Ultra－Fast ECL－Output Comparator with Latch Enable

Abstract

General Description The MAX9685 is an ultra－fast ECL comparator manufac－ tured with a high－frequency bipolar process（ $\mathrm{T}=6 \mathrm{GHz}$ ） capable of very short propagation delays．This design maintains the excellent DC matching characteristics nor－ mally found only in slower comparators． The device is pin－compatible with the AD9685 and Am6685，but exceeds their AC characteristics．

The MAX9685 has differential inputs and complemen－ tary outputs that are fully compatible with ECL－logic lev－ els．Output current levels are capable of driving 50Ω terminated transmission lines．The ultra－fast operation makes signal processing possible at frequencies in excess of 600 MHz ．
A latch－enable（LE）function is provided to allow the comparator to be used in a sample－hold mode．When LE is ECL high，the comparator functions normally． When LE is driven ECL low，the outputs are forced to an unambiguous ECL－logic state，dependent on the input conditions at the time of the latch input transition．If the latch－enable function is not used，the LE pin must be connected to ground．

Applications

High－Speed A／D Converters
High－Speed Line Receivers
Peak Detectors
Threshold Detectors
High－Speed Triggers
Features
1．3ns Propagation Delay
0．5ns Latch Setup Time

+ ＋5V，－5．2V Power Supplies
Pin－Compatible with AD9685，Am6685
Available in Commercial，Extended－Industrial，
and Military Temperature Ranges
Available in Narrow SO Package

Ordering Information

PART	TEMP．RANGE	PIN－PACKAGE＊
MAX9685CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP
MAX9685CSE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Narrow SO
MAX9685CJE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 CERDIP
MAX9685CTW	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	10 TO－100
MAX9685C／D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{* \star}$
MAX9685EPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP
MAX9685ESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
MAX9685MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 CERDIP
MAX9685MTW	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10 TO－100

＊Contact factory for availability of 20－pin PLCC．
＊＊Contact factory for dice specifications．

Pin Configurations

Ultra－Fast ECL－Output Comparator with Latch Enable

Supply Voltages
Output Short－Circuit Duration
Input Voltages
．．．．．．．．．．．．．．．．．． es．．．．．．．．． \qquad ．Indefinite

Differential Input Voltages \qquad $\ldots . . \pm 5 \mathrm{~V}$

Output Current
Continuous Power Dissipation（ $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$ ）
Plastic DIP（derate $10.53 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ） \qquad 842 mW

Narrow SO（derate $8.70 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ）

CERDIP（derate $10.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ）．．．．．．．．．．．．．．． 800 mW TO－100（derate $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ）．．．．．．．．．．．．．．．．．． 533 mW Operating Temperature Ranges
MAX9685C＿＿．．． $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX9685E \qquad $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MAX9685 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $.55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature（soldering，10sec） \qquad ．．．．．．．．．．．．．．$+300^{\circ} \mathrm{C}$

Stresses beyond those listed under＂Absolute Maximum Ratings＂may cause permanent damage to the device．These are stress ratings only，and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied．Exposure to absolute maximum rating conditions for extended periods may affect device reliability．

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5.2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{T}}=-2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ ，unless otherwise noted．）

PARAMETER	SYMBOL	CONDITIONS		MAX9685C／E			MAX9685M			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	Vos	$\mathrm{RS}=100 \Omega$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	－5		5	－5		5	mV
				－7		7	－8		8	
Temperature Coefficient	$\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}$				10			15		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	los	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				5			5	$\mu \mathrm{A}$
		$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$				8			12	
Input Bias Current	IB	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			10	20		10	20	$\mu \mathrm{A}$
		$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$				30			40	
Input Voltage Range	VCM	（Note 1）		－2．5		＋2．5	－2．5		＋2．5	V
Common－Mode Rejection Ratio	CMRR			80			80			dB
Power－Supply Rejection Ratio	PSRR			60			60			dB
Input Resistance	RIN	（Note 1）		60			60			$\mathrm{k} \Omega$
Input Capacitance	CIn				3	－		3		pF
Logic Output High Voltage	VOH	MAX9685C， MAX9685M	$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$	－1．05	，	－0．87	－1．16		－0．89	V
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MAX }}$	－0．89		－0．70	0.88		－0．69	
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	－0．96		－0．81	－0．96		－0．81	
		MAX9685E	$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$	－1．14		－0．88				
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	－0．88		－0．70				
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	－0．96		－0．81				
Logic Output Low Voltage	Vol	MAX9685C， MAX9685M	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	－1．89		－1．69	－1．90		－1．65	V
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$	－1．83		－1．57	－1．82		－1．55	
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	－1．85		－1．65	－1．85		－1．65	
		MAX9685E	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$	－1．90		－1．65				
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MAX }}$	－1．83		－1．57				
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	－1．85		－1．65				
Positive Supply Current	Icc	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			16	22		16	22	mA
		$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$				24			25	
Negative Supply Current	Iee	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			20	32		20	32	mA
		$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$				36		\checkmark	36	

Ultra－Fast ECL－Output Comparator with Latch Enable

SWITCHING CHARACTERISTICS

$\left(\mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}-=-5.2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{T}}=-2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ ，unless otherwise noted．）

PARAMETER	SYMBOL	CONDITIONS	MAX9685C／E			MAX9685M			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Input to Output High （Notes 1，2）	tpd＋	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1.3	1.8		1.3	1.8	ns
		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		1.5	2.0				
		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$					1.7	2.4	
Input to Output Low （Notes 1，2）	tpd－	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1.3	1.8		1.3	1.8	ns
		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		1.5	2.0				
		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$					1.7	2.4	
Latch－Enable to Output High（Notes 1，2）	$t_{p d+}(\mathrm{E})$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1.2	1.7		1.2	1.7	ns
		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		1.4	2.0				
		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$					2.0	3.0	
Latch－Enable to Output High（Notes 1，2）	tpd－（E）	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1.2	1.7		1.2	1.7	ns
		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		1.4	2.0				
		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$					2.0	3.0	
Latch－Enable Pulse Width（Note 2）	$t_{p w}(\mathrm{E})$			2.0		3.0	2.0		ns
Minimum Setup Time	t_{s}			0.5	1.0		0.5	1.0	ns
Minimum Hold Time	th			0.5	1.0		0.5	1.0	ns

Note 1：Not tested，guaranteed by design．
Note 2： $\mathrm{V}_{\mathrm{IN}}=100 \mathrm{mV}, \mathrm{V}_{\mathrm{OD}}=10 \mathrm{mV}$

Applications Information

Layout
Because of the MAX9685＇s large gain－bandwidth char－ acteristic，special precautions need to be taken if its high－speed capabilities are to be used．A PC board with a ground plane is mandatory．Mount all decou－ pling capacitors as close to the power－supply pins as possible，and process the ECL outputs in microstrip fashion，consistent with the load termination of 50Ω to 120Ω ．For low－impedance applications，microstrip lay－ out at the input may also be helpful．Pay close atten－ tion to the bandwidth of the decoupling and terminating components．Chip components can be used to mini－ mize lead inductance．An unused LE pin must be con－ nected to ground．

Input Slew－Rate Requirements
As with all high－speed comparators，the high gain－ bandwidth product of these devices creates oscillation problems when the input traverses through the linear region．For clean switching without oscillation or steps in the output waveform，the input must meet certain
minimum slew－rate requirements．The tendency of the part to oscillate is a function of the layout and source impedance of the circuit employed．Poor layout and larger source impedance will increase the minimum slew－rate requirement．
Figure 1 shows a high－speed receiver application with 50Ω input and output termination．With this configura－ tion，in which a ground plane and microstrip PC board were used，the minimum slew rate for clean output switching is $1.6 \mathrm{~V} / \mu \mathrm{s}$ ．Sine－wave inputs imply a mini－ mum signal size of 360 mV RMs at 500 kHz and 90 mV RMS at 4 MHz ．

$$
E_{\text {RMS }}=\frac{\text { Slew Rate }}{2 \sqrt{2 n f}}
$$

In many applications，the addition of regenerative feed－ back will assist the input signal through the linear region，which will lower the minimum slew－rate require－ ment considerably．For example，with the addition of positive feedback components $\mathrm{R}_{\mathrm{f}}=1 \mathrm{k} \Omega$ and $\mathrm{C}_{\mathrm{f}}=$ 10 pF ，the minimum slew－rate requirement can be reduced by a factor of four．

Ultra－Fast ECL－Output Comparator with Latch Enable

Figure 1．Regenerative Feedback．High－speed receiver with 50Ω input and output termination．

The timing diagram（Figure 3）illustrates the series of events that complete the compare function，under worst－case conditions．
The top line of the diagram illustrates two latch－enable pulses．Each pulse is high for the compare function and low for the latch function．The first pulse demon－ strates the compare function；part of the input action takes place during the compare mode．The second pulse demonstrates a compare－function interval during which there is no change in the input．
The leading edge of the input signal（illustrated as a large－amplitude，small－overdrive pulse）switches the comparator after time interval tpd．Output Q and $\overline{\mathrm{Q}}$ transistors are similar in timing．The input signal must occur at time ts before the latch falling edge，and it must be maintained for time th after the edge to be acquired．After th，the output is no longer affected by the input status until the latch is again strobed．A mini－ mum latch pulse width of $\operatorname{tpw}(E)$ is needed for the strobe operation，and the output transitions occur after a time $\operatorname{tpd}(\mathrm{E})$ ．

Definition of Terms

Vos
Input Offset Voltage－The voltage required between the input terminals to obtain 0 V dif－ ferential at the output．
VIN Input Voltage Pulse Amplitude
VOD Input Voltage Overdrive
tpd＋Input to Output High Delay－The propagation delay measured from the time the input signal crosses the input offset voltage to the 50\％ point of an output low－to－high transition．

Figure 2．As a high－speed receiver，the MAX9685 is capable of processing signals in excess of 600MHz．Figure 2 is a 100 MHz example with an input signal level of $14 \mathrm{mV} V_{R M S}$ ．
tpd－Input to Output Low Delay－The propagation delay measured from the time the input signal crosses the input offset voltage to the 50\％ point of an output high－to－low transition．
tpd＋（E）Latch－Enable to Output High Delay－The propagation delay measured from the 50% point of the latch－enable signal low－to－high transition to the 50% point of an output low－to－ high transition．
tpd－（E）Latch－Enable to Output Low Delay－The propagation delay measured from the 50% point of the latch－enable signal low－to－high transition to the 50% point of an output high－ to－low transition．
tpw（E）Minimum Latch－Enable Pulse Width－The minimum time the latch－enable signal must be high to acquire and hold an input signal．
ts Minimum Setup Time－The minimum time before the negative transition of the latch－ enable pulse that an input signal must be pre－ sent to be acquired and held at the outputs．
th Minimum Hold Time－The minimum time after the negative transition of the latch－enable signal that an input signal must remain unchanged to be acquired and held at the output．

Ultra－Fast ECL－Output Comparator with Latch Enable

S896XVW

Figure 3．Timing Diagram

> 勝 特 力 材 料 $886-3-5753170$胜特力电子(上海) $86-21-34970699$
> 胜特力电子(深圳) $86-755-83298787$ Http://www. $100 \mathrm{y} . \mathrm{com} . \mathrm{tw}$

Ultra－Fast ECL－Output Comparator with Latch Enable

MAX9685

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.053	0.069	1.35	1.75
A1	0.004	0.010	0.10	0.25
B	0.014	0.019	0.35	0.49
C	0.007	0.010	0.19	0.25
E	0.150	0.157	3.80	4.00
e	0.050		1.27	
H	0.228	0.244	5.80	6.20
L	0.016	0.050	0.40	1.27

Narrow SO SMALL－OUTLINE PACKAGE （0．150 in．）

DIM	PINS	INCHES		MILLIMETERS	
		MIN	MAX	MIN	MAX
D	8	0.189	0.197	4.80	5.00
D	14	0.337	0.344	8.55	8.75
D	16	0.386	0.394	9.80	10.00

6 \qquad

Ultra－Fast ECL－Output Comparator with Latch Enable

Package Information（continued）

Ultra－Fast ECL－Output Comparator with Latch Enable

MAX9685

勝 特 力 材 料 886－3－5753170
胜特力电子（上海）86－21－34970699
胜特力 电子（深圳）86－755－83298787
Http：／／www． $100 y$ ．com．tw

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product．No circuit patent licenses are implied．Maxim reserves the right to change the circuitry and specifications without notice at any time．
8
Maxim Integrated Products， 120 San Gabriel Drive，Sunnyvale，CA 94086 （408）737－7600
© 1993 Maxim Integrated Products Printed USA NIAXINI is a registered trademark of Maxim Integrated Products．

