Http://www.100

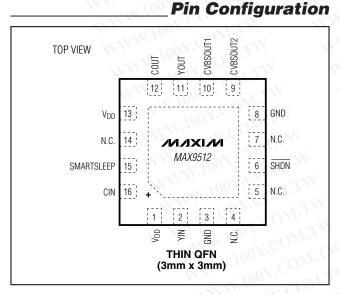
## Video Filter Amplifier with SmartSleep and Y/C Mixer Circuit

## **General Description**

The MAX9512 video filter amplifier with SmartSleep and Y/C mixer is ideal for portable media players (PMPs), portable DVD players, and set-top boxes (STBs). The inputs can be directly connected to the digital-to-analog converter (DAC) outputs. The dual reconstruction filters remove high-frequency signals above 6.75MHz. The Y/C-to-CVBS mixer creates a composite video signal from luma and chroma. The four amplifiers each have 6dB of gain. The outputs can be DC-coupled to a load of 75 $\Omega$ , which is equivalent to two video loads, or AC-coupled to a load of 150 $\Omega$ .

The SmartSleep circuitry intelligently reduces power consumption based on the presence of the input signal and the output loads. When the MAX9512 does not detect the presence of sync on luma, the supply current is reduced to less than  $7\mu A$ . The device only enables a video amplifier when there is an active video input signal and an attached load. The video amplifier remains on while a load is connected. If the load is disconnected, the video amplifier is turned off.

The MAX9512 operates from a 2.7V to 3.6V single supply and is offered in a small, 16-pin TQFN (3mm x 3mm) package. The device is specified over the -40°C to +125°C automotive temperature range.


### **Applications**

Portable Media Players (PMPs)

Set-Top Boxes (STBs)
Portable Applications

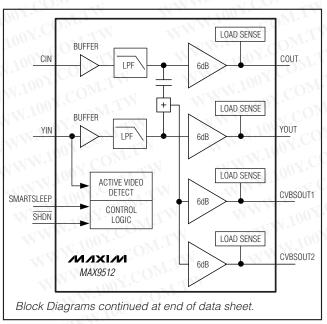
Portable DVD Players

## COM.TW



### **Features**

- SmartSleep Feature Detects Input Signal and Output Load Status to Reduce Power Consumption
- ♦ Dual Standard-Definition Video Reconstruction Filters with 6.75MHz Passband
- ♦ Luma and Chroma Inputs
- ♦ Y/C-to-CVBS Mixer
- ◆ Luma, Chroma, and Two Composite Outputs
- Supports Two Video Loads at Each Output (DC-Coupled)
- ♦ 2.7V to 3.6V Single-Supply Operation


## **Ordering Information**

| PART        | PIN-PACKAGE                | TOP MARK |
|-------------|----------------------------|----------|
| MAX9512ATE+ | 16 TQFN-EP*<br>(3mm x 3mm) | AEN      |

**Note:** All devices specified over the -40°C to +125°C operating temperature range.

- +Denotes lead(Pb)-free/RoHS-compliant package.
- \*EP = Exposed pad.

## Block Diagrams



M/IXI/N/

Maxim Integrated Products

## **ABSOLUTE MAXIMUM RATINGS**

| OM. COM.                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ABSOLUTE MAXIMUM RATINGS                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                     |
| (All voltages referenced to GND)  VDD0.3V to +4V  CIN, YIN, SMARTSLEEP, SHDN0.3V to +4V  Duration of COUT, YOUT, CVBSOUT1, CVBSOUT2  Short Circuit to VDD or GNDContinuous  Continuous Input Current  CIN, YIN, SMARTSLEEP, SHDN±20mA | Continuous Power Dissipation (T <sub>A</sub> = +70°C)  16-Pin TQFN-EP (derate 15.6mW/°C above +70°C)1250mW  Operating Temperature Range40°C to +125°C  Junction Temperature+150°C  Storage Temperature Range65°C to +150°C  Lead Temperature (soldering, 10s)+300°C |

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## **ELECTRICAL CHARACTERISTICS**

(VDD = VSHDN = 3.3V, VSMARTSLEEP = GND = 0V. RL = No load. TA = TMIN to TMAX, unless otherwise noted. Typical values are at  $T_A = +25^{\circ}C.$ ) (Note 1)

| PARAMETER                    | SYMBOL          | 1.100 X.CO                | CONDITIO                                      | NS W                                          | MIN   | TYP      | MAX      | UNITS             |
|------------------------------|-----------------|---------------------------|-----------------------------------------------|-----------------------------------------------|-------|----------|----------|-------------------|
| Supply Voltage Range         | V <sub>DD</sub> | Guaranteed b              | y PSRR                                        | MMM                                           | 2.7   | Cor      | 3.6      | V                 |
|                              |                 | YIN = 0.3V, CI            | N = 0.6V                                      | WW                                            |       | 13       | 16       | mA                |
| Supply Current               | I <sub>DD</sub> | SMARTSLEEP video signal   | = V <sub>DD</sub> , YIN                       | has no active                                 | NW.10 | 7.CO     | 14       |                   |
|                              | LM<br>M         |                           |                                               | has a black-burst<br>at GND (Note 2)          | WW.T  | 10017.C  | OM.T     | μΑ                |
| Shutdown Supply Current      | ISHDN           | VSHDN = GND               | 001.00                                        | TIM                                           | NY    | 0.01     | 10       | μΑ                |
| SMARTSLEEP CHARACTERIST      | ICS             | MM                        | UOJ.Co.                                       | WILL                                          | MM.   | ×1 100 Y |          | TW                |
| Minimum Line Frequency       | VI.             | YIN.                      | L. CO                                         | T.W.                                          | 14.3  | 100      | Y.Con    | kHz               |
| Sync Slice Level             | 11.1            | YIN                       | Jun Z C                                       | $O_{M}$ ,                                     | 4.1   | W.IO     | 5.2      | % V <sub>DD</sub> |
| Output Load Detect Threshold | $O_{M,J,M}$     | R <sub>L</sub> to GND, sy | nc pulse pre                                  | sent                                          |       |          | 200      | Ω                 |
| DC CHARACTERISTICS           | OMITW           |                           | W.100 x.                                      | COMIT                                         |       | TWW.     | 00 = 1 C | $O_{M^{**}}$      |
| Input-Voltage Range          | VIN             | CIN, YIN, guaranteed by   | M, , 100                                      | < V <sub>DD</sub> < 3.6V                      | 0     | WWW      | 1.05     | COM               |
| Input Voltage Hange          | V.COVIIV.       | output voltage<br>swing   | 3.0V                                          | < V <sub>DD</sub> < 3.6V                      | 0     | WWW      | 1.2      | CON               |
| Input Current                | IIN             | CIN = YIN = 0             | V                                             | OOY.COM.TY                                    |       | 2        | 5.00     | μΑ                |
| Input Resistance             | RIN             | CIN, YIN                  | MAN                                           | 100Y.                                         | W     | 20       | -TXV.10  | МΩ                |
| MAM                          | 100 X CO        | MITW                      | 0V ≤ V <sub>IN</sub> ≤ 1.05V, V <sub>DD</sub> | T <sub>A</sub> = -40°C to<br>+85°C            | 5.7   | 6        | 6.3      | 001.              |
| DC Voltage Gain              | Av              | $R_L = 150\Omega$ to      | = 2.7V                                        | $T_A = -40^{\circ}C \text{ to} +125^{\circ}C$ | 5.6   |          | 6.3      | dB                |
| DC Vollage Galli             | W.100Y.0        | V <sub>DD</sub> / 2       | 0V ≤ V <sub>IN</sub> ≤                        | $T_A = -40^{\circ}C$ to $+85^{\circ}C$        | 5.7   | 6        | 6.3      | W.100             |
|                              | WW.100 X        | .COM.TV                   | 1.2V, V <sub>DD</sub><br>= 3.0V               | $T_A = -40^{\circ}C$ to $+125^{\circ}C$       | 5.6   |          | 6.3      | M.70              |

### **ELECTRICAL CHARACTERISTICS (continued)**

 $(V_{DD} = V_{\overline{SHDN}} = 3.3V, V_{SMARTSLEEP} = GND = 0V. R_L = No load. T_A = T_{MIN}$  to  $T_{MAX}$ , unless otherwise noted. Typical values are at  $T_A = +25^{\circ}C.$ ) (Note 1)

| PARAMETER                    | SYMBOL  | CONDITIO                                                                                            | VS 100 Y.                               | MIN                   | TYP    | MAX                   | UNITS            |
|------------------------------|---------|-----------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------|--------|-----------------------|------------------|
| N.CO.                        | W.100Y. | $0V \le V_{IN} \le 1.05V, V_{DD} = 2.$                                                              | 7V                                      | -0.2                  | 0      | +0.2                  | ID               |
| DC Gain Matching             | W. 1007 | $0V \le V_{ N} \le 1.2V, V_{DD} = 3.0$                                                              | V WW.100 -                              | -0.2                  | 0      | +0.2                  | dB               |
| Output Level                 | W.100   | CIN = YIN = 0V, R <sub>L</sub> = 1509                                                               | 2 to GND                                | 0.188                 | 0.3    | 0.400                 | V                |
| .100Y.COM.TW                 | MMM.10  | Measured at output, V <sub>DD</sub>                                                                 | $T_A = -40^{\circ}C$ to $+85^{\circ}C$  | 2.027                 | 2.1    | 2.163                 |                  |
|                              | WWW     | = 2.7V, $0V \le V_{IN} \le 1.05V$ ,<br>R <sub>L</sub> = $150\Omega$ to $-0.2V$                      | $T_A = -40^{\circ}C$ to $+125^{\circ}C$ | 2.006                 | M.TV   | 2.163                 |                  |
|                              | MMA     | Measured at output,<br>$V_{DD} = 2.7V$ , $0V \le V_{IN} \le 1.0$<br>$R_L = 150\Omega$ to $V_{DD}/2$ | 5V,                                     | 2.027                 | 2.1    | 2.163                 |                  |
| Output Voltage Swing         | M       | Measured at output, V <sub>DD</sub>                                                                 | $T_A = -40^{\circ}C$ to $+85^{\circ}C$  | 2.316                 | 2.4    | 2.472                 | V <sub>P-P</sub> |
|                              | N Y     | = $3V$ , $0V \le V_{IN} \le 1.2V$ , $R_L$<br>= $150\Omega$ to $-0.2V$                               | $T_A = -40$ °C to $+125$ °C             | 2.292                 | N.CC   | 2.472                 |                  |
|                              | N       | Measured at output, $V_{DD} = 0$ V $\leq V_{IN} \leq 1.2$ V, $R_L = 150$ Ω                          |                                         | 2.316                 | 2.4    | 2.472                 |                  |
|                              | I.TW    | Measured at output, $V_{DD} = 0$ V $\leq V_{IN} \leq 1.05$ V, $R_L = 75$ Ω                          |                                         | 2.027                 | 2.1    | 2.163                 |                  |
| Output Resistance            | Rout    | V <sub>OUT</sub> = 1.3V, -5mA ≤ I <sub>LOA</sub> [                                                  | ) ≤ +5mA                                | N Tan                 | 0.47   | COL                   | Ω                |
| Power-Supply Rejection Ratio | PSRR    | $2.7V \le V_{DD} \le 3.6V$ , input re $R_L = 150\Omega$ to GND                                      | ferred,                                 | 48                    | NW.10  | 00X <sup>C</sup> CO   | dB               |
| Output Shutdown Impedance    | ONTON   | MANATOOX                                                                                            | CONTIN                                  | 11                    | 28     | 100 Y.C               | kΩ               |
| LOGIC INPUTS (SMARTSLEEP,    | SHDN)   | N WWW.                                                                                              | V.COM.                                  |                       | MININ  | . Non Y.              | CO.              |
| Logic-Low Threshold          | VIL     | TANN'IN                                                                                             | COM                                     | J                     | WW     | 0.3 x V <sub>DD</sub> | CV               |
| Logic-High Threshold         | VIH     | M. M. 10                                                                                            | COM                                     | 0.7 x V <sub>DI</sub> | (1 N N | W.100                 | V                |
| Logic Input Current          | IIL/IIH | $V_I = 0V \text{ or } V_{DD}$                                                                       |                                         | 11                    | 0.01   | 10                    | μΑ               |

WWW.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100X.

## WWW.100Y.COM.TW Video Filter Amplifier with SmartSleep and Y/C Mixer Circuit WWW.100Y.COM.T

### **AC CHARACTERISTICS**

(VDD = VSHDN = +3.3V, VSMARTSLEEP = GND = 0V, RL = 150Ω to GND. TA = TMIN to TMAX, unless otherwise noted. Typical values are at  $T_A = +25$ °C.) (Note 1)

| PARAMETER                       | SYMBOL | CONDITION                                     | S 100 Y                   | MIN   | TYP  | MAX     | UNITS            |
|---------------------------------|--------|-----------------------------------------------|---------------------------|-------|------|---------|------------------|
| Color Subcarrier Output Voltage | W.100Y | V <sub>DD</sub> = 2.7V, YIN = 0.65V, CI       | N = 0.7V <sub>P-P</sub>   |       | 1.4  |         |                  |
| Swing                           | MM.100 | V <sub>DD</sub> = 3.0V, YIN = 0.75V, CI       | N = 0.9V <sub>P-P</sub>   | COM.T | 1.8  |         | V <sub>P-P</sub> |
| Mixer HPF -3dB Frequency        | MW.10  | OX.COM.                                       | MAM. 1002                 | COM   | 300  |         | kHz              |
| Joseph Cont.                    | MMM.T  | OOY.COM.                                      | f = 5.5MHz                | A'CON | -0.1 |         |                  |
| Standard-Definition             | WWW.   | Inputs are 1V <sub>P-P</sub> ,                | f = 6.75MHz               | oy-to | -0.3 | +1      |                  |
| Reconstruction Filter           | MMN    | Reference frequency is 1MHz                   | f = 11MHz                 | 00Y.  | -3   | N<br>XI | dB               |
|                                 | WW     | W.100X.COM.TW                                 | f = 27MHz                 | -33   | C-41 | TW      |                  |
| Differential Gain               | DG     | DC-coupled output, 5-step modulated staircase | f = 3.58MHz or<br>4.43MHz | M.100 | 0.2  | TW      | %                |
| Differential Gain               | DG     | AC-coupled output, 5-step modulated staircase | f = 3.58MHz or<br>4.43MHz | M.Ta  | 0.4  | MIT     | /0               |
| WWW.100Y.COM.T                  |        | DC-coupled output, 5-step                     | f = 3.58MHz               | WW.   | 0.62 | OM.T    |                  |
| WWW.100X.COM                    | IV.    | modulated staircase                           | f = 4.43MHz               | WWW   | 0.75 | $CO_M$  | TW               |
| Differential Phase              | DP     | AC-coupled output, 5-step                     | f = 3.58MHz               | WW    | 0.78 | I.COM   | degree           |
|                                 | MIN    | modulated staircase                           | f = 4.43MHz               | WV    | 1.01 | V.Co.   | M.TW             |
| 2T Pulse Response               | WT.W   | 2T = 200ns or 250ns                           | COM.TW                    | N     | 0.2  | 10 A :- | K%               |

WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW MIXIM WWW.100Y.COM.TW

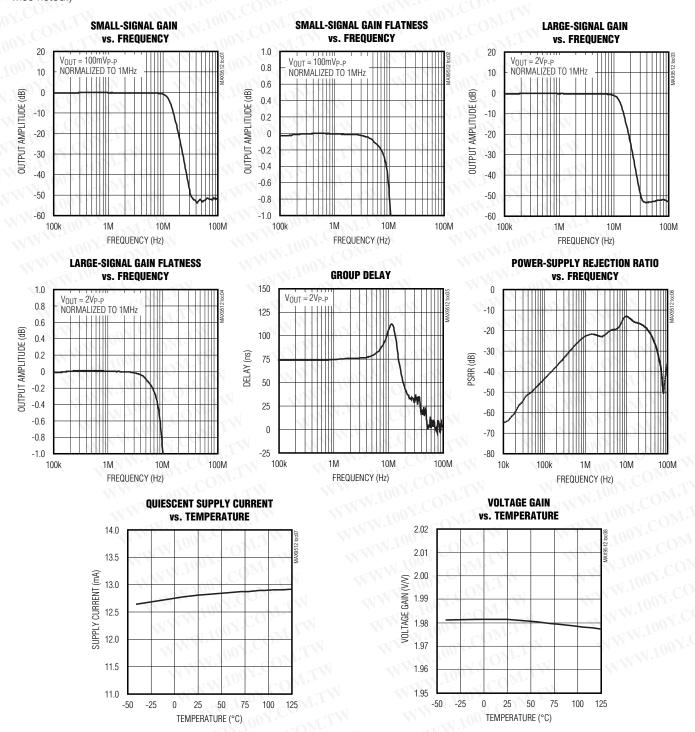
## **AC CHARACTERISTICS (continued)**

 $(V_{DD} = V_{\overline{SHDN}} = +3.3V, V_{\overline{SMARTSLEEP}} = GND = 0V, R_L = 150\Omega$  to GND.  $T_A = T_{MIN}$  to  $T_{MAX}$ , unless otherwise noted. Typical values are at  $T_A = +25$ °C.) (Note 1)

| PARAMETER                                    | SYMBOL | CONDITIONS                                                                                                | MIN   | TYP                 | MAX  | UNITS          |
|----------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------|-------|---------------------|------|----------------|
| 2T Bar Response                              | W.100Y | Bar time is 18µs, the beginning 2.5% and the ending 2.5% of the bar time are ignored, 2T = 200ns or 250ns | OM.TY | 0.2                 |      | K%             |
| 2T Pulse-to-Bar K Rating                     | MM.100 | Bar time is 18µs, the beginning 2.5% and the ending 2.5% of the bar time are ignored, 2T = 200ns or 250ns | COM   | 0.3                 |      | K%             |
| Nonlinearity                                 | NW.    | 5-step staircase                                                                                          | Y. CO | 0.1                 |      | %              |
| Interchannel Timing Error                    | WWW    | Difference in time between the 50% point of the output signals, YOUT to COUT                              | 00Y.C | 0.2                 | ĭ    | ns             |
| Group Delay Distortion                       | WW     | 100kHz ≤ f ≤ 5MHz, inputs are 1V <sub>P-P</sub>                                                           | 1001  | 10                  | N    | ns             |
| Interchannel Group Delay<br>Distortion Error | W      | Outputs are 2V <sub>P-P</sub>                                                                             | N.100 | I.COM.              | TW   | ns             |
| Peak Signal to RMS Noise                     | U .    | 100kHz ≤ f ≤ 5MHz, inputs are 1V <sub>P-P</sub>                                                           | /W.10 | 67                  | W    | dB             |
| Power-Supply Rejection Ratio                 | N      | f = 100kHz, 200mV <sub>P-P</sub> , input referred                                                         | MMT   | 43                  | 1 T  | √ dB           |
| Output Impedance                             |        | f = 5MHz                                                                                                  | MMM.  | 6                   | ZAT. | $\Omega^{ V }$ |
| Enable Time                                  | TW     | YIN = 1V, output settled to within 1% of the final voltage, $R_L = 150\Omega$ to GND                      | WWW   | 13                  |      | μs             |
| Disable Time                                 | M.TW   | YIN = 1V, output settled to within 1% of the final voltage, $R_L = 150\Omega$ to GND                      | MA    | 1.1 <sub>00</sub> Y | CO   | μs             |
| CROSSTALK                                    | OM.TW  | WW.1002.COM.TH                                                                                            | - W   | WW.100              | 27 C | $O_{M,L}$      |
| All Hostile Output Crosstalk                 | T.MO   | f = 4.43MHz                                                                                               |       | -71                 | 01.  | dB             |
| All Hostile Input Crosstalk                  | .coM.T | $f = 4.43MHz$ , $\overline{SHDN} = GND$ , input termination resistors are $75\Omega$                      |       | -106                | 1007 | dB             |

**Note 1:** All devices are 100% production tested at  $T_A = +25$ °C. Specifications over temperature limits are guaranteed by design. WWW.100Y.COM.TW

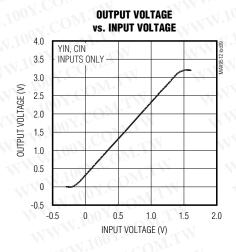
WWW.100Y.COM.TW

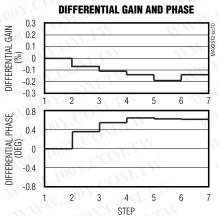

WWW.100Y.COM.TV

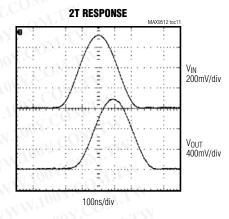
WWW.100Y.

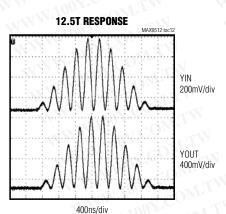
**Note 2:** Specified current is an average over time. o. T.MOD, YOOL WWW

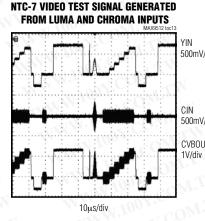
## **Typical Operating Characteristics**

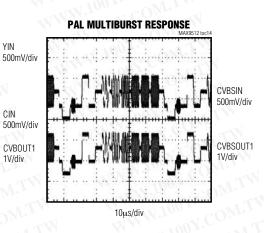

 $(V_{DD} = V_{\overline{SHDN}} = +3.3V, V_{SMARTSLEEP} = GND = 0V. Video outputs have R_L = 150\Omega$  connected to GND.  $T_A = +25^{\circ}C$ , unless otherwise noted.)

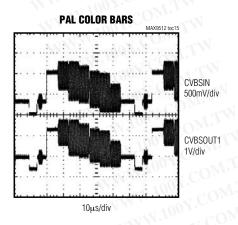


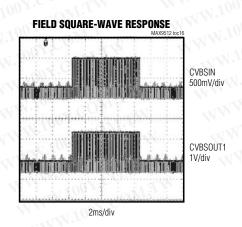


TEMPERATURE (°C)


## Typical Operating Characteristics (continued)


 $(V_{DD} = V_{\overline{SHDN}} = +3.3V, V_{SMARTSLEEP} = GND = 0V. Video outputs have R_L = 150\Omega$  connected to GND.  $T_A = +25^{\circ}C$ , unless otherwise noted.)

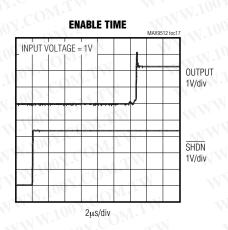


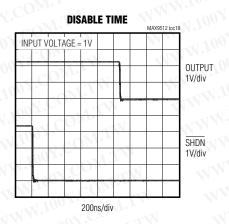



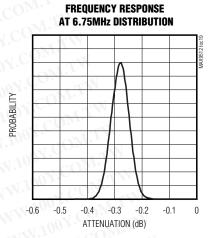



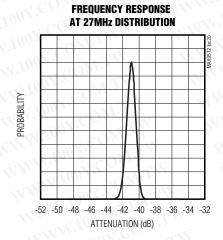


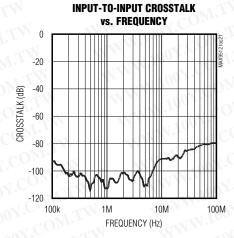


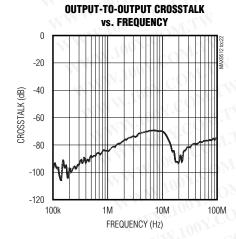



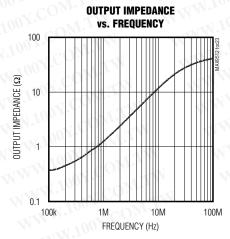





## Typical Operating Characteristics (continued)


 $(V_{DD} = V_{\overline{SHDN}} = +3.3V, V_{SMARTSLEEP} = GND = 0V. Video outputs have R_L = 150\Omega connected to GND. T_A = +25°C, unless otherwise noted.)$ 














## **Pin Description**

| PIN         | NAME            | THE THE TAX AND TH |
|-------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TQFN-EP     | NAME            | FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1, 13       | V <sub>DD</sub> | Power Supply. Bypass with a 0.1µF capacitor to GND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2           | YIN             | Luma Video Input. Directly connect this input to the video DAC output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3, 8        | GND             | Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4, 5, 7, 14 | N.C.            | No Connection. Connect to GND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6           | SHDN            | Active-Low Shutdown Logic Input. Connect to logic low to place device in shutdown. Connect to logic high for normal operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 9           | CVBSOUT2        | CVBS Output 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10          | CVBSOUT1        | CVBS Output 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11          | YOUT            | Luma Video Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .12         | COUT            | Chroma Video Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 15          | SMARTSLEEP      | SmartSleep Logic Input. Connect to logic high to activate SmartSleep operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16          | CIN             | Chroma Video Input. Directly connect this input to the video DAC output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MM.         | CEP             | Exposed Pad. Connect EP to GND. EP is also internally connected to GND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

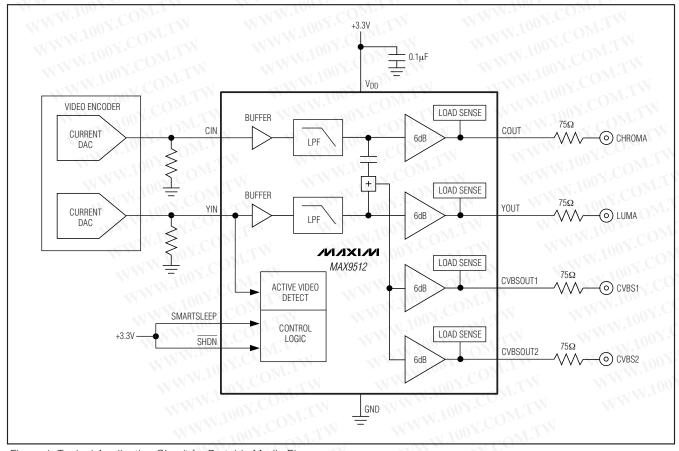



Figure 1. Typical Application Circuit for Portable Media Players

WWW.100Y.

## \_Detailed Description

In the Typical Application Circuit (Figure 1), the current DACs on a video encoder generate luma and chroma video signals. The MAX9512 filters those signals and then adds them together to create the composite video signal. The output amplifiers drive the video connectors through a  $75\Omega$  back termination resistor.

### **SmartSleep Feature**

The SmartSleep feature is activated when the SMARTSLEEP input is connected to logic high. The SmartSleep feature provides intelligent power management by selectively disabling the filters and output amplifiers based on the presence of a luma video signal or

loads attached to the outputs. If the SmartSleep feature is not activated and the part is not in shutdown, the filters and output amplifiers completely turn on, regardless of whether there is a video signal at the YIN input and whether there are loads connected at the outputs.

SmartSleep only works with DC-coupled loads.

### Standby Mode

In standby mode, the filters and output amplifiers are off and only the active video detect circuit is operational. Quiescent current consumption is approximately  $7\mu$ A (Figure 2). The active video detect circuit checks if sync is present on the YIN signal. If no sync is detected the device remains in standby mode.

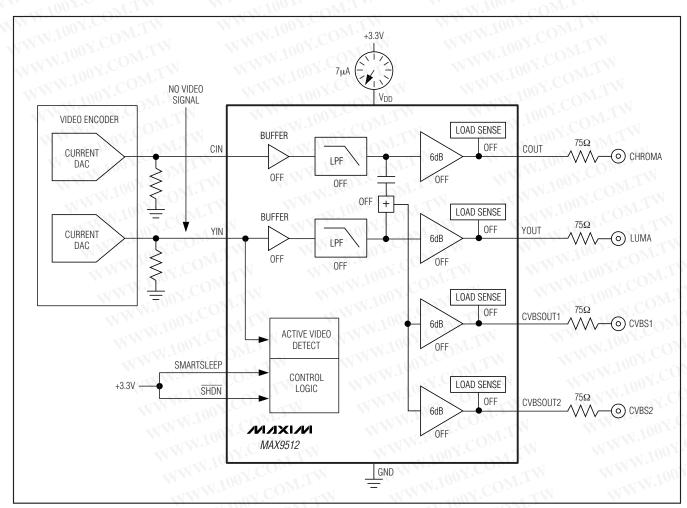



Figure 2. Standby Mode Operation

#### Active-Detect Mode

The active video detect circuit slices the YIN signal at 4.7% of the power supply (155mV for a 3.3V supply). If the transitions occur at a rate of 14.3kHz or higher, then a video signal is present. When the MAX9512 detects a video signal with sync at the YIN input, the control logic enters the active-detect mode and enables the load sense circuitry (Figure 3). The supply current is typically  $17\mu\text{A}$ .

If an output load is not connected to any amplifier, the MAX9512 remains in active-detect mode. Eight times per second, each load-sense circuit checks for a load by connecting an internal 15k $\Omega$  pullup resistor to the output for 1ms. If the output is pulled up, then no load is present. If the output stays low, a load is connected.

### Full-Operation Mode

If a load is connected to an output, the corresponding filter and amplifier turn on and remain on until the output load is disconnected. In full-operation mode, SmartSleep intelligently reduces the supply current based on the input signal presence and output loading. Figures 4 and 5 show which portions of the MAX9512 turn on and which remain off with different load configurations. In Figure 4, both filters and the Y/C mixer turn on to generate the composite video signal for the amplifier connected to CVBSOUT1. In Figure 5, only the luma filter turns on, and the Y/C mixer stays off.

When an amplifier is on, it continually checks if the load has been disconnected by detecting if the amplifier output is sourcing current during a horizontal line time. If no sourcing current is detected within one horizontal line time (approximately 64µs), the load has been disconnected and the amplifier returns to active-detect mode. If, at any time, the input video signal is removed, the MAX9512 returns to standby mode.

If the SmartSleep feature is not activated and the part is not in shutdown, then the filters and amplifiers completely turn on, regardless of whether there is a video signal at the CVBSIN input and whether there are loads connected at the outputs.

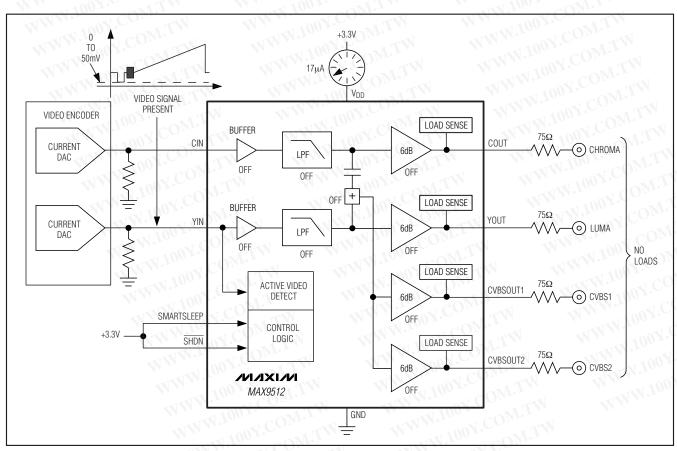



Figure 3. Active-Detect Mode with No Output Loads

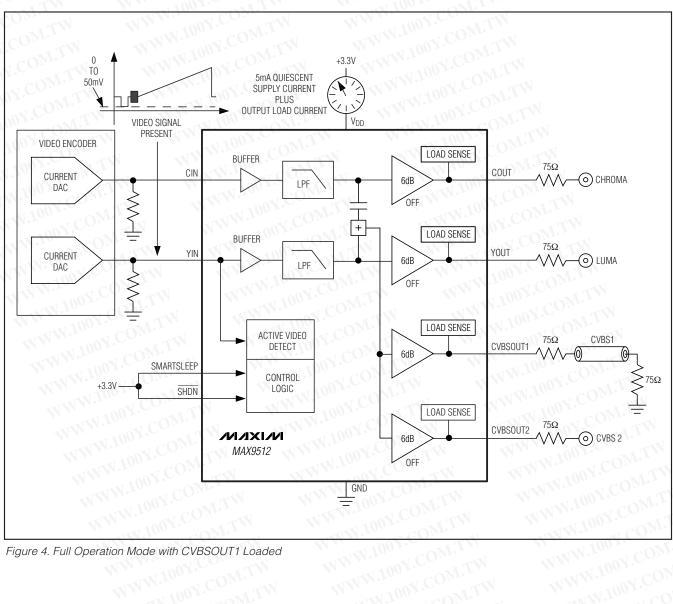



Figure 4. Full Operation Mode with CVBSOUT1 Loaded

WWW.100Y.COM.TW

WWW.100Y.C

100Y.COM.TW

## WWW.100Y.COM.TW **Video Filter Amplifier with SmartSleep** and Y/C Mixer Circuit

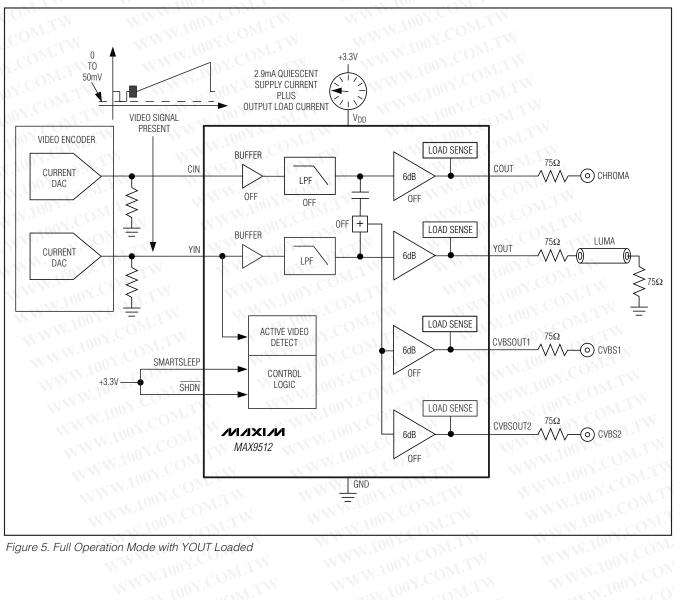



Figure 5. Full Operation Mode with YOUT Loaded WWW.100Y.COM.TW WWW.100Y.

WWW.100Y.COM.TW

WWW.100X.C

100Y.COM.TW

#### Inputs

The MAX9512 video inputs YIN and CIN should be directly connected to the output of the video current DAC. DC-coupling ensures that the input signals are ground referenced such that the sync tip of the luma signal is within 50mV of ground and the blank level of the chroma signal is between 0.5V and 0.65V.

#### **Video Reconstruction Filter**

The MAX9512 filter passband is 6.75MHz, which makes the device suitable for the higher bandwidth video signals from a DVD chip. Broadcast video signals actually require less bandwidth because of channel limitations: NTSC signals have 4.2MHz bandwidth, and PAL signals have 5MHz bandwidth. Video signals from a DVD player are not channel limited; therefore, the bandwidth of DVD video signals can push right against the Nyquist limit of 6.75MHz. (Recommendation ITU-R BT.601-5 specifies 13.5MHz as the sampling rate for standard-definition video). Therefore, the maximum bandwidth of the signal is 6.75MHz. To ease the filtering requirements, most modern video systems oversample by two times, clocking the video current DAC at 27MHz.

#### Y/C Mixer

The Y/C mixer adds the luma and chroma signals together to create a composite video signal. Since chroma is a phase modulated carrier at 3.58MHz for NTSC and 4.43MHz for PAL, the chroma signal is AC-coupled into the Y/C mixer so that the variation in blank level from one video source to another video source does not affect the DC bias of the composite video signal. The highpass corner frequency of the chroma AC-coupling circuit is 300kHz.

### **Outputs**

WWW.100Y.COM.T

The video output amplifiers can both source and sink load current, allowing output loads to be DC- or AC-coupled. The amplifier output stage needs about 300mV of headroom from either supply rail. The MAX9512 has an internal level shift circuit that positions the sync tip at approximately 300mV at the output. The

blank level of the chroma output is positioned at approximately 1.3V if the blank level of the chroma input signal is 0.5V. The blank level of the chroma output is positioned at approximately 1.5V if the blank level of the chroma input signal is 0.6V.

If the supply voltage is greater than 3.135V (5% below a 3.3V supply), each amplifier can drive two DC-coupled video loads to ground. If the supply is less than 3.135V, each amplifier can drive only one DC-coupled or AC-coupled video load.

#### Shutdown

When  $\overline{SHDN}$  is low, the MAX9512 draws less than 1µA supply current. All the amplifier outputs become high impedance. The effective output resistance at the video outputs is 28k $\Omega$ , due to the internal feedback resistors to ground.

## **Applications Information**

#### Reducing Power Consumption in the Video DACs

YIN and CIN have high-impedance input buffers and can work with source resistances as high as  $300\Omega$ . To reduce power dissipation in the video DACs, the DAC output resistor can be scaled up in value. The reference resistor that sets the reference current inside the video DACs must also be similarly scaled up. For instance, if the output resistor is  $37.5\Omega$ , the DAC must source 26.7mA when the output is 1V. If the output resistor is increased to  $300\Omega$ , the DAC only needs to source 3.33mA when the output is 1V.

There is parasitic capacitance from the DAC output to ground. That capacitance in parallel with the DAC output resistor forms a pole that can potentially roll off the frequency response of the video signal. For example,  $300\Omega$  in parallel with 50pF creates a pole at 10.6MHz. To minimize this capacitance, reduce the area of the signal trace attached to the DAC output as much as possible, and place the MAX9512 as close to the video DAC outputs as possible.

### **AC-Coupling the Outputs**

The outputs can be AC-coupled since the output stage can source and sink current as shown in Figure 6. Coupling capacitors should be 220µF or greater to keep the highpass filter formed by the  $150\Omega$  equivalent resistance of the video transmission line to a corner frequency of 4.8Hz or below. The frame rate of PAL systems is 25Hz, and the frame rate of NTSC systems is 30Hz. The corner frequency should be well below the frame rate. Smartsleep only works with DC-coupled loads.

### **Power-Supply Bypassing and Ground**

The MAX9512 operates from a single-supply voltage down to 2.7V, allowing for low-power operation. Bypass  $V_{DD}$  to GND with a 0.1 $\mu$ F capacitor. Place all external components as close to the device as possible.

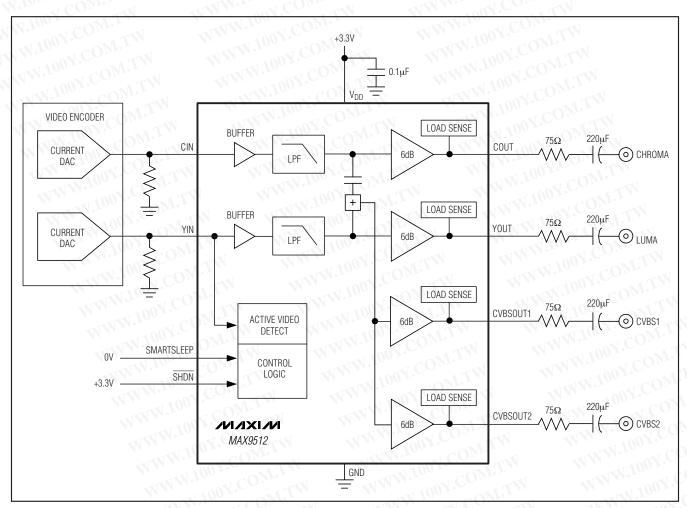
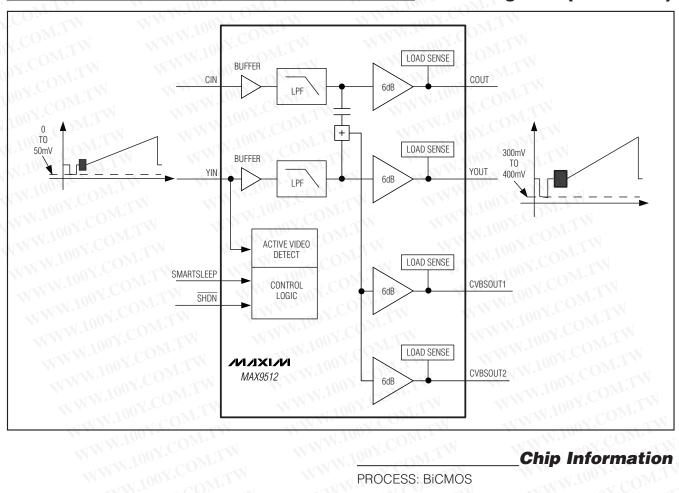




Figure 6. AC-Coupling at the Outputs

## WWW.100Y.COM.TV **Video Filter Amplifier with SmartSleep** and Y/C Mixer Circuit

## **Block Diagrams (continued)**



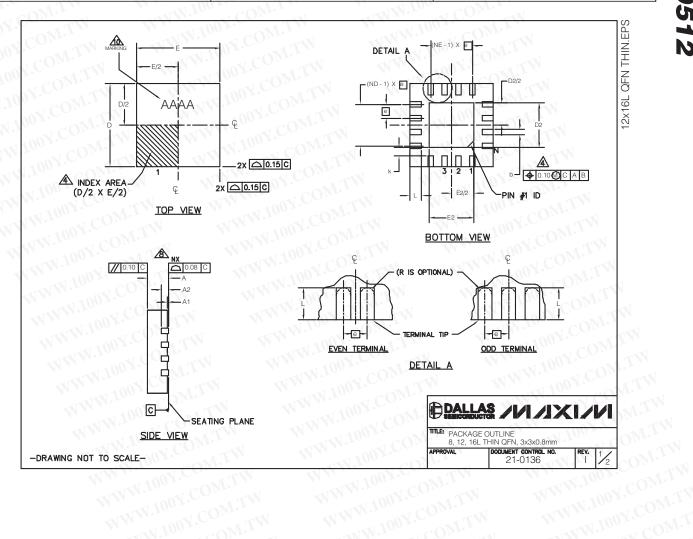
**Chip Information** 

PROCESS: BICMOS WWW.100Y WWW.100Y.COM.T

WWW.100Y.COM.TW W.100Y.COM.TW WWW.100Y.COM.TW MIXIM 16 WWW.100Y.COM.TV

## WWW.100Y.COM.TW N.COM.TW Video Filter Amplifier with SmartSleep and Y/C Mixer Circuit

## Package Information


VW.100Y.COM.T For the latest package outline information and land patterns, go to www.maxim-ic.com/packages

WWW.100Y.COM.TW

WWW.100Y.C

100Y.COM.TW

| PACKAGE TYPE | PACKAGE CODE | DOCUMENT NO.   |
|--------------|--------------|----------------|
| 16 TQFN-EP   | T1633-4      | <u>21-0136</u> |



## Package Information (continued)

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages

| A     0.70     0.75     0.80     0.70     0.75     0.80     0.70     0.75     0.80       b     0.25     0.30     0.35     0.20     0.25     0.30     0.20     0.25     0.30       D     2.90     3.00     3.10     2.90     3.00     3.10     2.90     3.00     3.10       E     2.90     3.00     3.10     2.90     3.00     3.10     2.90     3.00     3.10       e     0.65     BSC     0.50     BSC     0.50     0.50     0.50     0.50     0.50       N     8     12     16     16       ND     2     3     4     10       NE     2     3     4     4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |      |         |      |      |         |      |      |         |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|---------|------|------|---------|------|------|---------|------|
| A     0.70     0.75     0.80     0.70     0.75     0.80     0.70     0.75     0.80     0.70     0.75     0.80       b     0.25     0.30     0.35     0.20     0.25     0.30     0.20     0.25     0.30       D     2.90     3.00     3.10     2.90     3.00     3.10     2.90     3.00     3.10       E     2.90     3.00     3.10     2.90     3.00     3.10     2.90     3.00     3.10       e     0.65     BSES     0.50     BSES     0.50     BSES     0.50     0.40     0.50       L     0.35     0.55     0.75     0.45     0.55     0.65     0.30     0.40     0.56       N     8     12     16     16     16     16     16     16       NE     2     3     4     3     4     4     4       A1     0     0.02     0.05     0     0.02     0.05     0     0.02     0.05     0     0.02     0.05                                                                                                                                                                                                                                                                                         | PKG  |      | 8L 3x3  |      |      | 12L 3x3 |      | To.  | 16L 3x3 | 0    |
| b     0.25     0.30     0.35     0.20     0.25     0.30     0.20     0.25     0.30       D     2.90     3.00     3.10     2.90     3.00     3.10     2.90     3.00     3.10       E     2.90     3.00     3.10     2.90     3.00     3.10     2.90     3.00     3.10       e     0.65     BSC.     0.50     BSC.     0.50     BSC.     0.50     0.40     0.50       L     0.35     0.55     0.75     0.45     0.55     0.65     0.30     0.40     0.50       N     8     12     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16 <t< th=""><th>REF.</th><th>MIN.</th><th>NOM.</th><th>MAX.</th><th>MIN.</th><th>NOM.</th><th>MAX.</th><th>MIN.</th><th>NOM.</th><th>MAX.</th></t<> | REF. | MIN. | NOM.    | MAX. | MIN. | NOM.    | MAX. | MIN. | NOM.    | MAX. |
| D     2.90     3.00     3.10     2.90     3.00     3.10     2.90     3.00     3.10       E     2.90     3.00     3.10     2.90     3.00     3.10     2.90     3.00     3.10       e     0.65     BSC.     0.50     BSC.     0.50     BSC.       L     0.35     0.55     0.75     0.45     0.55     0.65     0.30     0.40     0.56       N     8     12     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16     16 </td <td>Α</td> <td>0.70</td> <td>0.75</td> <td>0.80</td> <td>0.70</td> <td>0.75</td> <td>0.80</td> <td>0.70</td> <td>0.75</td> <td>0.80</td>         | Α    | 0.70 | 0.75    | 0.80 | 0.70 | 0.75    | 0.80 | 0.70 | 0.75    | 0.80 |
| E     2.90     3.00     3.10     2.90     3.00     3.10     2.90     3.00     3.10     2.90     3.00     3.10     2.90     3.00     3.10     2.90     3.00     3.10     2.90     3.00     3.10     2.90     3.00     3.10     2.90     3.00     3.10     2.90     3.00     3.10     2.90     3.00     3.10     2.90     8.5 <td>b</td> <td>0.25</td> <td>0.30</td> <td>0.35</td> <td>0.20</td> <td>0.25</td> <td>0.30</td> <td>0.20</td> <td>0.25</td> <td>0.30</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | b    | 0.25 | 0.30    | 0.35 | 0.20 | 0.25    | 0.30 | 0.20 | 0.25    | 0.30 |
| e     0.65 BSC.     0.50 BSC.     0.50 BSC.       L     0.35     0.55     0.75     0.45     0.55     0.65     0.30     0.40     0.50       N     8     12     16       ND     2     3     4       NE     2     3     4       A1     0     0.02     0.05     0     0.02     0.05     0     0.02     0.05       A2     0.20 REF     0.20 REF     0.20 REF     0.20 REF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D    | 2.90 | 3.00    | 3.10 | 2.90 | 3.00    | 3.10 | 2.90 | 3.00    | 3.10 |
| L 0.35 0.55 0.76 0.45 0.55 0.65 0.30 0.40 0.55 N 8 12 16 16 ND 2 3 4 4 A1 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E    | 2.90 | 3.00    | 3.10 | 2.90 | 3.00    | 3.10 | 2.90 | 3.00    | 3.10 |
| N 8 12 16  ND 2 3 4  NE 2 3 4  A1 0 0.02 0.05 0 0.02 0.05 0 0.02 0.06  A2 0.20 REF 0.20 REF 0.20 REF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | е    | 0    | .65 BS0 | 2.1  | (    | 0.50 BS | Ö. ( | N C  | .50 BS  | Ö. 🤜 |
| ND 2 3 4  NE 2 3 4  A1 0 0.02 0.05 0 0.02 0.05 0 0.02 0.08  A2 0.20 REF 0.20 REF 0.20 REF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L    | 0.35 | 0.55    | 0.75 | 0.45 | 0.55    | 0.65 | 0.30 | 0.40    | 0.50 |
| NE         2         3         4         4           A1         0         0.02         0.05         0         0.02         0.05         0         0.02         0.00           A2         0.20 REF         0.20 REF         0.20 REF         0.20 REF         0.20 REF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N    | OM   | 8       | TAX. |      | 12      | < 16 | W.   | 16      | - 6  |
| A1 0 0.02 0.05 0 0.02 0.05 0 0.02 0.08<br>A2 0.20 REF 0.20 REF 0.20 REF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND   |      | 2       | 14.  |      | 3       | 4.   |      | 4       | 10   |
| A2 0.20 REF 0.20 REF 0.20 REF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NE   |      | 2       | -    |      | 3       |      |      | 4       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1   | 0    | 0.02    | 0.05 | 0    | 0.02    | 0.05 | 0    | 0.02    | 0.05 |
| k 0.25 0.25 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A2   |      | .20 RE  | F    | 1    | ).20 RE | F    |      | ).20 RE | F    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | k    | 0.25 | 1       | 157  | 0.25 | -       | -    | 0.25 | .51     | N.   |

| (G      |      | D2   |      | 177  | E2   | 0    | PIN ID      | JEDEC  |
|---------|------|------|------|------|------|------|-------------|--------|
| DDES    | MIN. | NOM. | MAX. | MIN. | NOM. | MAX. | FINID       | JEDEC  |
| 2833-1  | 0.25 | 0.70 | 1.25 | 0.25 | 0.70 | 1.25 | 0.35 x 45°  | WEEC   |
| 233-1   | 0.95 | 1.10 | 1.25 | 0.95 | 1.10 | 1.25 | 0.35 x 45°  | WEED-1 |
| 233-3   | 0.95 | 1.10 | 1.25 | 0.95 | 1.10 | 1.25 | 0.35 x 45°  | WEED-1 |
| 233-4   | 0.95 | 1.10 | 1.25 | 0.95 | 1.10 | 1.25 | 0.35 x 45°  | WEED-1 |
| 633-2   | 0.95 | 1.10 | 1.25 | 0.95 | 1.10 | 1.25 | 0.35 x 45°  | WEED-2 |
| 633F-3  | 0.65 | 0.80 | 0.95 | 0.65 | 0.80 | 0.95 | 0.225 x 45° | WEED-2 |
| 633FH-3 | 0.65 | 0.80 | 0.95 | 0.65 | 0.80 | 0.95 | 0.225 x 45° | WEED-2 |
| 633-4   | 0.95 | 1.10 | 1.25 | 0.95 | 1.10 | 1.25 | 0.35 x 45°  | WEED-2 |
| 633-5   | 0.95 | 1.10 | 1.25 | 0.95 | 1.10 | 1.25 | 0.35 x 45°  | WEED-2 |

#### NOTES:

- 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.
- 2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.
- N IS THE TOTAL NUMBER OF TERMINALS.
- $\triangle$  THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR
- 🔝 DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.20 mm AND 0.25 mm

WWW.100Y.COM.TW

WWW.100X.

100Y.COM.TW

WWW.100Y.COM.T

- AND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.
- DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.
- ♠ COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS
- DRAWING CONFORMS TO JEDEC MO220 REVISION C.
- MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.
- 11. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.
- 12. WARPAGE NOT TO EXCEED 0.10mm.

-DRAWING NOT TO SCALE-



21-0136

MIXIM

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

## Video Filter Amplifier with SmartSleep and Y/C Mixer Circuit

| Re | vis | ion | Histo | ry |
|----|-----|-----|-------|----|
|----|-----|-----|-------|----|

| REVISION NUMBER   |        | DESCRIPTION          | PAGES CHANGED    |
|-------------------|--------|----------------------|------------------|
| $\sim C_{\rm DM}$ | 5/1/06 | Initial release      | any.co. TW -     |
| 2                 | 2/09   | Removed QSOP package | 1, 2, 3, 16, 17, |

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

VW.100Y.COM.TW