勝特力材 料 886－3－5753170胜特力电子（上海）86－21－34970699胜特力电子（深圳）86－755－83298787

Http：／／www．100y．com．tw

General Description

The MAX4040－MAX4044 family of micropower op amps operates from a single +2.4 V to +5.5 V supply or dual $\pm 1.2 \mathrm{~V}$ to $\pm 2.75 \mathrm{~V}$ supplies and have rail－to－rail input and output capabilities．These amplifiers provide a 90 kHz gain－bandwidth product while using only $10 \mu \mathrm{~A}$ of supply current per amplifier．The MAX4041／MAX4043 have a low－power shutdown mode that reduces supply current to less than $1 \mu \mathrm{~A}$ and forces the output into a high－imped－ ance state．The combination of low－voltage operation， rail－to－rail inputs and outputs，and ultra－low power con－ sumption makes these devices ideal for any portable／battery－powered system．
These amplifiers have outputs that typically swing to within 10 mV of the rails with a $100 \mathrm{k} \Omega$ load．Rail－to－rail input and output characteristics allow the full power－ supply voltage to be used for signal range．The combi－ nation of low input offset voltage，low input bias current， and high open－loop gain makes them suitable for low－ power／low－voltage precision applications．
The MAX4040 is offered in a space－saving 5－pin SOT23 package．All specifications are guaranteed over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range．

Applications

Battery－Powered
Systems
Portable／Battery－Powered Electronic Equipment
Digital Scales

Strain Gauges
Sensor Amplifiers
Cellular Phones
Notebook Computers PDAs

Selector Guide

PART	NO．OF AMPS	SHUTDOWN	PIN－PACKAGE
MAX4040	1	-	5－pin SOT23， 8－pin $\mu M A X / S O ~$
MAX4041	1	Yes	8－pin $\mu M A X / S O$
MAX4042	2	-	8－pin $\mu M A X / S O$ 10－pin $\mu M A X /$ 14－pin SO
MAX4043	2	Yes	14－pin SO
MAX4044	4	-	

$\mu M A X$ is a registered trademark of Maxim Integrated Products，Inc．

Features
－Single－Supply Operation Down to＋2．4V
－Ultra－Low Power Consumption：
10 1 A Supply Current per Amplifier
$1 \mu \mathrm{~A}$ Shutdown Mode（MAX4041／MAX4043）
－Rail－to－Rail Input Common－Mode Range
－Outputs Swing Rail－to－Rail
－No Phase Reversal for Overdriven Inputs
－200 V V Input Offset Voltage
－Unity－Gain Stable for Capacitive Loads up to 200pF
－90kHz Gain－Bandwidth Product
－Available in Space－Saving 5－Pin SOT23 and 8－Pin $\mu M_{A X}{ }^{\circledR}$ Packages

Ordering Information

PART	TEMP RANGE	PIN－ PACKAGE	SOT TOP MARK
MAX4040EUK－T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{SOT23-5}$	ACGF
MAX4040EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	-
MAX4040ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	-
MAX4041ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	-
MAX4041EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	-
MAX4042EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	-
MAX4042ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	-
MAX4043EUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$	-
MAX4043ESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO	-
MAX4044ESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO	-

Pin Configurations

Pin Configurations continued at end of data sheet．

Single/Dual/Quad, Low-Cost, SOT23, Micropower, Rail-to-Rail I/O Op Amps

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VCC to VEE). All Other Pins \qquad VCC + 0.3V) to (VEE-0.....6V
Output Short-Circuit Duration to $\mathrm{V}_{C C}$ or $\mathrm{V}_{E E} \ldots C o n t i n u o u s$ Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) 5-Pin SOT23 (derate $7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 571 mW 8-Pin μ MAX (derate $4.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 330 mW 8 -Pin SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 471 mW

10-Pin μ MAX (derate $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ 14-Pin SO (derate $8.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ ab	$\left.{ }^{\circ} \mathrm{C}\right)444 \mathrm{~mW}$)............. 667 mW
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
Storage Temperature Range	. $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	$+300^{\circ} \mathrm{C}$

10-Pin μ MAX (derate $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 444 mW 4-Pin SO (derate $8.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)................ 667 mW Operating Temperature Range $+150^{\circ} \mathrm{C}$ Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—TA $=\boldsymbol{+ 2 5}^{\circ} \mathbf{C}$

$\left(V_{C C}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} / 2, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{CC}}, R_{\mathrm{L}}=100 \mathrm{k} \Omega\right.$ tied to $\mathrm{V}_{\mathrm{CC}} / 2$, unless otherwise noted. $)$

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
Supply-Voltage Range	VCC	Inferred from PSRR test			2.4		5.5	V
Supply Current per Amplifier	ICC	$\mathrm{V}_{\mathrm{CC}}=2.4 \mathrm{~V}$				10		$\mu \mathrm{A}$
		$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}$				14	20	
Shutdown Supply Current per Amplifier	ICC(SHDN)	$\begin{aligned} & \text { SHDN }=\text { VEE, MAX4041 } \\ & \text { and MAX4043 only } \end{aligned}$	V CC $=2.4 \mathrm{~V}$			1.0		$\mu \mathrm{A}$
			V CC $=5.0 \mathrm{~V}$			2.0	5.0	
Input Offset Voltage	Vos	$\mathrm{V}_{\mathrm{EE}} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}_{\text {CC }}$	MAX4044ESD			± 0.20	± 2.0	mV
			MAX404_EU_			± 0.25	± 2.5	
			All other packages			± 0.20	± 1.50	mV
Input Bias Current	IB	(Note 1)				± 2	± 10	nA
Input Offset Current	Ios	(Note 1)				± 0.5	± 3.0	nA
Differential Input Resistance	RIN(DIFF)	$\left\|\mathrm{V}_{\text {IN }+}-\mathrm{V}_{\text {IN- }}\right\|<1.0 \mathrm{~V}$				45		$\mathrm{M} \Omega$
		$\mid \mathrm{V}_{\text {IN }+}-\mathrm{V}_{\text {IN }}$ - $\mid>2.5 \mathrm{~V}$				4.4		$\mathrm{k} \Omega$
Input Common-Mode Voltage Range	VCM	Inferred from the CMRR test			VEE		VCC	V
Common-Mode Rejection Ratio	CMRR	$\mathrm{V}_{\mathrm{EE}} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}_{\text {CC }}$	MAX404_EU_		65	94		dB
			All other	kages	70	94		
Power-Supply Rejection Ratio	PSRR	$2.4 \mathrm{~V} \leq \mathrm{V}_{\text {cc }} \leq 5.5 \mathrm{~V}$			75	85		dB
Large-Signal Voltage Gain	Avol	$($ VEE $+0.2 \mathrm{~V}) \leq$ VOUT $\leq(\mathrm{VCC}-0.2 \mathrm{~V})$		$\mathrm{RL}=100 \mathrm{k} \Omega$		94		dB
				$R \mathrm{~L}=25 \mathrm{k} \Omega$	74	85		
Output Voltage Swing High	VOH	Specified as IVCC - VOH		$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$		10		mV
				$R \mathrm{~L}=25 \mathrm{k} \Omega$		60	90	
Output Voltage Swing Low	Vol	Specified as $\mathrm{V}_{\text {EE }}$ - Vol		$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$		10		mV
				$\mathrm{RL}=25 \mathrm{k} \Omega$		40	60	
Output Short-Circuit Current	IOUT(SC)	Sourcing				0.7	,	mA
		Sinking				2.5		
Channel-to-Channel Isolation		Specified at DC, MAX4042/MAX4043/MAX4044 only				80		dB

Single/Dual/Quad, Low-Cost, SOT23, Micropower, Rail-to-Rail I/O Op Amps

ELECTRICAL CHARACTERISTICS-TA $=\mathbf{+ 2 5}^{\circ} \mathbf{C}$ (continued)

$\left(\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{VEE}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{VCM}=0 \mathrm{~V}, \mathrm{VOUT}=\mathrm{VCC} / 2, \overline{\mathrm{SHDN}}=\mathrm{VCC}_{\mathrm{C}}, \mathrm{RL}=100 \mathrm{k} \Omega\right.$ tied to $\mathrm{VCC} / 2$, unless otherwise noted. $)$

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Output Leakage Current in Shutdown	Iout(SHDN)	$\overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{EE}}=0, \mathrm{MAX} 4041 / \mathrm{MAX4043}$ only (Note 2)	20	100	nA
$\overline{\text { SHDN }}$ Logic Low	VIL	MAX4041/MAX4043 only		$\times \mathrm{V}$ CC	V
$\overline{\text { SHDN }}$ Logic High	V_{IH}	MAX4041/MAX4043 only	$0.7 \times \mathrm{VCC}$		V
$\overline{\text { SHDN }}$ Input Bias Current	IIH, IIL	MAX4041/MAX4043 only	40	120	nA
Gain Bandwidth Product	GBW		90		kHz
Phase Margin	Φ_{m}		68		degrees
Gain Margin	Gm		18		dB
Slew Rate	SR		40		V/ms
Input Voltage Noise Density	e_{n}	$\mathrm{f}=1 \mathrm{kHz}$	70		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Current Noise Density	in	$\mathrm{f}=1 \mathrm{kHz}$	0.05		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Capacitive-Load Stability		AvCL $=+1 \mathrm{~V} / \mathrm{N}$, no sustained oscillations	200		pF
Power-Up Time	ton		200		$\mu \mathrm{s}$
Shutdown Time	tSHDN	MAX4041 and MAX4043 only	50		$\mu \mathrm{s}$
Enable Time from Shutdown	ten	MAX4041 and MAX4043 only	150		$\mu \mathrm{s}$
Input Capacitance	CIN		3		pF
Total Harmonic Distortion	THD	$\mathrm{fIN}=1 \mathrm{kHz}$, VOUT $=2 \mathrm{Vp}-\mathrm{p}, \mathrm{AV}=+1 \mathrm{~V} / \mathrm{V}$	0.05		\%
Settling Time to 0.01\%	ts	$\mathrm{AV}=+1 \mathrm{~V} / \mathrm{V}, \mathrm{V}$ OUT $=2 \mathrm{~V}$ STEP	50		$\mu \mathrm{s}$

ELECTRICAL CHARACTERISTICS-TA = TMIN to Tmax

$\left(V_{C C}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{C M}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{C C} / 2, \overline{\mathrm{SHDN}}=\mathrm{V}_{C C}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega\right.$ tied to $\mathrm{V}_{C C} / 2$, unless otherwise noted.) (Note 3)

Single/Dual/Quad, Low-Cost, SOT23, Micropower, Rail-to-Rail I/O Op Amps

ELECTRICAL CHARACTERISTICS—TA = TMIN to TMAX (continued)

$\left(\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{VEE}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{VCM}=0 \mathrm{~V}, \mathrm{VOUT}=\mathrm{VCC} / 2, \overline{\mathrm{SHDN}}=\mathrm{VCC}, \mathrm{RL}=100 \mathrm{k} \Omega\right.$ tied to $\mathrm{VCC} / 2$, unless otherwise noted.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Input Common-Mode Voltage Range	VCM	Inferred from the CMRR test		Vee		VCC	V
Common-Mode	CMRR	$\mathrm{V}_{\mathrm{EE}} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}_{\mathrm{CC}}$	MAX404_EU_	60			dB
Rejection Ratio			All other packages	65			
Power-Supply Rejection Ratio	PSRR	$2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$		70			dB
Large-Signal Voltage Gain	Avol	$\left(\mathrm{VEE}^{+}+0.2 \mathrm{~V}\right) \leq \mathrm{VOUT} \leq(\mathrm{VCC}-0.2 \mathrm{~V}), \mathrm{RL}=25 \mathrm{k} \Omega$		68			dB
Output Voltage Swing High	VOH	Specified as $\left\|V_{C C}-V_{O H}\right\|, R_{L}=25 \mathrm{k} \Omega$				125	mV
Output Voltage Swing Low	VOL	Specified as $\left\|V_{E E}-V_{O L}\right\|, R L=25 \mathrm{k} \Omega$				75	mV

Note 1: Input bias current and input offset current are tested with $\mathrm{VCC}_{C}=+5.0 \mathrm{~V}$ and $+0.5 \mathrm{~V} \leq \mathrm{VCM} \leq+4.5 \mathrm{~V}$.
Note 2: Tested for $V_{E E} \leq V_{O U T} \leq V C C$. Does not include current through external feedback network.
Note 3: All devices are 100% tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. All temperature limits are guaranteed by design.

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CC}} / 2, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{RL}=100 \mathrm{k} \Omega\right.$ to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Single/Dual/Quad, Low-Cost, SOT23, Micropower, Rail-to-Rail I/O Op Amps

Typical Operating Characteristics (continued)
$\left(\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{CC}} / 2, \overline{\mathrm{SHDN}}=\mathrm{VCC}_{\mathrm{C}}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega\right.$ to $\mathrm{VCC}_{C C} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

INPUT BIAS CURRENT vs. COMMON-MODE VOLTAGE (VCC $=5.5 \mathrm{~V}$)

OUTPUT SWING LOW vs. TEMPERATURE

INPUT BIAS CURRENT vs. COMMON-MODE VOLTAGE (VCC = 2.4V)

OUTPUT SWING HIGH
vs. TEMPERATURE

COMMON-MODE REJECTION vs. TEMPERATURE

Single/Dual/Quad, Low-Cost, SOT23, Micropower, Rail-to-Rail I/O Op Amps

Typical Operating Characteristics (continued)
$\left(V_{C C}=+5.0 V, V_{E E}=0, V_{C M}=V_{C C} / 2, \overline{S H D N}=V_{C C}, R_{L}=100 \mathrm{k} \Omega\right.$ to $V_{C C} / 2, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

GAIN AND PHASE vs. FREQUENCY

Single/Dual/Quad, Low-Cost, SOT23, Micropower, Rail-to-Rail I/O Op Amps

Typical Operating Characteristics (continued)

$\left(V_{C C}=+5.0 \mathrm{~V}, \mathrm{~V}_{E E}=0, \mathrm{~V}_{C M}=\mathrm{V}_{C C} / 2, \overline{\mathrm{SHDN}}=\mathrm{V}_{C C}, R_{L}=100 \mathrm{k} \Omega\right.$ to $\mathrm{V}_{C C} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

TOTAL HARMONIC DISTORTION PLUS NOISE
vs. FREQUENCY

SMALL-SIGNAL TRANSIENT RESPONSE
(NONINVERTING)

SMALL-SIGNAL TRANSIENT RESPONSE (INVERTING)

LARGE-SIGNAL TRANSIENT RESPONSE
(NONINVERTING)

$100 \mu \mathrm{~s} / \mathrm{div}$

LARGE-SIGNAL TRANSIENT RESPONSE (INVERTING)

$100 \mu \mathrm{~s} / \mathrm{div}$

Pin Description

PIN							NAME	FUNCTION
MAX4040		MAX4041	MAX4042	MAX4043		MAX4044		
SOT23-5	SO/MMAX			$\mu \mathrm{MAX}$	SO			
1	6	6	-	-	-	-	OUT	Amplifier Output. High impedance when in shutdown mode.
2	4	4	4	4	4	11	VEE	Negative Supply. Tie to ground for single-supply operation.
3	3	3	-	-	-	-	IN+	Noninverting Input
4	2	2	-	-	-	-	IN-	Inverting Input
5	7	7	8	10	14	4	VCC	Positive Supply
-	1, 5, 8	1,5	-	-	$\begin{aligned} & 5,7, \\ & 8,10 \end{aligned}$	-	N.C.	No Connection. Not internally connected.
-	-	8	-	-	-	-	$\overline{\text { SHDN }}$	Shutdown Input. Drive high, or tie to V_{CC} for normal operation. Drive to V_{EE} to place device in shutdown mode.
-	-	-	1, 7	1,9	1,13	1,7	OUTA, OUTB	Outputs for Amplifiers A and B. High impedance when in shutdown mode.
-	-	-	2, 6	2, 8	2, 12	2, 6	INA-, INB-	Inverting Inputs to Amplifiers A and B
-	-		3, 5	3, 7	3, 11	3, 5	$\begin{aligned} & \text { INA+, } \\ & \text { INB+ } \end{aligned}$	Noninverting Inputs to Amplifiers A and B
-	-	-	-	5,6	6, 9	-	$\frac{\overline{\mathrm{SHDNA}}}{\overline{\mathrm{SHDNB}}}$	Shutdown Inputs for Amplifiers A and B. Drive high, or tie to Vcc for normal operation. Drive to VEE to place device in shutdown mode.
-	-	-	-	-	-	8, 14	OUTC, OUTD	Outputs for Amplifiers C and D
-	-	-	-	-	-	9,13	INC-, IND-	Inverting Inputs to Amplifiers C and D
-	-	-	-	-	-	10, 12	$\begin{aligned} & \text { INC+, } \\ & \text { IND+ } \end{aligned}$	Noninverting Inputs to Amplifiers C and D

Detailed Description

Rail-to-Rail Input Stage

The MAX4040-MAX4044 have rail-to-rail inputs and rail-to-rail output stages that are specifically designed for low-voltage, single-supply operation. The input stage consists of separate NPN and PNP differential stages, which operate together to provide a commonmode range extending to both supply rails. The crossover region of these two pairs occurs halfway between VCC and VEE. The input offset voltage is typically $200 \mu \mathrm{~V}$. Low operating supply voltage, low supply current, rail-to-rail common-mode input range, and rail-to-rail outputs make this family of operational amplifiers
an excellent choice for precision or general-purpose, low-voltage battery-powered systems.
Since the input stage consists of NPN and PNP pairs, the input bias current changes polarity as the commonmode voltage passes through the crossover region. Match the effective impedance seen by each input to reduce the offset error caused by input bias currents flowing through external source impedances (Figures 1 a and 1b). The combination of high source impedance plus input capacitance (amplifier input capacitance plus stray capacitance) creates a parasitic pole that produces an underdamped signal response. Reducing input capacitance or placing a small capacitor across the feedback resistor improves response in this case.

Single/Dual/Quad, Low-Cost, SOT23, Micropower, Rail-to-Rail I/O Op Amps

Figure 1a. Minimizing Offset Error Due to Input Bias Current (Noninverting)

Figure 1b. Minimizing Offset Error Due to Input Bias Current (Inverting)

The MAX4040-MAX4044 family's inputs are protected from large differential input voltages by internal $2.2 \mathrm{k} \Omega$ series resistors and back-to-back triple-diode stacks across the inputs (Figure 2). For differential input voltages (much less than 1.8 V), input resistance is typically $45 \mathrm{M} \Omega$. For differential input voltages greater than 1.8 V , input resistance is around $4.4 \mathrm{k} \Omega$, and the input bias current can be approximated by the following equation:

$$
\mathrm{IBIAS}=(\mathrm{VDIFF}-1.8 \mathrm{~V}) / 4.4 \mathrm{k} \Omega
$$

In the region where the differential input voltage approaches 1.8 V , the input resistance decreases exponentially from $45 \mathrm{M} \Omega$ to $4.4 \mathrm{k} \Omega$ as the diode block begins conducting. Conversely, the bias current increases with the same curve.

Rail-to-Rail Output Stage
The MAX4040-MAX4044 output stage can drive up to a $25 \mathrm{k} \Omega$ load and still swing to within 60 mV of the rails. Figure 3 shows the output voltage swing of a MAX4040 configured as a unity-gain buffer, powered from a single +4.0 V supply voltage. The output for this setup typically swings from ($\mathrm{VEE}+10 \mathrm{mV}$) to $(\mathrm{VCC}-10 \mathrm{mV})$ with a $100 \mathrm{k} \Omega$ load.
_ Applications Information

Power-Supply Considerations

The MAX4040-MAX4044 operate from a single +2.4 V to +5.5 V supply (or dual $\pm 1.2 \mathrm{~V}$ to $\pm 2.75 \mathrm{~V}$ supplies) and consume only $10 \mu \mathrm{~A}$ of supply current per amplifier. A high power-supply rejection ratio of 85 dB allows the amplifiers to be powered directly off a decaying battery voltage, simplifying design and extending battery life.

Power-Up Settling Time The MAX4040-MAX4044 typically require 200μ s to power up after VCC is stable. During this start-up time, the output is indeterminant. The application circuit should allow for this initial delay.

Figure 2. Input Protection Circuit

Single/Dual/Quad, Low-Cost, SOT23, Micropower, Rail-to-Rail I/O Op Amps

Figure 3. Rail-to-Rail Input/Output Voltage Range

Shutdown Mode

The MAX4041 (single) and MAX4043 (dual) feature a low-power shutdown mode. When the shutdown pin (SHDN) is pulled low, the supply current drops to $1 \mu \mathrm{~A}$ per amplifier, the amplifier is disabled, and the outputs enter a high-impedance state. Pulling SHDN high or leaving it floating enables the amplifier. Take care to ensure that parasitic leakage current at the $\overline{\text { SHDN }}$ pin does not inadvertently place the part into shutdown mode when SHDN is left floating. Figure 4 shows the output voltage response to a shutdown pulse. The logic threshold for SHDN is always referred to VCC / 2 (not to GND). When using dual supplies, pull SHDN to VEE to enter shutdown mode.

Load-Driving Capability

The MAX4040-MAX4044 are fully guaranteed over temperature and supply voltage to drive a maximum resistive load of $25 \mathrm{k} \Omega$ to $\mathrm{Vcc} / 2$, although heavier loads can be driven in many applications. The rail-to-rail output stage of the amplifier can be modeled as a current source when driving the load toward VCC , and as a current sink when driving the load toward VEE. The magnitude of this current source/sink varies with supply voltage, ambient temperature, and lot-to-lot variations of the units.
Figures 5 a and 5 b show the typical current source and sink capability of the MAX4040-MAX4044 family as a function of supply voltage and ambient temperature. The contours on the graph depict the output current value, based on driving the output voltage to within $50 \mathrm{mV}, 100 \mathrm{mV}$, and 200 mV of either power-supply rail.

Figure 4. Shutdown Enable/Disable Output Voltage

Figure 5a. Output Source Current vs. Temperature

Figure 5b. Output Sink Current vs. Temperature

Single/Dual/Quad, Low-Cost, SOT23, Micropower, Rail-to-Rail I/O Op Amps

For example, a MAX4040 running from a single +2.4 V supply, operating at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, can source $240 \mu \mathrm{~A}$ to within 100 mV of VCC and is capable of driving a $9.6 \mathrm{k} \Omega$ load resistor to VEE:

$$
R_{L}=\frac{2.4 \mathrm{~V}-0.1 \mathrm{~V}}{240 \mu \mathrm{~A}}=9.6 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{EE}}
$$

The same application can drive a $4.6 \mathrm{k} \Omega$ load resistor when terminated in $\mathrm{VCC}_{\mathrm{C}} / 2(+1.2 \mathrm{~V}$ in this case).

Driving Capacitive Loads

The MAX4040-MAX4044 are unity-gain stable for loads up to 200pF (see Load Resistor vs. Capacitive Load graph in Typical Operating Characteristics). Applications that require greater capacitive drive capability should use an isolation resistor between the output and the capacitive load (Figures $6 \mathrm{a}-6 \mathrm{c}$). Note that this alternative results in a loss of gain accuracy because RISO forms a voltage divider with the load resistor.

Power-Supply Bypassing and Layout The MAX4040-MAX4044 family operates from either a single +2.4 V to +5.5 V supply or dual $\pm 1.2 \mathrm{~V}$ to $\pm 2.75 \mathrm{~V}$ supplies. For single-supply operation, bypass the power supply with a 100 nF capacitor to VEE (in this case GND). For dual-supply operation, both the VCC and VEE supplies should be bypassed to ground with separate 100nF capacitors.
Good PC board layout techniques optimize performance by decreasing the amount of stray capacitance at the op amp's inputs and output. To decrease stray capacitance, minimize trace lengths by placing external components as close as possible to the op amp. Surface-mount components are an excellent choice.

Using the MAX4040-MAX4044 as Comparators

Although optimized for use as operational amplifiers, the MAX4040-MAX4044 can also be used as rail-to-rail I/O comparators. Typical propagation delay depends on the input overdrive voltage, as shown in Figure 7. External hysteresis can be used to minimize the risk of output oscillation. The positive feedback circuit, shown in Figure 8, causes the input threshold to change when the output voltage changes state. The two thresholds create a hysteresis band that can be calculated by the following equations:

$$
\begin{aligned}
V_{H Y S T}= & V_{H I}-V_{L O} \\
V_{L O}= & V_{I N} \times R 2 /(R 1+(R 1 \times R 2 / R H Y S T)+R 2) \\
V_{H I}= & {\left[\left(R 2 / R 1 \times V_{I N}\right)+(R 2 / R H Y S T) \times V_{C C}\right] / } \\
& (1+R 1 / R 2+R 2 / R H Y S T)
\end{aligned}
$$

Figure 6a. Using a Resistor to Isolate a Capacitive Load from the Op Amp

Figure 6b. Pulse Response without Isolating Resistor

Figure 6c. Pulse Response with Isolating Resistor

Single/Dual/Quad, Low-Cost, SOT23, Micropower, Rail-to-Rail I/O Op Amps

Figure 7. Propagation Delay vs. Input Overdrive

The MAX4040-MAX4044 contain special circuitry to boost internal drive currents to the amplifier output stage. This maximizes the output voltage range over which the amplifiers are linear. In an open-loop comparator application, the excursion of the output voltage is so close to the supply rails that the output stage transistors will saturate, causing the quiescent current to increase from the normal $10 \mu \mathrm{~A}$. Typical quiescent currents increase to $35 \mu \mathrm{~A}$ for the output saturating at VCC and $28 \mu \mathrm{~A}$ for the output at V_{EE}.

Using the MAX4040-MAX4044

 as Ultra-Low-Power Current Monitors The MAX4040-MAX4044 are ideal for applications powered from a battery stack. Figure 9 shows an application circuit in which the MAX4040 is used for monitoring the current of a battery stack. In this circuit, a current load is applied, and the voltage drop at the battery terminal is sensed.The voltage on the load side of the battery stack is equal to the voltage at the emitter of Q1, due to the feedback loop containing the op amp. As the load current increases, the voltage drop across R1 and R2 increases. Thus, R2 provides a fraction of the load current (set by the ratio of R1 and R2) that flows into the emitter of the PNP transistor. Neglecting PNP base current, this current flows into R3, producing a ground-referenced voltage proportional to the load current. Scale R1 to give a voltage drop large enough in comparison to Vos of the op amp, in order to minimize errors.
The output voltage of the application can be calculated using the following equation:

$$
\text { VOUT }=[\text { LLOAD } \times(R 1 / R 2)] \times R 3
$$

Figure 8. Hysteresis Comparator Circuit

Figure 9. Current Monitor for a Battery Stack

For a 1 V output and a current load of 50 mA , the choice of resistors can be $\mathrm{R} 1=2 \Omega, \mathrm{R} 2=100 \mathrm{k} \Omega, \mathrm{R} 3=1 \mathrm{M} \Omega$. The circuit consumes less power (but is more susceptible to noise) with higher values of R1, R2, and R3.

Single/Dual/Quad, Low-Cost, SOT23, Micropower, Rail-to-Rail I/O Op Amps

Pin Configurations (continued)

TOP VIEW

Single/Dual/Quad, Low-Cost, SOT23, Micropower, Rail-to-Rail I/O Op Amps

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

TDP VIEW

SIDE VIEW

FRINT VIEW
NaTES:
ALL DIMENSIDNS ARE IN MILLIMETERS.
Foot lengit measured at intercept paint between
DATUM A \& LEAD SURFACE.
3. PACKAGE GUTLINE EXCLUSIVE DF MLLD FLASH \& METAL BURR. MLLD

FLASH, PRITRUSIDN \quad R METAL BURR SHDULD NDT EXCEED 0.25 MM .
4. PACKAGE QUTLINE INCLUSIVE OF SULDER PLATING.
5. MEETS JEDEC MO178, VARIATION AA.
6. LEADS TI BE CDPLANAR WITHIN 0.10 mm .
7. SDLDER THICKNESS MEASURED AT FLAT SECTIDN DF LEAD BETWEEN 0.08 mm AND 0.15 mm FRDM LEAD TIP.

Single/Dual/Quad, Low-Cost, SOT23, Micropower, Rail-to-Rail I/O Op Amps

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

（The package drawing（s）in this data sheet may not reflect the most current specifications．For the latest package outline information go to www．maxim－ic．com／packages．）

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product．No circuit patent licenses are implied．Maxim reserves the right to change the circuitry and specifications without notice at any time．

