
－ $800 \mathrm{MHz}-3 \mathrm{~dB}$ Bandwidth with $\mathrm{A}_{\mathrm{V}}=1$
－Gain－Bandwidth Product：2．7GHz
－Low Power Shutdown
－Available in 8－Lead MSOP and 16－Lead $3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 0.75 \mathrm{~mm}$ QFN Packages

APPLICATIONS

－Differential Input ADC Driver
－Single－Ended to Differential Conversion
－Level－Shifting Ground－Referenced Signals
－Level－Shifting V_{CC}－Referenced Signals
－High－Linearity Direct Conversion Receivers

The LTC® ${ }^{\circledR} 405$ is a very low noise，low distortion，fully differential input／output amplifier optimized for 5 V ，single supply operation．The LTC6405 input common mode range is rail－to－rail，while the output common mode voltage is independently adjustable by applying a voltage on the $V_{\text {Ocm }}$ pin．This makes the LTC6405 ideal for level shifting signals with a wide common mode range for driving 12－bit to 16－bit single supply，differential input ADCs．
A 2．7GHz gain－bandwidth product results in 65dB linearity for 50MHz input signals．The LTC6405 is unity gain stable and the closed－loop bandwidth extends from DC to 800MHz． The output voltage swing extends from near－ground to 4 V ，to be compatible with a wide range of ADC converter input requirements．The LTC6405 draws only 18 mA ，and has a hardware shutdown feature which reduces current consumption to $400 \mu \mathrm{~A}$ ．
The LTC6405 is available in a compact $3 \mathrm{~mm} \times 3 \mathrm{~mm} 16$－pin leadless QFN package，as well as an 8－lead MSOP package， and operates over a $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ temperature range．
$\mathbf{\Omega T}$ ，LT，LTC and LTM are registered trademarks of Linear Technology Corporation． All other trademarks are the property of their respective owners．

TYPICAL APPLICATION

Single－Ended Input to Differential Output with Common Mode Level Shifting

Input Noise Density vs Input Common Mode Voltage

ABSOLUTE MAXIMUUM RRTINGS（Note 1）

Total Supply Vo	Specified Temperature Range（Note 5）
Input Current	LTC6405I．．$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
（＋IN，－IN，V ${ }_{\text {Ocm }}$ ，$\overline{\text { SHDN，}} \mathrm{V}_{\text {TIP }}$ ）（Note 2）．．．．．．．．．．．$\pm 10 \mathrm{~mA}$	LTC6405C ．． $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Output Short－Circuit Duration（Note 3）．．．．．．．．．．．．Indefinite	Junction Temperature ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $150^{\circ} \mathrm{C}$
Operating Temperature Range （Note 4） \qquad $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Storage Temperature Range．．．．．．．．．．．．．．．．． $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

PIn CONFIGURATION

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING＊	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE
LTC6405CMS8E\＃PBF	LTC6405CMS8E\＃TRPBF	LTDKN	8 －Lead Plastic MSOP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC6405IMS8E\＃PBF	LTC6405IMS8E\＃TRPBF	LTDKN	8 －Lead Plastic MSOP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6405CUD\＃PBF	LTC6405CUD\＃TRPBF	LDKP	16 －Lead（ $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ ）Plastic QFN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC6405IUD\＃PBF	LTC6405IUD\＃TRPBF	LDKP	16 －Lead $(3 \mathrm{~mm} \times 3 \mathrm{~mm})$ Plastic QFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges．＊The temperature grade is identified by a label on the shipping container． For more information on lead free part marking，go to：http：／／www．linear．com／leadfree／
This product is only offered in trays．For more information go to：http：／／www．linear．com／packaging／

DC ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full

operating temperature range，otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{O C M}=\mathrm{V}_{\text {ICM }}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=$ open，
circuit component values in Figure 1 used，unless otherwise noted．V_{S} is defined as $\left(V^{+}-V^{-}\right)$．$V_{\text {OUtcm }}$ is defined as $\left(V_{+0 U T}+V_{-0 U T}\right) / 2$ ．
$V_{\text {ICM }}$ is defined as $\left(V_{+I N}+V_{-I N}\right) / 2$ ．$V_{\text {OUTDIFF }}$ is defined as $\left(V_{+O U T}-V_{-O U T}\right)$ ．

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V ${ }_{\text {SDIFF }}$	Differential Offset Voltage（Input Referred）	$\begin{aligned} & V_{\text {ICM }}=5 \mathrm{~V}(\text { Note 12 }) \\ & V_{\text {ICM }}=2.5 \mathrm{~V} \\ & V_{\text {ICM }}=0 \mathrm{~V}(\text { Note 12 }) \\ & \hline \end{aligned}$	\bullet		$\begin{gathered} \pm 1 \\ \pm 0.5 \\ \pm 1 \end{gathered}$	$\begin{gathered} \pm 7 \\ \pm 3.5 \\ \pm 7 \end{gathered}$	mV mV mV
$\overline{\Delta \mathrm{V}_{\text {OSDIFF }} / \Delta \mathrm{T}}$	Differential Offset Voltage Drift（Input Referred）	$\begin{aligned} & V_{\text {ICM }}=5 \mathrm{~V}(\text { Note 12 }) \\ & V_{\text {ICM }}=2.5 \mathrm{~V} \\ & V_{\text {ICM }}=0 \mathrm{~V}(\text { Note 12 }) \end{aligned}$	\bullet		$\begin{gathered} \hline 1.5 \\ 1 \\ 3 \end{gathered}$		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current（Note 6）	$\begin{aligned} & V_{\text {ICM }}=5 \mathrm{~V} \\ & V_{\text {ICM }}=2.5 \mathrm{~V} \\ & V_{\text {ICM }}=0 \mathrm{~V} \\ & \hline \end{aligned}$	\bullet	－24	$\begin{gathered} \hline 8 \\ -7 \\ -14 \end{gathered}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Ios	Input Offset Current（Note 6）	$\begin{aligned} & V_{\text {ICM }}=5 \mathrm{~V} \\ & V_{\text {ICM }}=2.5 \mathrm{~V} \\ & V_{\text {ICM }}=0 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & \pm 0.5 \\ & \pm 0.5 \\ & \pm 0.5 \end{aligned}$	± 4	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	Common Mode Differential Mode			$\begin{aligned} & 230 \\ & 3.5 \end{aligned}$		$\mathrm{k} \Omega$ $\mathrm{k} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Differential			1		pF
e_{n}	Differential Input Referred Noise Voltage Density	$f=1 \mathrm{MHz}$ ，Not Including $\mathrm{R}_{1} / \mathrm{R}_{\mathrm{F}}$ Noise			1.6		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Noise Current Density	$\mathrm{f}=1 \mathrm{MHz}$ ，Not Including R／／RF Noise			2.4		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{e}_{\text {nVOCM }}$	Input Referred Common Mode Output Noise Voltage Density	$\mathrm{f}=1 \mathrm{MHz}$			9.5		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
VICMR（Note 7）	Input Signal Common Mode Range	Op－Amp Inputs	\bullet	V－		V^{+}	V
CMRRI （Note 8）	Input Common Mode Rejection Ratio （Input Referred）$\Delta V_{\text {ICM }} / \Delta V_{\text {OSDIFF }}$	VICM from 0 V to 5V	\bullet	50	75		dB
CMRRIO （Note 8）	Output Common Mode Rejection Ratio （Input Referred）$\Delta V_{\text {OCM }} / \Delta V_{\text {OSDIFF }}$	$\mathrm{V}_{\text {Ocm }}$ from 0.5 V to 3.9 V	\bullet	50	75		dB
PSRR （Note 9）	Differential Power Supply Rejection （ $\Delta V_{\text {S }} / \Delta V_{\text {OSDIFF }}$ ）	$\mathrm{V}_{S}=4.5 \mathrm{~V}$ to 5.5 V	\bullet	50	75		dB
PSRRCM （Note 9）	Output Common Mode Power Supply Rejection （ $\Delta \mathrm{V}_{\mathrm{S}} / \Delta \mathrm{V}_{\text {OSCM }}$ ）	$\mathrm{V}_{S}=4.5 \mathrm{~V}$ to 5.5 V	\bullet	55	70		dB
$\mathrm{G}_{\text {cm }}$	Common Mode Gain（ $\Delta \mathrm{V}_{\text {OUTCM }} / \Delta \mathrm{V}_{\text {OCm }}$ ）	$\mathrm{V}_{\text {Ocm }}$ from 0.5 V to 3.9 V	\bullet		1		V／V
$\mathrm{SG}_{\mathrm{CM}}$	Common Mode Gain Error $100 \cdot\left(\mathrm{G}_{\mathrm{Cm}}\right.$－1）	$\mathrm{V}_{\text {ocm }}$ from 0.5 V to 3.9 V	\bullet		± 0.25	± 0.8	\％
BAL	Output Balance（ $\Delta \mathrm{V}_{\text {OUTCM }} / \Delta \mathrm{V}_{\text {OUTDIFF }}$ ）	$\Delta V_{\text {OUTDIFF }}=2 \mathrm{~V}$ Single－Ended Input Differential Input	$\bullet \bullet$		$\begin{aligned} & -60 \\ & -65 \end{aligned}$	$\begin{aligned} & -40 \\ & -40 \end{aligned}$	dB dB
$\mathrm{V}_{\text {OSCM }}$	Common Mode Offset Voltage（Voutcm－ $\mathrm{V}_{\text {Ocm }}$ ）		\bullet		± 6	± 15	mV
$\Delta \mathrm{V}_{\text {OSCM }} / \Delta \mathrm{T}$	Common Mode Offset Voltage Drift		\bullet		20		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Voutcmi （Note 7）	Output Signal Common Mode Range （Voltage Range for the $\mathrm{V}_{\text {OCM }}$ Pin）		\bullet	0.5		3.9	V
R ${ }_{\text {invocm }}$	Input Resistance，V ${ }_{\text {ocm }}$ Pin		\bullet	13	19	25	k Ω
$\mathrm{V}_{\text {OCM }}$	Self－Biased Voltage at the $\mathrm{V}_{\text {OCM }}$ Pin	$\mathrm{V}_{\text {OCM }}=0$ pen	\bullet	2.35	2.5	2.65	V
V OUT	Output Voltage，High，＋OUT／－OUT Pins	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=0 \\ & \mathrm{I}_{\mathrm{L}}=-5 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{gathered} \hline 3.9 \\ 3.85 \end{gathered}$	$\begin{gathered} 4 \\ 3.95 \end{gathered}$		V
	Output Voltage，Low，＋OUT／－OUT Pins	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=0 \\ & \mathrm{~L}_{\mathrm{L}}=5 \mathrm{~mA} \end{aligned}$	\bullet		$\begin{gathered} 0.3 \\ 0.42 \end{gathered}$	$\begin{gathered} 0.4 \\ 0.54 \end{gathered}$	V
ISC	Output Short－Circuit Current，＋OUT／－OUT Pins （Note 10）		\bullet	± 40	± 60		mA

DC ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range，otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {OCM }}=\mathrm{V}_{\text {ICM }}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=$ open， circuit component values in Figure 1 used，unless otherwise noted．V_{S} is defined as $\left(V^{+}-V^{-}\right)$．$V_{\text {OUTCM }}$ is defined as $\left(V_{+ \text {OUT }}+V_{-O U T}\right) / 2$ ． $V_{\text {ICM }}$ is defined as $\left(V_{+ \text {IN }}+V_{- \text {IN }}\right) / 2 . V_{\text {OUtDIFF }}$ is defined as $\left(V_{+0 U T}-V_{-O U T}\right)$ ．

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
AVol	Large－Signal Open Loop Voltage Gain				90		dB
V_{S}	Supply Voltage Range		\bullet	4.5		5.5	V
I_{5}	Supply Current		\bullet		18	23	mA
$\overline{\text { SHDN }}$	Supply Current in Shutdown	$\mathrm{V}_{\overline{\text { SHDN }}}=0 \mathrm{~V}$	\bullet		0.4	1	mA
RडSHDN	$\overline{\text { SHDN Pull－Up Resistor }}$	$\mathrm{V}_{\text {SHDN }}=0 \mathrm{~V}$ to 0.5 V	\bullet	30	50	70	$\mathrm{k} \Omega$
VIL	$\overline{\text { SHDN }}$ Input Logic Low		\bullet	1.25	1.8		V
$\mathrm{V}_{\text {IH }}$	$\overline{\text { SHDN }}$ Input Logic High		\bullet		2	2.55	V
$\mathrm{tan}^{\text {a }}$	Turn－On Time				200		ns
toff	Turn－Off Time				50		ns

AC ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full

 operating temperature range，otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{C M}=\mathrm{V}_{O C M}=\mathrm{V}_{I C M}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {SHON }}=$ open， $R_{\text {LOAD }}=400 \Omega$ ，circuit component values in Figure 2 used，unless otherwise noted． V_{S} is defined as $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right) . \mathrm{V}_{\text {ICM }}$ is defined as $\left(\mathrm{V}_{+I N}\right.$ $\left.+V_{- \text {IN }}\right) / 2$ ．$V_{\text {OUtDiff }}$ is defined as（ $V_{+ \text {OUt }}-V_{- \text {OUt }}$ ）．| SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SR | Slew Rate | Differential Output | | 690 | | $\mathrm{V} / \mathrm{\mu S}$ |
| GBW | Gain－Bandwidth Product | $\mathrm{f}_{\text {TEST }}=27 \mathrm{MHz}$ | | 2.7 | | GHz |
| $\mathrm{f}_{-3 \mathrm{~dB}}$ | －3dB Frequency（See Figure 2） | QFN Package MSOP Package | $\begin{aligned} & 500 \\ & 400 \end{aligned}$ | $\begin{aligned} & 800 \\ & 750 \end{aligned}$ | | $\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$ |
| | 50MHz Distortion
 Differential Input， $\mathrm{V}_{\text {OUTDIFF }}=2 \mathrm{~V}_{\text {P－p }}$
 （Note 13） | $\begin{aligned} & \mathrm{V}_{0 \mathrm{OM}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V} \\ & \text { 2nd Harmonic } \\ & \text { 3rd Harmonic } \end{aligned}$ | | $\begin{aligned} & -80 \\ & -64 \end{aligned}$ | －53 | dBC dBc |
| | | $\begin{aligned} & \mathrm{V}_{\mathrm{OCM}}=2.5 \mathrm{~V}, \mathrm{~V}_{S}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=800 \Omega \\ & \text { 2nd Harmonic } \\ & \text { 3rd Harmonic } \end{aligned}$ | | $\begin{aligned} & -82 \\ & -66 \end{aligned}$ | | $\begin{aligned} & \mathrm{dBc} \\ & \mathrm{dBc} \end{aligned}$ |
| | 1 | $\begin{aligned} & \mathrm{V}_{\text {OCM }}=2.5 \mathrm{~V}, \mathrm{~V}_{S}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=800 \Omega \text {, } \\ & \mathrm{R}_{\mathrm{I}}=\mathrm{R}_{\mathrm{F}}=499 \Omega \\ & \text { 2nd Harmonic } \\ & \text { 3rd Harmonic } \end{aligned}$ | | $\begin{aligned} & -82 \\ & -64 \end{aligned}$ | | $\begin{aligned} & \text { dBo } \\ & \text { dBi } \end{aligned}$ |
| | 50MHz Distortion Single－Ended Input， $\mathrm{V}_{\text {OUTDIFF }}=2 \mathrm{~V}_{\text {P－p }}$ （Note 13） | $\begin{aligned} & \mathrm{V}_{O C M}=2.5 \mathrm{~V}, \mathrm{~V}_{S}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=800 \Omega, \\ & \mathrm{R}_{\mathrm{I}}=\mathrm{R}_{\mathrm{F}}=499 \Omega \\ & \text { 2nd Harmonic } \\ & \text { 3rd Harmonic } \end{aligned}$ | | $\begin{aligned} & -72 \\ & -77 \end{aligned}$ | | dBC dBC |
| | 3rd－Order IMD at $49.5 \mathrm{MHz}, 50.5 \mathrm{MHz}$ | $V_{\text {OUTDIFF }}=2 V_{\text {P－p }}$ Envelope， $R_{\text {LOAD }}=800 \Omega$ | | －63 | | dBC |
| | Equivalent OIP3 at 50MHz（Note 11） | $\mathrm{R}_{\text {LOAD }}=800 \Omega$ | | 35.5 | | dBm |
| $\mathrm{t}_{\text {S }}$ | Settling Time | $V_{\text {OUTDIFF }}=2 \mathrm{~V}$ Step 1\％Settling 0．1\％Settling | | $\begin{gathered} 6 \\ 11 \end{gathered}$ | | ns |
| NF | Noise Figure at 50MHz | Shunt－Terminated to $50 \Omega, \mathrm{R}_{S}=50 \Omega$ $Z_{I N}=200 \Omega\left(R_{I}=100 \Omega, R_{F}=300 \Omega\right)$ | | $\begin{gathered} \hline 14.4 \\ 7.5 \end{gathered}$ | | dB dB |

ELECTRICAL CHARACTERISTICS

Note 1：Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device．Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime．
Note 2：Input pins（＋IN，－IN， $\mathrm{V}_{\text {OCM }}, \overline{\mathrm{SHDN}}$ and $\mathrm{V}_{\text {TIP }}$ ）are protected by steering diodes to either supply．If the inputs should exceed either supply voltage，the input current should be limited to less than 10 mA ．In addition， the inputs＋IN，－IN are protected by a pair of back－to－back diodes．If the differential input voltage exceeds 1.4 V ，the input current should be limited to less than 10 mA ．
Note 3：A heat sink may be required to keep the junction temperature below the Absolute Maximum Rating when the output is shorted indefinitely．
Note 4：The LTC6405C／LTC6405I are guaranteed functional over the operating temperature range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ．
Note 5：The LTC6405C is guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ．The LTC6405C is designed，characterized，and expected to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ but is not tested or QA sampled at these temperatures．The LTC6405I is guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ．
Note 6：Input bias current is defined as the average of the input currents flowing into the inputs $(-\operatorname{IN}$ ，and $+\mathbb{I N})$ ．Input Offset current is defined as the difference between the input currents（ $I_{O S}=I_{B}{ }^{+}-I_{B}{ }^{-}$）．
Note 7：Input common mode range is tested using the test circuit of Figure 1 by taking 3 measurements of differential gain with a ± 1 VDC differential output with $\mathrm{V}_{\text {ICM }}=0 \mathrm{~V} ; \mathrm{V}_{\text {ICM }}=2.5 \mathrm{~V} ; \mathrm{V}_{\text {ICM }}=5 \mathrm{~V}$ ，verifying that the differential gain has not deviated from the $\mathrm{V}_{\text {ICM }}=2.5 \mathrm{~V}$ case by more than 0.5% ，and that the common mode offset（ $\mathrm{V}_{\text {OSCM }}$ ）has not deviated from the common mode offset at $\mathrm{V}_{\text {ICM }}=2.5 \mathrm{~V}$ by more than $\pm 35 \mathrm{mV}$ ．
The voltage range for the output common mode range is tested using the test circuit of Figure 1 by applying a voltage on the $\mathrm{V}_{\text {OCM }}$ pin and testing at both $\mathrm{V}_{\text {OCM }}=2.5 \mathrm{~V}$ and at the Electrical Characteristics table limits to verify that the common mode offset（VOSCM）has not deviated by more than $\pm 20 \mathrm{mV}$ from the $\mathrm{V}_{\text {OCM }}=2.5 \mathrm{~V}$ case．

Note 8：Input CMRR is defined as the ratio of the change in the input common mode voltage at the pins＋IN or－IN to the change in differential input referred voltage offset．Output CMRR is defined as the ratio of the change in the voltage at the $\mathrm{V}_{\text {OCM }}$ pin to the change in differential input referred voltage offset．This specification is strongly dependent on feedback ratio matching between the two outputs and their respective inputs，and it is difficult to measure actual amplifier performance．（See the＂Effects of Resistor Pair Mismatch＂in the Applications Information section of this data sheet．）For a better indicator of actual amplifier performance independent of feedback component matching，refer to the PSRR specification．
Note 9：Differential Power Supply Rejection（PSRR）is defined as the ratio of the change in supply voltage to the change in differential input referred voltage offset．Common mode power supply rejection（PSRRCM） is defined as the ratio of the change in supply voltage to the change in the common mode offset，$V_{\text {OUTCM }}$－$V_{\text {OCM }}$ ．
Note 10：Extended operation with the output shorted may cause the junction temperature to exceed the $150^{\circ} \mathrm{C}$ limit．
Note 11：Because the LTC6405 is a feedback amplifier with low output impedance，a resistive load is not required when driving an ADC．
Therefore，typical output power can be very small in many applications．In order to compare the LTC6405 with＂RF style＂amplifiers that require 50Ω load，the output voltage swing is converted to dBm as if the outputs were driving a 50Ω load．For example， $2 \mathrm{~V}_{\text {p－p }}$ output swing is equal to 10 dBm using this convention．
Note 12：Includes offset／drift induced by feedback resistors mismatch．See the Applications Information section for more details．
Note 13：QFN package only—refer to datasheet curves for MSOP package numbers．

勝 特 力 材 料 886－3－5753170
胜特力电子（上海）86－21－34970699
胜特力电子（深圳）86－755－83298787
Http：／／www． 100 y．com．tw

LTC6405

TYPICAL PERFORMANCE CHARACTERISTICS

Differential Input Referred Offset Voltage vs Temperature

6405 G 01

Differential Input Referred Offset Voltage vs Input Common Mode Voltage

6405 G02

Supply Current vs SHDN Voltage

Common Mode Offset Voltage vs Temperature

6405 G03

Shutdown Supply Current

 vs Supply Voltage

TYPICAL PERFORMANCE CHARACTERISTICS

勝 特 力 材 料 886－3－5753170胜特力 电子（上海）86－21－34970699胜特力电子（深圳）86－755－83298787

Http：／／www． $100 y$ ．com．tw

TYPICAL PERFORMAOCE CHARACTERISTICS
 （QFN Package）

$\mathrm{A}_{V}(\mathrm{~V} / \mathrm{V})$	$\mathrm{R}_{\mathrm{I}}(\Omega)$	$\mathrm{R}_{\mathrm{F}}(\Omega)$	$\mathrm{C}_{\mathrm{F}}(\mathrm{pF})$
1	200	200	1.8
2	200	400	1.5
5	200	1 k	0.6
10	200	2 k	0.2
20	200	4 k	0
100	200	20 k	0

勝 特 力材 料 886－3－5753170
胜特力电子（上海）86－21－34970699
胜特力电子（深圳）86－755－83298787
Http：／／www．100y．com．tw

TYPICAL PERFORMANCE CHARACTERISTICS
 （QFN Package）

Harmonic Distortion vs Frequency

Harmonic Distortion
vs Input Common Mode Voltage

Harmonic Distortion vs Input Common Mode Voltage

Intermodulation Distortion vs Input Common Mode Voltage

Harmonic Distortion
vs Input Amplitude

Harmonic Distortion vs Input Amplitude

Intermodulation Distortion vs Input Amplitude

LTC6405

TYPICAL PERFORMANCE CHARACTERISTICS（MSOP Package）

Harmonic Distortion

Harmonic Distortion vs Frequency

vs Input Amplitude

勝 特 力 材 料 886－3－5753170
胜特力电子（上海）86－21－34970699
胜特力电子（深圳）86－755－83298787
Http：／／www．100y．com．tw

PIn fUnctions（msopafian）

$V_{\text {ocm }}$（Pin 2／Pin 4）：Output Common Mode Reference Voltage．The voltage on $\mathrm{V}_{\mathrm{Ocm}}$ sets the output common mode voltage level（which is defined as the average of the voltages on the＋OUT and－OUT pins）．The V $\mathrm{V}_{\text {Ocm }}$ voltage is internally set by a resistive divider between the supplies， developing a default voltage potential of 2.5 V with a 5 V supply．The V Ocm pin can be over－driven by an external voltage capable of driving the $19 \mathrm{k} \Omega$ Thevenin equivalent impedance presented by the pin．The $\mathrm{V}_{\text {Ocm }}$ pin should be bypassed with a high quality ceramic bypass capacitor of at least $0.01 \mu \mathrm{~F}$ ，to minimize common mode noise from being converted to differential noise by impedance mismatches both externally and internally to the IC．

V^{+}（Pin 3／Pins 2，10，11）：

${ }^{-}$（Pin 6／Pins 3，9，12）：

Power Supply Pins．It is critical that close attention be paid to supply bypassing．For single supply applications， it is recommended that a high quality 0.1μ F surface mount ceramic bypass capacitor be placed between V^{+}and V^{-}with direct short connections．In addition， V^{-}should be tied directly to a low impedance ground plane with minimal routing．For dual（split）power supplies，itis recommended that additional high quality， $0.1 \mu \mathrm{~F}$ ceramic capacitors are used to bypass V^{+}to ground and V^{-}to ground，again with minimal routing．For driving large loads（ $<200 \Omega$ ）， additional bypass capacitance may be needed for optimal performance．Keep in mind that small geometry（e．g．， 0603 or smaller）surface mount ceramic capacitors have a much higher self resonant frequency than do leaded capacitors， and perform best in high speed applications．
＋OUT，－OUT（Pins 4，5／Pins 7，14）：Unfiltered Output Pins．Besides driving the feedback network，each pin can drive an additional 50Ω to ground with typical short circuit current limiting of $\pm 60 \mathrm{~mA}$ ．Each amplifier output
is designed to drive a load capacitance of 5pF．Larger capacitive loads should be decoupled with at least 15Ω resistors from each output．
$\mathrm{V}_{\text {TIP }}$（Pin 5）QFN Only：This pin can normally be left float－ ing．It determines which pair of input transistors（NPN or PNP or both）is sensing the input signal．The $\mathrm{V}_{\text {TIP }}$ pin is set by an internal resistive divider between the supplies， developing a default 2.8 V voltage with a 5 V supply． $\mathrm{V}_{\text {TIP }}$ has a Thevenin equivalent resistance of approximately 17 k and can be over－driven by an external voltage．The $\mathrm{V}_{\text {TIP }}$ pin should be bypassed with a high quality ceramic bypass capacitor of at least $0.01 \mu \mathrm{~F}$ ．See the Applications Information section for more details．
$\overline{\text { SHDN }}$（Pin 7／Pin 1）：When SHDN is floating or directly tied to V^{+}，the LTC6405 is in the normal（active）operat－ ing mode．When the SHDN pin is connected to V^{-}，the LTC6405 enters into a low power shutdown state with Hi－Z outputs．
＋IN，－IN（Pins 8，1／Pins 15，6）：Noninverting and Inverting Input Pins of the Amplifier，Respectively．For best perfor－ mance，it is highly recommended that stray capacitance be kept to an absolute minimum by keeping printed circuit connections as short as possible．
＋OUTF，－OUTF（Pins 8，13）QFN Only：Filtered Output Pins．These pins have a series RC network $(R=50 \Omega$ ， $\mathrm{C}=3.75 \mathrm{pF}$ ）connected between the filtered and unfiltered outputs．See the Applications Information section for more details．

NC（Pin 16）QFN Only：No Connection．This pin is not connected internally．
Exposed Pad（Pin 9／Pin 17）：Tie the bottom pad to V^{-}．If split supplies are used，DO NOT tie the pad to ground．

勝特力材料886－3－5753170胜特力电子（上海）86－21－34970699胜特力 电子（深圳） $86-755-83298787$

[^0]
BLOCK DIAGRAMS

LTC6405 Block Diagram／Pinout in MSOP Package

LTC6405 Block Diagram／Pinout in QFN Package

APPLICATIONS IOFORMATION

Functional Description

The LTC6405 is a small outline，wideband，low noise，and low distortion fully－differential amplifier with accurate output phase balancing．The LTC6405 is optimized to drive low voltage，single－supply，differential input analog－ to－digital converters（ADCs）．The LTC6405 input common mode range is rail－to－rail，while the output common mode voltage is independently adjustable by applying a voltage on the $\mathrm{V}_{\text {Ocm }}$ pin．The output voltage swing extends from near－ground to 4 V ，to be compatible with a wide range of ADC converter input requirements．This makes the LTC6405 ideal for level shifting signals with a wide common mode range for driving 12－bit to 16 －bit single supply，differential input ADCs．The differential output allows for twice the signal swing in low voltage systems when compared to single－ended output amplifiers．The balanced differential nature of the amplifier also provides even－order harmonic distortion cancellation，and less susceptibility to common
mode noise（like power supply noise）．The LTC6405 can be used as a single ended inputto differential output amplifier， or as a differential input to differential output amplifier．

The LTC6405 output common mode voltage，defined as the average of the two output voltages，is independent of the input common mode voltage，and is adjusted by applying a voltage on the $\mathrm{V}_{0<m}$ pin．If the pin is left open，there is an internal resistive voltage divider，which develops a potential of 2.5 V （if the supply is 5 V ）．It is recommended that a high quality ceramic cap is used to bypass the $\mathrm{V}_{0 \mathrm{CM}}$ pin to a low impedance ground plane．The LTC6405＇s internal common mode feedback path forces accurate output phase balancing to reduce even order harmonics， and centers each individual output about the potential set by the $\mathrm{V}_{\text {Ocm }}$ pin．

$$
V_{\text {OUTCM }}=V_{\text {OCM }}=\frac{V_{+ \text {OUT }}+V_{-O U T}}{2}
$$

＊TO OPTIMIZE THE HIGH FREQUENCY PERFORMANCE FOR THE PIN CONFIGURATION OF THE LTC6405 IN THE SMALL MSOP PACKAGE，A FEEDBACK RESISTANCE OF AT LEAST 300Ω IS RECOMMENDED．

Figure 1．DC Test Circuit

APPLICATIONS InFORMATION
The outputs（＋OUT and－OUT）of the LTC6405 are capable of swinging from close－to－ground to typically 1 V below V^{+}．They can source or sink up to approximately 60 mA of current．Each output is designed to directly drive up to 5pF to ground．Higher load capacitances should be decoupled with at least 15Ω of series resistance from each output．

Input Pin Protection

The LTC6405 input stage is protected against differential input voltages which exceed 1.4 V by two pairs of series diodes connected back to back between＋IN and－IN．In addition，the input pins have clamping diodes to either power supply．If the input pins are over－driven，the current should be limited to under 10 mA to prevent damage to the

IC．The LTC6405 also has clamping diodes to either power supply on the $\mathrm{V}_{\text {OCM }}$ ， $\mathrm{V}_{\text {TIP }}$ and SHDN pins and if driven to voltages which exceed either supply，they too，should be current limited to under 10 mA ．

SHDN Pin

The $\overline{\text { SHDN }}$ pin is a CMOS logic input with a 50 k internal pull－up resistor．Ifthe pin is driven low，the LTC6405 powers down with Hi －Z outputs．If the pin is left unconnected or driven high，the part is in normal active operation．Some care should be taken to control leakage currents at this pin to prevent inadvertently putting the LTC6405 into shutdown． The turn－on and turn－off time between the shutdown and active states are typically less than 1μ s．

Figure 2．AC Test Circuit（－3dB BW Testing）

APPLICATIONS InFORMATION

General Amplifier Applications

As levels of integration have increased and correspond－ ingly，system supply voltages decreased，there has been a need for ADCs to process signals differentially in order to maintain good signal to noise ratios．These ADCs are typically supplied from a single supply voltage which can be as low as 3 V ，and will have an optimal common mode input range of 1.25 V or 1.5 V ．The LTC6405 makes interfac－ ing to these ADCs easy，by providing both single－ended to differential conversion as well as common mode level shifting．The gain to $\mathrm{V}_{\text {OUTDIFF }}$ from $\mathrm{V}_{\text {INM }}$ and $\mathrm{V}_{\text {INP }}$ is：

$$
V_{\text {OUTDIFF }}=V_{+ \text {OUT }}-V_{-O U T} \approx \frac{R_{F}}{R_{I}} \cdot\left(V_{\text {INP }}-V_{\text {INM }}\right)
$$

Note from the above equation，the differential output volt－ age（ $\mathrm{V}_{+ \text {OUT }}-\mathrm{V}_{- \text {OUT }}$ ）is completely independent of input and output common mode voltages，or the voltage at the common mode pin．This makes the LTC6405 ideally suited forpre－amplification，level shifting and conversion of single ended signals to differential output signals in preparation for driving differential input ADCs．

Effects of Resistor Pair Mismatch

Figure 3 shows a circuit diagram which takes into consid－ eration that real world resistors will not match perfectly． Assuming infinite open loop gain，the differential output relationship is given by the equation：

$$
\begin{aligned}
& V_{\text {OUTDIFF }}=V_{+O U T}-V_{-O U T} \cong \frac{R_{F}}{R_{I}} \cdot V_{\text {INDIFF }}+ \\
& \frac{\Delta \beta}{\beta_{\text {AVG }}} \cdot V_{\text {ICM }}-\frac{\Delta \beta}{\beta_{\text {AVG }}} \cdot V_{\text {OCM }}
\end{aligned}
$$

where：
R_{F} is the average of $R_{F 1}$ ，and $R_{F 2}$ ，and R_{p} is the average of R_{11} ，and $R_{\mid 2}$ ．
β_{AVG} is defined as the average feedback factor from the outputs to their respective inputs：

$$
\beta_{A V G}=\frac{1}{2} \cdot\left(\frac{R_{l 1}}{R_{l 1}+R_{F 1}}+\frac{R_{l 2}}{R_{l 2}+R_{F 2}}\right)
$$

$\Delta \beta$ is defined as the difference in feedback factors：

$$
\Delta \beta=\frac{\mathrm{R}_{12}}{\mathrm{R}_{12}+\mathrm{R}_{\mathrm{F} 2}}-\frac{\mathrm{R}_{11}}{\mathrm{R}_{11}+\mathrm{R}_{\mathrm{F} 1}}
$$

$V_{\text {ICM }}$ is defined as the average of the two input voltages $V_{\text {INP }}$ and $\mathrm{V}_{\text {INM }}$（also called the input common mode voltage）：

$$
V_{I C M}=\frac{1}{2} \cdot\left(V_{\text {INP }}+V_{\text {INM }}\right)
$$

and $\mathrm{V}_{\text {INDIFF }}$ is defined as the difference of the input voltages：

$$
V_{\text {INDIFF }}=V_{\text {INP }}-V_{\text {INM }}
$$

$V_{\text {OCM }}$ is defined as the average of the two output voltages $V_{\text {＋OUT }}$ and $V_{-O U T}$ ：

$$
V_{O C M}=\frac{V_{+O U T}+V_{-O U T}}{2}
$$

When the feedback ratios mismatch $(\Delta \beta)$ ，common mode to differential conversion occurs．
Setting the differential input to zero（ $\mathrm{V}_{\text {INDIFF }}=0$ ），the de－ gree of common mode to differential conversion is given by the equation：

$$
V_{\text {OUTDIFF }}=V_{+ \text {OUT }}-V_{-O U T} \approx\left(V_{\text {ICM }}-V_{\text {OCM }}\right) \cdot \frac{\Delta \beta}{\beta_{\text {AVG }}}
$$

Figure 3．Real－World Application with Feedback Resistor Pair Mismatch

APPLICATIONS InFORMATION

In general，the degree of feedback pair mismatch is a source of common mode to differential conversion of both signals and noise．Using 1% resistors or better will mitigate most problems，and will provide about 34dB worst case of common mode rejection．Using 0.1% resistors will provide about 54 dB of common mode rejection．A low impedance ground plane should be used as a reference for both the input signal source and the $\mathrm{V}_{\text {OCM }}$ pin．Bypassing the $\mathrm{V}_{\text {OCM }}$ with a high quality $0.1 \mu \mathrm{~F}$ ceramic capacitor to this ground plane will further help prevent common mode signals from being converted to differential signals．
There may be concern on how feedback factor mismatch affects distortion．Feedback factor mismatch from using 1% resistors or better，has a negligible effect on distortion． However，in single supply level shifting applications where there is a voltage difference between the input common mode voltage and the output common mode voltage， resistor mismatch can make the apparent voltage offset of the amplifier appear worse than specified．

The apparent input referred offset induced by feedback factor mismatch is derived from the above equation：

$$
V_{\text {OSDIFF(APPARENT) }} \approx\left(V_{\text {ICM }}-V_{\text {OCM }}\right) \bullet \Delta \beta
$$

Using the LTC6405 in a single supply application on a single 5 V supply with 1% resistors，and the input com－ mon mode grounded，with the $\mathrm{V}_{\text {осм }}$ pin biased at 2.5 V ，the worst case DC offset can induce 25 mV of apparent offset voltage．With 0.1% resistors，the worst case apparent offset reduces to 2.5 mV ．

Input Impedance and Loading Effects

The input impedance looking into the $\mathrm{V}_{\text {INP }}$ or $\mathrm{V}_{\text {INM }}$ input of Figure 1 depends on whether or not the sources $\mathrm{V}_{\text {INP }}$ and $\mathrm{V}_{\text {INM }}$ are fully differential or not．For balanced input sources（ $\mathrm{V}_{\text {INP }}=-\mathrm{V}_{\text {INM }}$ ），the input impedance seen at either input is simply：

$$
R_{\text {INP }}=R_{\text {INM }}=R_{I}
$$

For single ended inputs，because of the signal imbalance at the input，the input impedance actually increases over
the balanced differential case．The input impedance looking into either input is：

$$
\mathrm{R}_{\mathrm{INP}}=\mathrm{R}_{\mathrm{INM}}=\frac{\mathrm{R}_{\mathrm{I}}}{\left(1-\frac{1}{2} \cdot\left(\frac{\mathrm{R}_{\mathrm{F}}}{\mathrm{R}_{I}+\mathrm{R}_{\mathrm{F}}}\right)\right)}
$$

Input signal sources with non－zero output impedances can also cause feedback imbalance between the pair of feedback networks．For the best performance，it is rec－ ommended that the input source output impedance be compensated for．If input impedance matching is required by the source，a termination resistor R1 should be chosen （see Figure 4）：

$$
\mathrm{R} 1=\frac{\mathrm{R}_{\text {INM }} \bullet \mathrm{R}_{\mathrm{S}}}{\mathrm{R}_{\text {INM }}-\mathrm{R}_{\mathrm{S}}}
$$

Figure 4．Optimal Compensation for Signal Source Impedance

According to Figure 4，the input impedance looking into the differential amp（ $\mathrm{R}_{\mathrm{INM}}$ ）reflects the single ended source case，thus：

$$
\mathrm{R}_{\text {INM }}=\frac{\mathrm{R}_{I}}{\left(1-\frac{1}{2} \cdot\left(\frac{\mathrm{R}_{F}}{\mathrm{R}_{I}+\mathrm{R}_{F}}\right)\right)}
$$

$R 2$ is chosen to equal $R 1$｜｜R_{S} ：

$$
\mathrm{R} 2=\frac{\mathrm{R} 1 \cdot \mathrm{R}_{\mathrm{S}}}{\mathrm{R} 1+\mathrm{R}_{\mathrm{S}}}
$$

LTC6405

APPLICATIONS INFORMATION

Input Common Mode Voltage Range

The LTC6405＇s input common mode voltage（ $\mathrm{V}_{\text {ICM }}$ ）is defined as the average of the two input voltages， $\mathrm{V}_{+1 \mathrm{~N}}$ ，and $\mathrm{V}_{\text {In }}$ ．At the inputs to the actual op amp，the range extends from V^{-}to V^{+}．This makes it easy to interface to a wide range of common mode signals，from ground referenced to $V_{C C}$ referenced signals．Moreover，due to external resistive divider action of the gain and feedback resistors，the effective range of signals that can be processed is even wider．The input common mode range at the op amp inputs depends on the circuit configuration（gain）， $\mathrm{V}_{0 C M}$ and V_{CM}（refer to Figure 5）．For fully differential input applications，where $\mathrm{V}_{\text {INP }}=-\mathrm{V}_{\text {INM }}$ ，the common mode input is approximately：

$$
\begin{aligned}
& V_{I C M}=\frac{V_{+I N}+V_{-I N}}{2} \approx V_{O C M} \cdot\left(\frac{R_{I}}{R_{I}+R_{F}}\right)+ \\
& V_{C M} \cdot\left(\frac{R_{F}}{R_{F}+R_{I}}\right)
\end{aligned}
$$

Figure 5．Circuit for Common Mode Range
With single ended inputs，there is an input signal compo－ nent to the input common mode voltage．Applying only $\mathrm{V}_{\text {INP }}$（setting $\mathrm{V}_{\text {INM }}$ to zero），the input common voltage is approximately：

$$
\begin{aligned}
& V_{I C M}=\frac{V_{+I N}+V_{-I N}}{2} \approx V_{O C M} \cdot\left(\frac{R_{I}}{R_{I}+R_{F}}\right)+ \\
& V_{C M} \cdot\left(\frac{R_{F}}{R_{F}+R_{I}}\right)+\frac{V_{I N P}}{2} \cdot\left(\frac{R_{F}}{R_{F}+R_{I}}\right)
\end{aligned}
$$

Use the equations above to check that the $\mathrm{V}_{\text {ICM }}$ at the op amp inputs is within range $\left(\mathrm{V}^{-}\right.$to $\left.\mathrm{V}^{+}\right)$．

Manipulating the Rail－to－Rail Input Stage with $V_{\text {TIP }}$

To achieve rail－to－rail input operation，the LTC6405 features an NPN input stage in parallel with a PNP input stage．When the input common mode voltage is near V^{+}，the NPNs are active while the PNPs are off．When the input common mode is near V^{-}，the PNPs are active while the NPNs are off．At some range in the middle，both input stages are active．This＇hand－off＇operation happens automatically．

In the QFN package，a special pin， $\mathrm{V}_{\mathrm{TIP}}$ ，is made available that can be used to manipulate the＇hand－off＇operation between the NPN and PNP input stages．By default，the $V_{\text {TIP }}$ pin is internally biased by an internal resistive divider between the supplies，developing a default 2.8 V voltage with a 5 V supply．If desired， $\mathrm{V}_{\text {TIP }}$ can be over－driven by an external voltage（the Thevenin equivalent resistance is approximately 17 k ）．

If $\mathrm{V}_{\text {TIP }}$ is pulled closer to V^{-}，the range over which the NPN input pair remains active is increased，while the range over which the PNP input pair is active is reduced．In applica－ tions where the input common mode does not come close to V^{-}，this mode can be used to further improve linearity beyond the specified performance（see Figure 6）．
If $\mathrm{V}_{\text {TIP }}$ is pulled closer to V^{+}，the range over which the PNP input pair remains active is increased，while the range over which the NPN input pair is active is reduced．In applica－ tions where the input common mode does not come close to V^{+}，this mode can be used to further improve linearity beyond the specified performance．

Figure 6．Manipulating $\mathrm{V}_{\text {TIP }}$ to Improve Harmonic Distortion

LTC6405

APPLICATIONS InFORMATION

Output Common Mode Voltage Range

The output common mode voltage is defined as the aver－ age of the two outputs：

$$
V_{\text {OUTCM }}=V_{\text {OCM }}=\frac{V_{+O U T}+V_{-O U T}}{2}
$$

The $V_{\text {OCм }}$ pin sets this average by an internal common mode feedbackloop which internally forces $\mathrm{V}_{\text {OUTCM }}=\mathrm{V}_{\text {OCM }}$ ． The output common mode range extends from 0.5 V above V^{-}to typically 1 V below V^{+}．The $\mathrm{V}_{\text {0cm }}$ voltage is internally set by a resistive divider between the supplies，developing a default voltage potential of 2.5 V with a 5 V supply．
In single supply applications，where the LTC6405 is used to interface to an ADC，the optimal common mode input range to the ADC is often determined by the ADC＇s refer－ ence．If the ADC makes a reference available for setting the input common mode voltage，it can be directly tied to the $V_{\text {OCM }}$ pin（as long as it is able to drive the $19 \mathrm{k} \Omega$ Thevenin equivalent input impedance presented by the $V_{\text {OCM }}$ pin）．
The $\mathrm{V}_{\text {OCm }}$ pin should be bypassed with a high quality ceramic bypass capacitor of at least $0.01 \mu \mathrm{~F}$ to filter any common mode noise rather than being converted to dif－ ferential noise and to prevent common mode signals on this pin from being inadvertently converted to differential signals by impedance mismatches both externally and internally to the IC．

Figure 7．LTC6405 Internal Filter Topology

勝 特 力 材 料 886－3－5753170
胜特力电子（上海）86－21－34970699
胜特力电子（深圳）86－755－83298787
Http：／／www．100y．com．tw

Output Filter Considerations and Use

Filtering at the output of the LTC6405 is often desired to provide anti－aliasing or to improve signal to noise ratio． To simplify this filtering，the LTC6405 in the QFN package includes an additional pair of differential outputs（＋OUTF and－OUTF）which incorporate an internal lowpass RC network with a -3 dB bandwidth of 850MHz（Figure 7）．

These pins each have an output resistance of 50Ω（toler－ ance $\pm 12 \%$ ）．Internal capacitances are 1.25 pF （tolerance $\pm 15 \%$ ）to V^{-}on each filtered output，plus an additional 1.25 pF （tolerance $\pm 15 \%$ ）capacitor connected between the two filtered outputs．This resistor／capacitor combination creates filtered outputs that look like a series 50Ω resistor with a 3.75 pF capacitor shunting each filtered output to AC ground，providing a -3 dB bandwidth of 850 MHz ，and a noise bandwidth of 1335 MHz ．The filter cutoff frequency is easily modified with just a few external components．To increase the cutoff frequency，simply add two equal value resistors，one between＋OUT and＋OUTF and the other between－OUT and－OUTF（Figure 8）．These resistors，in parallel with the internal 50Ω resistors，lower the overall resistance and therefore increase filter bandwidth．For example，to double the filter bandwidth，add two external 50Ω resistors to lower the series filter resistance to 25Ω ． The 3.75 pF of capacitance remains unchanged，so filter bandwidth doubles．Keep in mind，the series resistance also serves to decouple the outputs from load capacitance．

Figure 8．LTC6405 Filter Topology Modified for 2x Filter Bandwidth（Two External Resistors）

APPLICATIONS InFORMATION

The outputs of the LTC6405 are designed to drive 5 pF to ground，so care should be taken to not lower the effec－ tive impedance between＋OUT and＋OUTF or－OUT and －OUTF below 15Ω ．

To decrease filter bandwidth，add two external capacitors， one from＋OUTF to ground，and the other from－OUTF to ground．A single differential capacitor connected between ＋OUTF and－OUTF can also be used，but since it is being driven differentially it will appear at each filtered output as a single－ended capacitance of twice the value．To halve the filter bandwidth，for example，two $3.9 p F$ capacitors could be added（one from each filtered output to ground）． Alternatively，one 1.8 pF capacitor could be added between the filtered outputs，which also halves the filter bandwidth． Combinations of capacitors could be used as well；a three capacitor solution of 1.2 pF from each filtered output to ground plus a 1．2pF capacitor between the filtered outputs would also halve the filter bandwidth（Figure 9）．

Noise Considerations

The LTC6405＇s input referred voltage noise is $1.6 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ ． Its input referred current noise is $2.4 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ ．In addition to the noise generated by the amplifier，the surrounding feedback resistors also contribute noise．A noise model is shown in Figure 10．The output noise generated by both

Figure 9．LTC6405 Filter Topology Modified for 1／2x Filter Bandwidth（Three External Capacitors）
the amplifier and the feedback components is governed by the equation：

A plot of this equation，and a plot of the noise generated by the feedback components for the LTC6405 is shown in Figure 11.

Figure 10．Noise Model of the LTC6405

Figure 11．LTC6405 Output Spot Noise vs Spot Noise Contributed by Feedback Network Alone

The LTC6405＇s input referred voltage noise contributes the equivalent noise of a 155Ω resistor．When the feedback network is comprised of resistors whose values are less than this，the LTC6405＇s output noise is voltage noise dominant（see Figure 11）：

$$
e_{n o} \approx e_{n i} \bullet\left(1+\frac{R_{F}}{R_{I}}\right)
$$

Feedback networks consisting of resistors with values greater than about 200Ω will result in output noise which is resistor noise and amplifier current noise dominant．

$$
\mathrm{e}_{\mathrm{no}} \approx \sqrt{2} \cdot \sqrt{\left(\mathrm{I}_{\mathrm{n}} \cdot \mathrm{R}_{\mathrm{F}}\right)^{2}+\left(1+\frac{\mathrm{R}_{\mathrm{F}}}{\mathrm{R}_{\mathrm{I}}}\right) \cdot 4 \cdot \mathrm{k} \cdot \mathrm{~T} \cdot \mathrm{R}_{\mathrm{F}}}
$$

Lower resistorvalues（＜100 ）always result in lower noise at the penalty of increased distortion due to increased load－ ing of the feedback network on the output．Higher resistor values（but still less than $<500 \Omega$ ）will result in higher output noise，but typically improved distortion due to less loading on the output．The optimal feedback resistance for the LTC6405 runs in between 100Ω to 500Ω ．

The differential filtered outputs＋OUTF and－OUTF will have a little higher noise than the unfiltered outputs（due to the two 50Ω resistors which contribute $0.9 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ each），but can provide superior signal－to－noise due to the output noise filtering．

Layout Considerations

Because the LTC6405 is a very high speed amplifier，it is sensitive to both stray capacitance and stray inductance． In the QFN package，three pairs of power supply pins are provided to keep the power supply inductance as low as possible to prevent any degradation of amplifier 2nd harmonic performance．It is critical that close attention be paid to supply bypassing．For single supply applications it is recommended that high quality $0.1 \mu \mathrm{~F}$ surface mount ceramic bypass capacitor be placed directly between each V^{+}and V^{-}pin with direct short connections．The V^{-}pins should be tied directly to a low impedance ground plane with minimal routing．For dual（split）power supplies，it is
recommended that additional high quality， $0.1 \mu \mathrm{~F}$ ceramic capacitors are used to bypass V^{+}to ground and V^{-}to ground，again with minimal routing．For driving large loads （＜200 ），additional bypass capacitance may be needed for optimal performance．Keep in mind that small geometry （e．g．，0603）surface mount ceramic capacitors have a much higher self resonant frequency than do leaded capacitors， and perform best in high speed applications．
Any stray parasitic capacitances to ground atthe summing junctions，$+\mathbb{I N}$ and $-I \mathbb{N}$ ，should be minimized．This becomes especially true when the feedback resistor network uses resistor values $>500 \Omega$ in circuits with $R_{F}=R_{1}$ ．Always keep in mind the differential nature of the LTC6405，and that it is critical that the load impedances seen by both outputs （stray or intended），should be as balanced and symmetric as possible．This will help preserve the natural balance of the LTC6405，which minimizes the generation of even order harmonics，and improves the rejection of common mode signals and noise．
It is highly recommended that the $\mathrm{V}_{\text {OCM }}$ pin be bypassed to ground with a high quality ceramic capacitor whose value exceeds $0.01 \mu \mathrm{~F}$ ．This will help stabilize the common mode feedback loop as well as prevent thermal noise from the internal voltage divider and other external sources of noise from being converted to differential noise due to divider mismatches in the feedback networks．It is also recommended that the resistive feedback networks be comprised of 1% resistors（or better）to enhance the output common mode rejection．This will also prevent $V_{\text {OCM }}$ input referred common mode noise of the common mode amplifier path（which cannot be filtered）from being converted to differential noise，degrading the differential noise performance．

Feedback factor mismatch has a weak effect on distortion． Using 1\％or better resistors will limit any mismatch from impacting amplifier linearity．However，in single supply level shifting applications where there is a voltage differ－ ence between the input common mode voltage and the output common mode voltage，resistor mismatch can make the apparent voltage offset of the amplifier appear worse than specified．

APPLICATIONS INFORMATIOII

Interfacing the LTC6405 to A／D Converters

Rail－to－rail input and fast settling time make the LTC6405 ideal for interfacing to low voltage，single supply，differ－ ential input ADCs．The sampling process of ADCs create a sampling glitch caused by switching in the sampling capacitor on the ADC front end which momentarily＂shorts＂ the output of the amplifier as charge is transferred between the amplifier and the sampling capacitor．The amplifier must recover and settle from this load transient before this acquisition period ends for a valid representation of the input signal．In general，the LTC6405 will settle much more quickly from these periodic load impulses than from a 2 V input step，but it is a good idea to place an R－C filter network between the differential outputs of the LTC6405 and the input of the ADC to help absorb the charge injection that comes out of the ADC from the sampling process．

The capacitance of the filter network serves as a charge reservoir to provide high frequency charging during the sampling process，while the resistors of the filter network are used to dampen and attenuate any charge kickback from the ADC．The selection of the R－C time constant is trial and error for a given ADC，but the following guidelines are recommended：Choosing too large of a resistor in the decoupling network leaving insufficient settling time will create a voltage divider between the dynamic input imped－ ance of the ADC and the decoupling resistors．Choosing too small of a resistor will possibly prevent the resistor from properly dampening the load transient caused by the sampling process，prolonging the time required for settling．In 16－bit applications，this will typically require a minimum of 11 R－C time constants．It is recommended that the capacitor chosen have a high quality dielectric （such as COG multilayer ceramic）．

Figure 12．Interfacing the LTC6405 to an ADC

Attenuating and Level Shifting a Single－Ended $\pm 5 \mathrm{~V}$ Signal to a
Differential $2 V_{\text {p．p }}$ Signal at a 1.25 V Common Mode

PACKAGG DESCRIPTION

MS8E Package

8－Lead Plastic MSOP，Exposed Die Pad
（Reference LTC DWG \＃05－08－1662 Rev D）

NOTE：
1．DIMENSIONS IN MILLIMETER／（INCH）
2．DRAWING NOT TO SCALE
3．DIMENSION DOES NOT INCLUDE MOLD FLASH，PROTRUSIONS OR GATE BURRS．MOLD FLASH，PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED $0.152 \mathrm{~mm}(.006$＂）PER SIDE

4．DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152 mm （．006＂）PER SIDE
5．LEAD COPLANARITY（BOTTOM OF LEADS AFTER FORMING）SHALL BE 0．102mm（．004＂）MAX

PACKAGE DESCRIPTION

UD Package

16－Lead Plastic QFN（ $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ ）
（Reference LTC DWG \＃05－08－1691）

勝 特 力 材 料 886－3－5753170
胜特力电子（上海）86－21－34970699
胜特力 电子（深圳）86－755－83298787
Http：／／www． 100 y．com．tw

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

NOTE：
1．DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO－220 VARIATION（WEED－2）
2．DRAWING NOT TO SCALE
3．ALL DIMENSIONS ARE IN MILLIMETERS
4．DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE
MOLD FLASH．MOLD FLASH，IF PRESENT，SHALL NOT EXCEED 0.15 mm ON ANY SIDE
5．EXPOSED PAD SHALL BE SOLDER PLATED
6．SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION
ON THE TOP AND BOTTOM OF PACKAGE

DC－Coupled Level Shifting of Demodulator Output

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
$\begin{aligned} & \text { LT1993-2/LT1993-4/ } \\ & \text { LT1993-10 } \end{aligned}$	800MHz／900MHz／700MHz Low Distortion，Low Noise Differential Amplifier／ADC Driver	$A_{V}=2 V / V / A_{V}=4 V / V / A_{V}=10 V / V, N F=12.3 \mathrm{~dB} / 14.5 \mathrm{~dB} /$ $12.7 \mathrm{~dB}, \mathrm{OIP} 3=38 \mathrm{dBm} / 40 \mathrm{dBm} / 40 \mathrm{dBm}$ at 70 MHz
LT1994	Low Noise，Low Distortion Fully differential Input／Output Amplifier／Driver	Low Distortion，2V $\mathrm{P}_{\mathrm{P}-\mathrm{p}, 1 \mathrm{MHz}}-94 \mathrm{dBc}, 13 \mathrm{~mA}$ ， Low Noise： $3 n \mathrm{n} / \sqrt{\mathrm{Hz}}$
$\begin{aligned} & \text { LTC6400-8/LTC6400-14/ } \\ & \text { LTC6400-20/LTC6400-26 } \end{aligned}$	1．8GHz Low Noise，Low Distortion，Differential ADC Driver	300 MHz IF Amplifier，$A_{V}=20 \mathrm{~dB} / 26 \mathrm{~dB}$
LTC6401－8／LTC6401－14／ LTC6401－20／LTC6401－26	1．3GHz Low Noise，Low Distortion，Differential ADC Driver	140MHz IF Amplifier，$A_{V}=20 \mathrm{~dB} / 26 \mathrm{~dB}$
$\begin{aligned} & \text { LT6402-6/LT6402-12/ } \\ & \text { LT6402-20 } \end{aligned}$	300MHz／300MHz／300MHz Low Distortion，Low Noise Differential Amplifier／ADC Driver	$\begin{aligned} & A_{V}=6 \mathrm{~dB} / \mathrm{A}_{V}=12 \mathrm{~dB} / \mathrm{A}_{V}=20 \mathrm{~dB}, \mathrm{NF}=18.6 \mathrm{~dB} / 15 \mathrm{~dB} / 12.4 \mathrm{~dB}, \\ & 0 \mathrm{IP3}=49 \mathrm{dBm} / 43 \mathrm{dBm} / 51 \mathrm{dBm} \text { at } 20 \mathrm{MHz} \end{aligned}$
LTC6404－1／LTC6404－2／ LTC6404－4	600MHz Low Noise，Low Distortion，Differential ADC Driver	$1.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Noise，-90 dBc Distortion at 10MHz
LTC6406	3GHz Low Noise，3V，Rail－to－Rail Input Differential Amplifier／Driver	$1.6 \mathrm{nV} / \sqrt{\text { Hz }}$ Noise，－70dBc Distortion at $50 \mathrm{MHz}, 18 \mathrm{~mA}, 3 \mathrm{~V}$ Supply
LTC6411	Low Power Differential ADC Driver／Dual Selectable Gain Amplifier	16 mA Supply Current， $\operatorname{IMD3}=-83 \mathrm{dBC}$ at $70 \mathrm{MHz}, \mathrm{A}_{V}=1,-1$ ， or 2
$\begin{aligned} & \text { LT6600-2.5/LT6600-5/ } \\ & \text { IT6600-10/LT6600-20 } \end{aligned}$	Very Low Noise，Fully Differential Amplifier and 4th Order Filter	2．5MHz／5MHz／10MHz／20MHz Integrated Filter，3V Supply， S0－8 Package
LTC6403－1	200MHz Low Noise，Low Power Differential ADC Driver	-95 dBc Distortion at 3MHz，10．8mA Supply Current

[^0]: Http：／／www．100y．com．tw

