August 2000

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

LM613 Dual Operational Amplifiers, Dual Comparators, and Adjustable Reference General Description Features

The LM613 consists of dual op-amps, dual comparators, and a programmable voltage reference in a 16-pin package. The op-amps out-performs most single-supply op-amps by providing higher speed and bandwidth along with low supply current. This device was specifically designed to lower cost and board space requirements in transducer, test, measurement, and data acquisition systems.

Combining a stable voltage reference with wide output swing op-amps makes the LM613 ideal for single supply transducers, signal conditioning and bridge driving where large common-mode-signals are common. The voltage reference consists of a reliable band-gap design that maintains low dynamic output impedance (1 Ω typical), excellent initial tolerance (0.6%), and the ability to be programmed from 1.2V to 6.3V via two external resistors. The voltage reference is very stable even when driving large capacitive loads, as are commonly encountered in CMOS data acquisition systems.

As a member of National's Super-Block[™] family, the LM613 is a space-saving monolithic alternative to a multi-chip solution, offering a high level of integration without sacrificing performance.

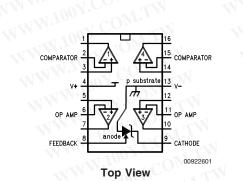
Connection Diagrams

OP AMP

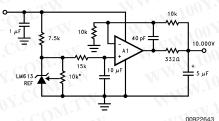
- Low operating current (Op Amp): 300 µA
- Wide supply voltage range: 4V to 36V
- Wide common-mode range: V⁻ to (V⁺ 1.8V)
- Wide differential input voltage: ±36V
- Available in plastic package rated for Military Temp. Range Operation

REFERENCE

- Adjustable output voltage: 1.2V to 6.3V
- Tight initial tolerance available: ±0.6%
- Wide operating current range: 17 µA to 20 mA


E Package Pinout

00922648


Tolerant of load capacitance

Applications

- Transducer bridge driver
- Process and mass flow control systems
- Power supply voltage monitor
- Buffered voltage references for A/D's

Ultra Low Noise, 10.00V Reference. Total output noise is typically 14 μV_{RMS}.

*10k must be low t.c. trimpot

© 2004 National Semiconductor Corporation DS009226

Super-Block[™] is a trademark of National Semiconductor Co

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Voltage on Any Pin Except V _R	
(referred to V ⁻ pin)	
(Note 2)	36V (Max)
(Note 3)	–0.3V (Min)
Current through Any Input Pin	
& V _R Pin	±20 mA
Differential Input Voltage	
Military and Industrial	±36V
Commercial	±32V
Storage Temperature Range	$-65^{\circ}C \le T_{J} \le +150^{\circ}C$
Maximum Junction Temp.(Note 4)	150°C

Thermal Resistance, Junction-to-Ambient (Note 5) N Package 100°C/W WM Package 150°C/W Soldering Information (10 Sec.) N Package 260°C WM Package 220°C ESD Tolerance (Note 6) ±1 kV

Operating Temperature Range

LM613AI, LM613BI:	–40°C to +85°C
LM613AM, LM613M:	–55°C to +125°C
LM613C:	$0^\circ C \leq T_J \leq +70^\circ C$

Electrical Characteristics

These specifications apply for V⁻ = GND = 0V, V⁺ = 5V, V_{CM} = V_{OUT} = 2.5V, I_R = 100 μ A, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for T_J = 25°C; limits in **boldface type** apply over the **Operating** Temperature Range.

Symbol	Parameter	Conditions	Typical (Note 7)	LM613AM LM613AI Limits (Note 8)	LM613M LM613I LM613C Limits (Note 8)	Units
ls	Total Supply Current	$R_{LOAD} = \infty,$	450 🔨	940	1000	µA (Max)
W.100	CONT.	$4V \le V^+ \le 36V$ (32V for LM613C)	550	1000	1070	μA (Max)
Vs	Supply Voltage Range	W.100 L. COMPLET	2.2	2.8	2.8	V (Min)
WIT IS STORE TW	WI.W.	WWW 100Y.COM.T	2.9	3	3	V (Min)
	N.COM	WWW	46	36	32	V (Max)
War	COM. I	COM.	43	36	32	V (Max)
OPERATIO	ONAL AMPLIFIERS	W 100 1. COM			N.100 -	0 ^{M.1}
V _{OS1}	V _{OS} Over Supply	$4V \le V^+ \le 36V$	1.5	3.5	5.0	mV (Max)
WIT	N. LOS V.COM.	$(4V \le V^+ \le 32V \text{ for LM613C})$	2.0	6.0	7.0	mV (Max)
V _{OS2}	V _{OS} Over V _{CM}	$V_{CM} = 0V$ through $V_{CM} =$	1.0	3.5	5.0	mV (Max)
	100Y. M.T	$(V^+ - 1.8V), V^+ = 30V, V^- = 0V$	1.5	6.0	7.0	mV (Max)
<u>V_{OS3}</u> ΔT	Average V _{os} Drift	(Note 8)	15		WWW.100	μV/°C (Max)
Ι _Β	Input Bias Current	WWW.	10	25	35	nA (Max)
	N.100X.CON	1.TV W.1001	. 11	30	40	nA (Max)
l _{os}	Input Offset Current	100 WWW 100	0.2	4	4	nA (Max)
	WWW.LCO	WWWW.	0.3	5	5	nA (Max)
l <u>os1</u> ΔT	Average Offset Current	OM.TW WWW.L	01.CO 001.CO	M.TW	M.M.	pA/°C
R _{IN}	Input Resistance	Differential	1000	WT.W		MΩ
C _{IN}	Input Capacitance	Common-Mode	6	TT	N	pF
e _n	Voltage Noise	f = 100 Hz, Input Referred	74	COM.T	N N	nV/√Hz
l _n	Current Noise	f = 100 Hz, Input Referred	58	L.COM.	WI.	fA/√Hz
CMRR	Common-Mode	$V^+ = 30V, \ 0V \le V_{CM} \le (V^+ - 1.8V)$	95	80	75	dB (Min)
	Rejection Ratio	$CMRR = 20 \log (\Delta V_{CM} / \Delta V_{OS})$	90	75	70	dB (Min)
ww.national.c	com	N.1001-COM.11 ² N.1007.COM.11 ²	胜特力电 胜特力电	L子(上海) 86	6-3-575317 -21-541517 -755-83298 0y. com. tw	36

Electrical Characteristics (Continued)

These specifications apply for V⁻ = GND = 0V, V⁺ = 5V, V_{CM} = V_{OUT} = 2.5V, I_R = 100 μ A, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for T_J = 25°C; limits in **boldface type** apply over the **Operating Temperature Range**.

LM613AM LM613M LM613AI LM613I Typical Conditions (Note 7) Limits LM613C Units Symbol Parameter (Note 8) Limits (Note 8) **OPERATIONAL AMPLIFIERS** $4V \le V^+ \le 30V, V_{CM} = V^+/2,$ PSRR Power Supply 110 80 75 dB (Min) **Rejection Ratio** $PSRR = 20 \log (\Delta V^+/V_{OS})$ 100 75 70 dB (Min) $A_{\rm V}$ $R_1 = 10 \text{ k}\Omega$ to GND, $V^+ = 30V$, Open Loop 500 100 94 V/mV Voltage Gain $5V \le V_{OUT} \le 25V$ 50 40 40 (Min) SR Slew Rate $V^{+} = 30V$ (Note 9) 0.70 0.55 0.50 V/µs 0.65 0.45 0.45 $C_L = 50 \text{ pF}$ GBW Gain Bandwidth 0.8 MHz 0.5 MHz V_{O1} $R_1 = 10 k\Omega$ to GND, **Output Voltage** V⁺ – 1.4 V⁺ - 1.7 V⁺ - 1.8 V (Min) Swing High V⁺ = 36V (32V for LM613C) V⁺ – 1.6 V⁺ - 1.9 V⁺ - 1.9 V (Min) $R_L = 10 \text{ k}\Omega \text{ to } V^+$, V_{O2} Output Voltage $V^{-} + 0.8$ $V^{-} + 0.9$ V⁻ + 0.95 V (Max) V⁻ + 1.0 Swing Low V⁺ = 36V (32V for LM613C) V⁻ + 0.9 V⁻ + 1.0 V (Max) $V_{OUT} = 2.5V, V_{IN}^{+} = 0V,$ **Output Source Current** 25 20 16 mA (Min) I_{OUT} $V^{-}_{IN} = -0.3V$ 15 13 13 mA (Min) **Output Sink Current** $V_{OUT} = 1.6V, V_{IN}^+ = 0V,$ 17 14 13 mA (Min) I_{SINK} $V_{IN}^{-} = 0.3V$ 9 8 8 mA (Min) $V_{OUT} = 0V, V_{IN}^{+} = 3V,$ 30 50 ISHORT Short Circuit Current 50 mA (Max) $V_{IN}^{-} = 2V$ 40 60 60 mA (Max) $V_{OUT} = 5V, V_{IN}^{+} = 2V,$ 30 70 60 mA (Max) V⁻_{IN} = 3V 32 80 90 mA (Max) COMPARATORS Offset Voltage $4V \le V^+ \le 36V$ (32V for LM613C), 1.0 5.0 Vos 3.0 mV (Max) $R_L = 15 k\Omega$ 2.0 7.0 6.0 mV (Max) Offset Voltage $0V \le V_{CM} \le 36V$ 1.0 5.0 mV (Max) 3.0 Vos V⁺ = 36V, (32V for LM613C) V_{CM} 1.5 6.0 7.0 mV (Max) over V_{CM} Average Offset µV/°C 15 Vos Voltage Drift ΔT (Max) I_B Input Bias Current 5 25 35 nA (Max) 8 30 nA (Max) 40 Input Offset Current 0.2 4 4 nA (Max) los 0.3 5 5 nA (Max) A_V Voltage Gain $R_1 = 10 \text{ k}\Omega$ to 36V (32V for 500 V/mV LM613C) $2V \le V_{OUT} \le 27V$ 100 V/mV $V^+_{IN} = 1.4V, V^-_{IN} = TTL Swing,$ Large Signal 1.5 t_r μs **Response Time** $R_1 = 5.1 \text{ k}\Omega$ 2.0 μs $V^{+}_{IN} = 0V, V^{-}_{IN} = 1V,$ Output Sink Current 20 10 mA (Min) 10 ISINK $V_{OUT} = 1.5V$ 13 8 8 mA (Min) $V_{OUT} = 0.4V$ 2.8 1.0 0.8 mA (Min) 2.4 0.5 0.5 mA (Min)

3

N.COM.TW

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

www.national.com

LM613

LM613

Electrical Characteristics (Continued)

These specifications apply for V⁻ = GND = 0V, V⁺ = 5V, V_{CM} = V_{OUT} = 2.5V, I_R = 100 μ A, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for T_J = 25°C; limits in **boldface type** apply over the **Operating** Temperature Range

LOOY.COM.

Symbol	Parameter	Conditions	Typical (Note 7)	LM613AM LM613AI Limits (Note 8)	LM613M LM613I LM613C Limits (Note 8)	Units
COMPARA	TORS	COM.	V.J.	ON. TW	, ,	
I _{LEAK}	Output Leakage Current	$V^{+}_{IN} = 1V, V^{-}_{IN} = 0V,$ $V_{OUT} = 36V (32V \text{ for LM613C})$	0.1 0.2	10	10	μΑ (Max) μΑ (Max)
VOLTAGE	REFERENCE	N TY W	100	1.00	N	
V _R	Voltage Reference	(Note 10)	1.244	1.2365 1.2515 (±0.6%)	1.2191 1.2689 (±2%)	V (Min) V (Max)
$\frac{\Delta V_{R}}{\Delta T}$	Average Temp. Drift	(Note 11)	10	80	150	ppm/°C (Max)
$\frac{\Delta V_{R}}{\Delta T_{J}}$	Hysteresis	(Note 12)	3.2	V.100Y.C	OM.TW	µV/°C
ΔVR	V _R Change	V _{R(100 µA)} – V _{R(17 µA)}	0.05	N.1	COM	mV (Max)
ΔI_{R}	with Current	WWW.100Y.COM.TW	0.1	1.100	. 11	mV (Max)
	COMTW	V _{R(10 mA)} - V _{R(100 µA)} (Note 13)	1.5 2.0	5 5.5	5 5.5	mV (Max) mV (Max)
R 100	Resistance	ΔV _{R(10→0.1 mA)} /9.9 mA ΔV _{R(100→17 μA)} /83 μA	0.2	0.56 13	0.56 13	Ω (Max) Ω (Max)
$\frac{V_{R}}{\Delta V_{RO}}$	V _R Change with High V _{RO}	$V_{R(Vro = Vr)} - V_{R(Vro = 6.3V)}$ (5.06V between Anode and FEEDBACK)	2.5 2.8	7 10	7	mV (Max) mV (Max)
$\frac{V_{R}}{\Delta V^{+}}$	V _R Change with V _{ANODE} Change	$V_{R(V+ = 5V)} - V_{R(V+ = 36V)}$ (V ⁺ = 32V for LM613C)	0.1 0.1	1.2 1.3	1.2 1.3	mV (Max) mV (Max)
WW	W.100Y.COM.T	$V_{R(V+ = 5V)} - V_{R(V+ = 3V)}$	0.01 0.01	1 1.5	1 1.5	mV (Max) mV (Max)
I _{FB}	FEEDBACK Bias Current	$V_{ANODE} \le V_{FB} \le 5.06V$	22 29	35 40	50 55	nA (Max) nA (Max)
e _n	V _R Noise	10 Hz to 10 kHz, $V_{RO} = V_{R}$	30		WWW.10	μV _{RMS}

WWW.100Y.COM.TW 勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw

4

WWW.10

W.100Y.COM

WWW.100Y.COM.T

THE TONY.COM.TW

WWW.100Y.C

WW.100Y.COM.TW

WY.COM.TW

WW.100Y.COM.TW

WT.N

WWW.100Y.COM.TV

WWW.100Y.COM.T

WWW.1002.COM

Electrical Characteristics (Continued)

Note 1: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device beyond its rated operating conditions.

0X.COM

Note 2: Input voltage above V⁺ is allowed. As long as one input pin voltage remains inside the common-mode range, the comparator will deliver the correct output.

Note 3: More accurately, it is excessive current flow, with resulting excess heating, that limits the voltages on all pins. When any pin is pulled a diode drop below V⁻, a parasitic NPN transistor turns ON. No latch-up will occur as long as the current through that pin remains below the Maximum Rating. Operation is undefined and unpredictable when any parasitic diode or transistor is conducting.

Note 4: Simultaneous short-circuit of multiple comparators while using high supply voltages may force junction temperature above maximum, and thus should not be continuous

Note 5: Junction temperature may be calculated using $T_J = T_A + P_D \theta_{JA}$. The given thermal resistance is worst-case for packages in sockets in still air. For packages soldered to copper-clad board with dissipation from one comparator or reference output transistor, nominal 0JA is 90°C/W for the N package, and 135°C/W for the WM package.

Note 6: Human body model, 100 pF discharged through a 1.5 k Ω resistor.

Note 7: Typical values in standard typeface are for T_J = 25°C; values in **bold face type** apply for the full operating temperature range. These values represent the most likely parametric norm.

Note 8: All limits are guaranteed at room temperature (standard type face) or at operating temperature extremes (bold type face).

Note 9: Slew rate is measured with the op amp in a voltage follower configuration. For rising slew rate, the input voltage is driven from 5V to 25V, and the output voltage transition is sampled at 10V and @ 20V. For falling slew rate, the input voltage is driven from 25V to 5V, and the output voltage transition is sampled at 20V and 10V.

Note 10: V_R is the Cathode-to-feedback voltage, nominally 1.244V.

WWW.100Y.COM.TW

WWW.100Y.COM.TW

Note 11: Average reference drift is calculated from the measurement of the reference voltage at 25°C and at the temperature extremes. The drift, in ppm/°C, is 10⁶•ΔV_R/(V_{RI25}·C]•ΔT_J), where ΔV_R is the lowest value subtracted from the highest, V_{RI25}·C_I is the value at 25°C, and ΔT_J is the temperature range. This parameter is guaranteed by design and sample testing.

Note 12: Hysteresis is the change in V_R caused by a change in T_J, after the reference has been "dehysterized". To dehysterize the reference; that is minimize the hysteresis to the typical value, its junction temperature should be cycled in the following pattern, spiraling in toward 25°C: 25°C, 85°C, -40°C, 70°C, 0°C, 25°C. Note 13: Low contact resistance is required for accurate measurement.

> 勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

<u>w.1</u>00Y.COM.TW

WWW.100X.CC5.1.1

TATEN 100Y.COM.TW

WWW.1001.

WT.MO

WWW.100Y.COM.TW

LOOY.COM.TW

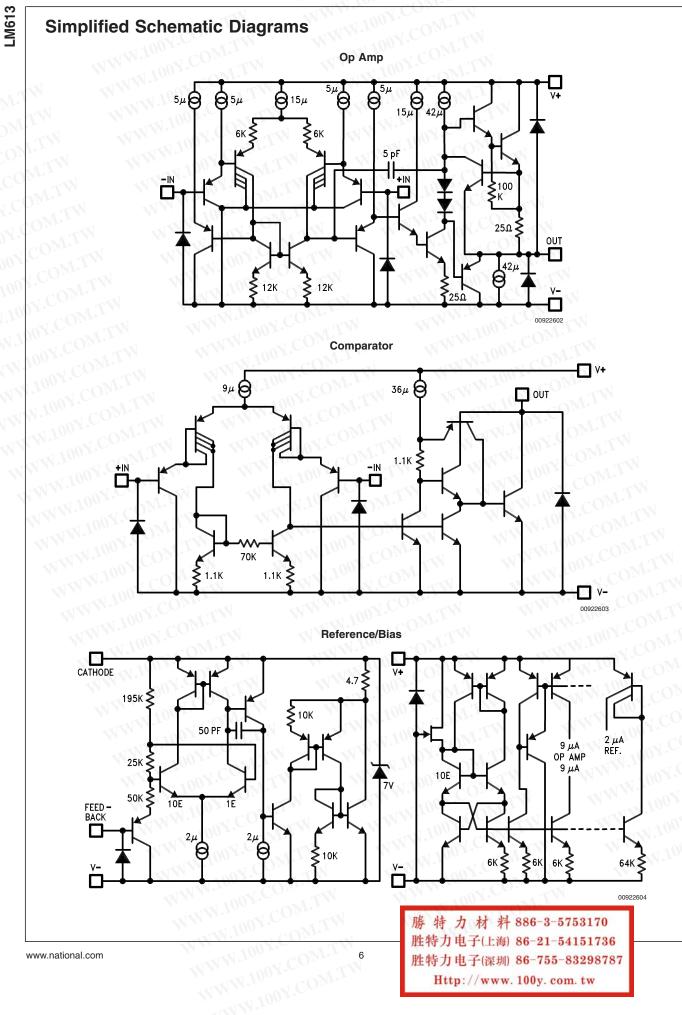
WWW.100Y.COM.TW

NW.100Y.COM.TW

WWW.10

WWW.10

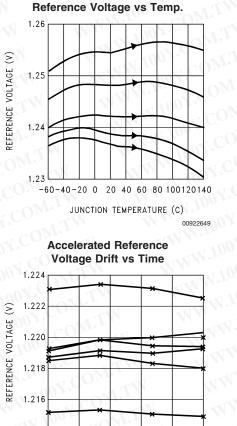
NWN

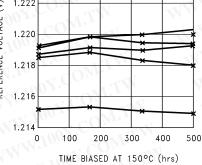

OY.COM.TW

DOY.COM.TV

.100Y.COM.T

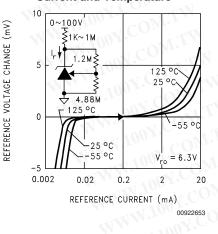
N.100Y.COM.


W.100Y.COM



Http://www.100y.com.tw

Typical Performance Characteristics (Reference)

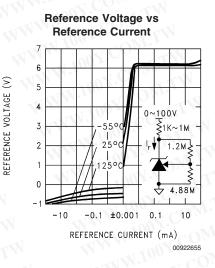

 $T_1 = 25^{\circ}C$, FEEDBACK pin shorted to V⁻ = 0V, unless otherwise noted

Reference Voltage vs Current and Temperature

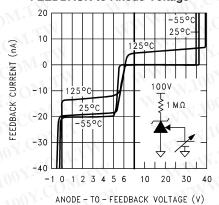
00922651

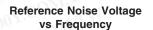
WW 100Y.COM.TW

W.100Y.COM

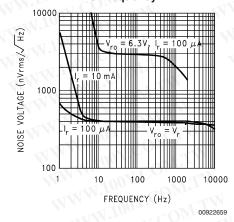

LM613

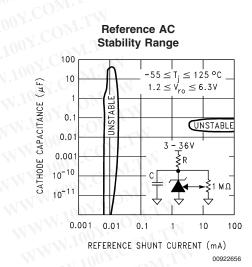
www.national.com

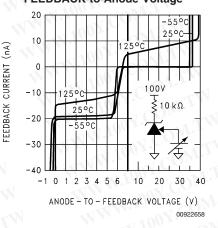

W.100Y.CON


Typical Performance Characteristics (Reference) T_J = 25°C, FEEDBACK pin shorted to V⁻ =

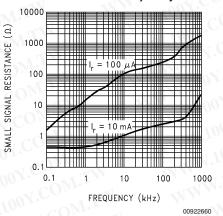
0V, unless otherwise noted (Continued)




FEEDBACK Current vs FEEDBACK-to-Anode Voltage



00922657

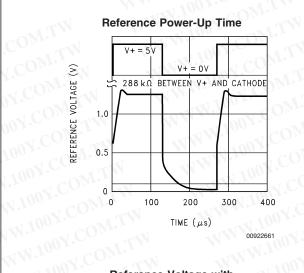


FEEDBACK Current vs FEEDBACK-to-Anode Voltage

Reference Small-Signal Resistance vs Frequency

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

www.national.com

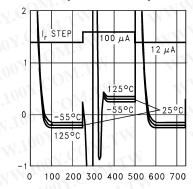

8 WW INNY.COM.TW

WWW.100Y.COM

WWW.100

Typical Performance Characteristics (Reference) T_J = 25°C, FEEDBACK pin shorted to V⁻ =

0V, unless otherwise noted (Continued)

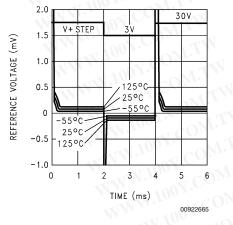


Reference Voltage with 100 ~ 12 µA Current Step

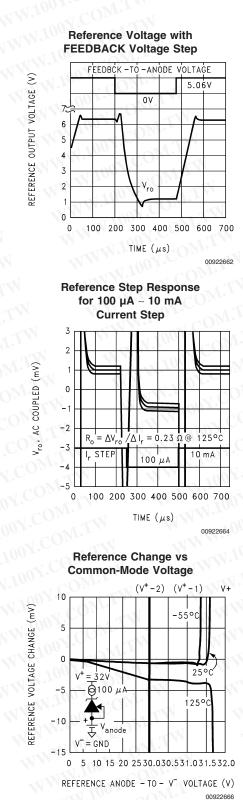
(mV)

VOLTAGE CHANGE

REFERENCE



TIME (μs)


00922663

TATW 100Y.COM.TW

Reference Voltage Change with Supply Voltage Step

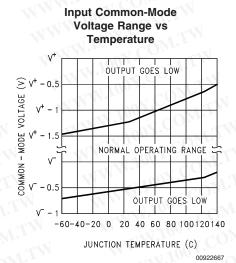
W.100Y.COM

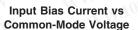
LM613

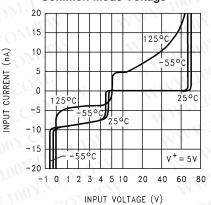
www.national.com

NWN

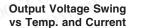
WW

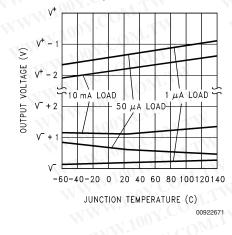

WW

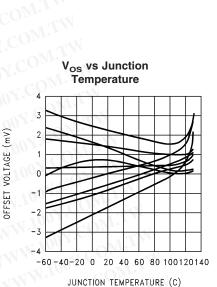

N.100Y


W.100X.CON

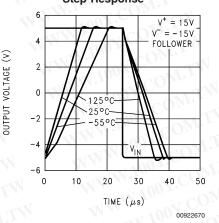
Typical Performance Characteristics (Op Amps)

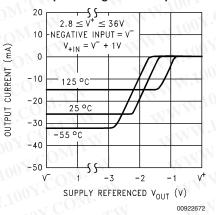

V^+ = 5V, V^- = GND = 0V, V_{CM} = V^+/2, V_{OUT} = V^+/2, T_J = 25°C, unless otherwise noted





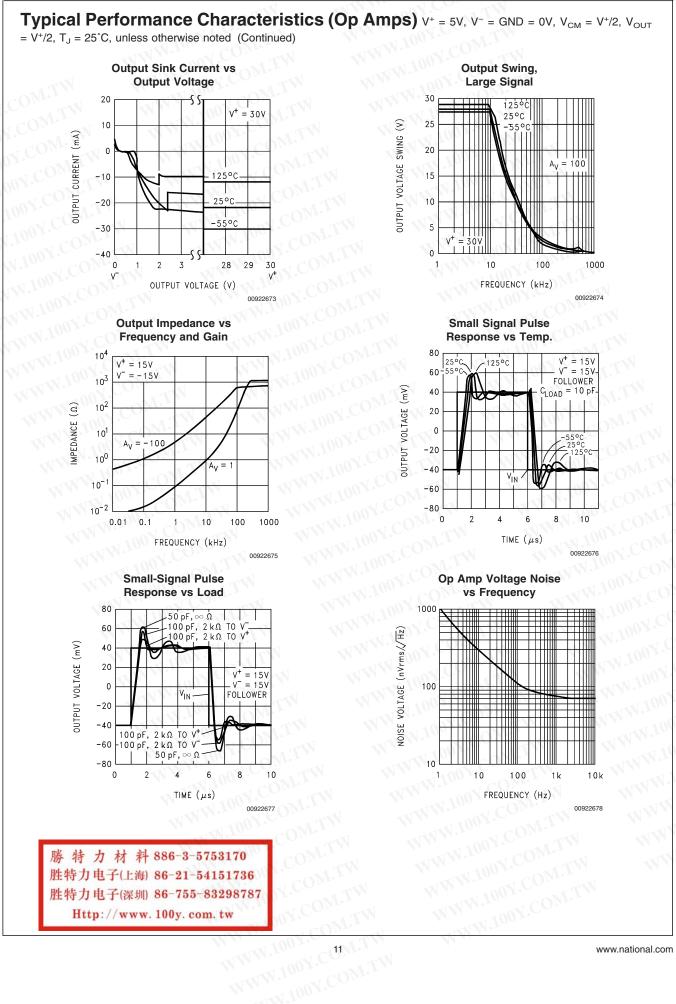
00922669





00922668

Large-Signal Step Response

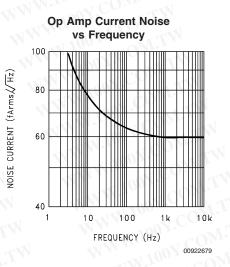


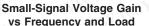
Output Source Current vs Output Voltage and Temp.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

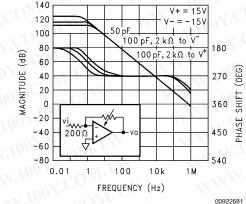
www.national.com

www.national.com

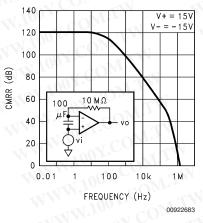

WW 100Y.COM.TW

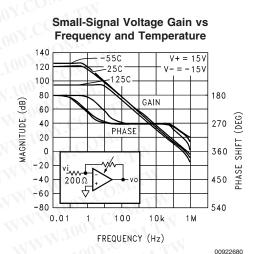

LM613

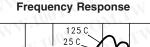
LM613

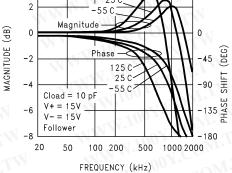

Typical Performance Characteristics (Op Amps) V⁺ = 5V, V⁻ = GND = 0V, V_{CM} = V⁺/2, V_{OUT}

= V⁺/2, T_J = 25°C, unless otherwise noted (Continued)

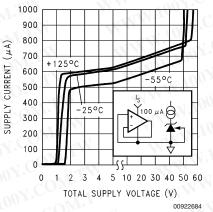




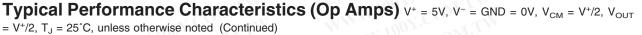


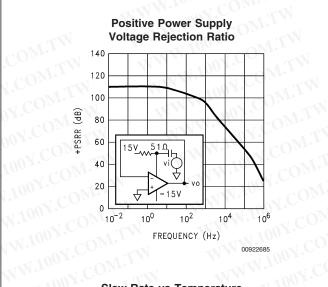


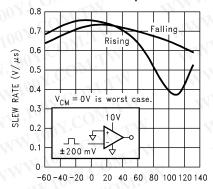
Follower Small-Signal

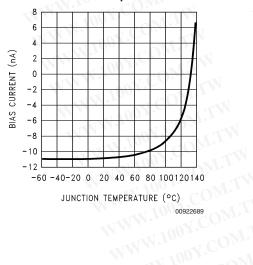


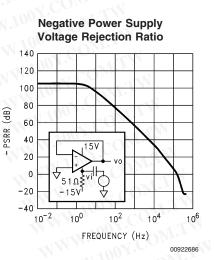
4


00922682

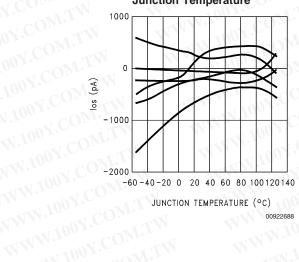

Power Supply Current vs Power Supply Voltage


力材料 886-3-5753170 勝特 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw



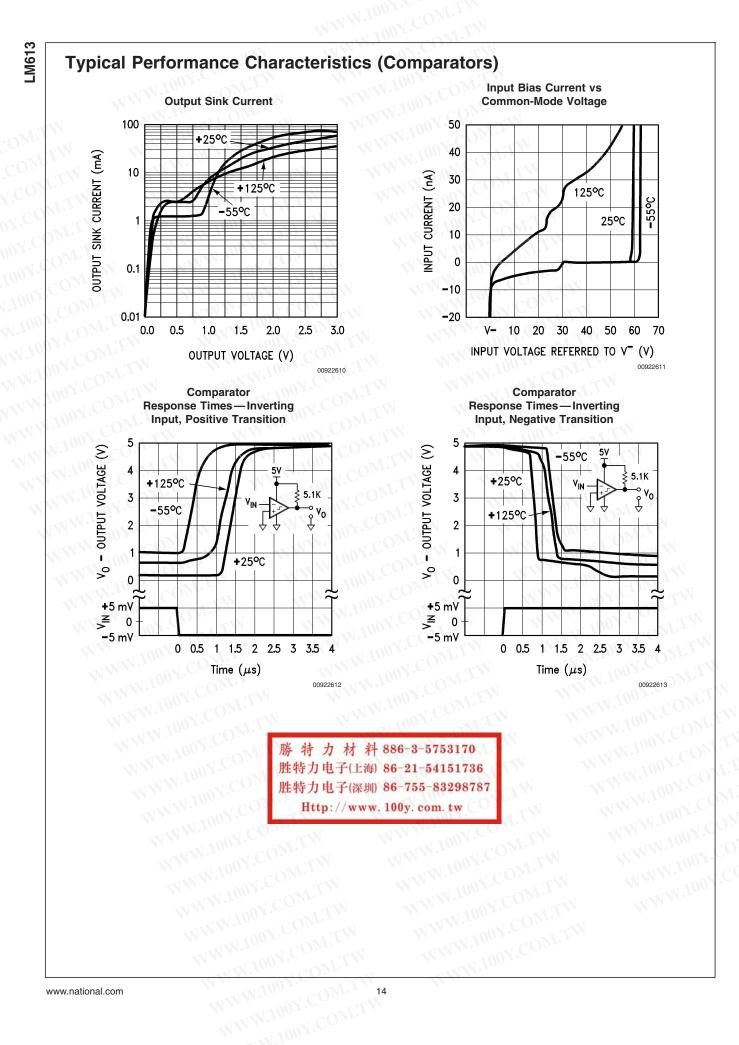


JUNCTION TEMPERATURE (°C) 00922687

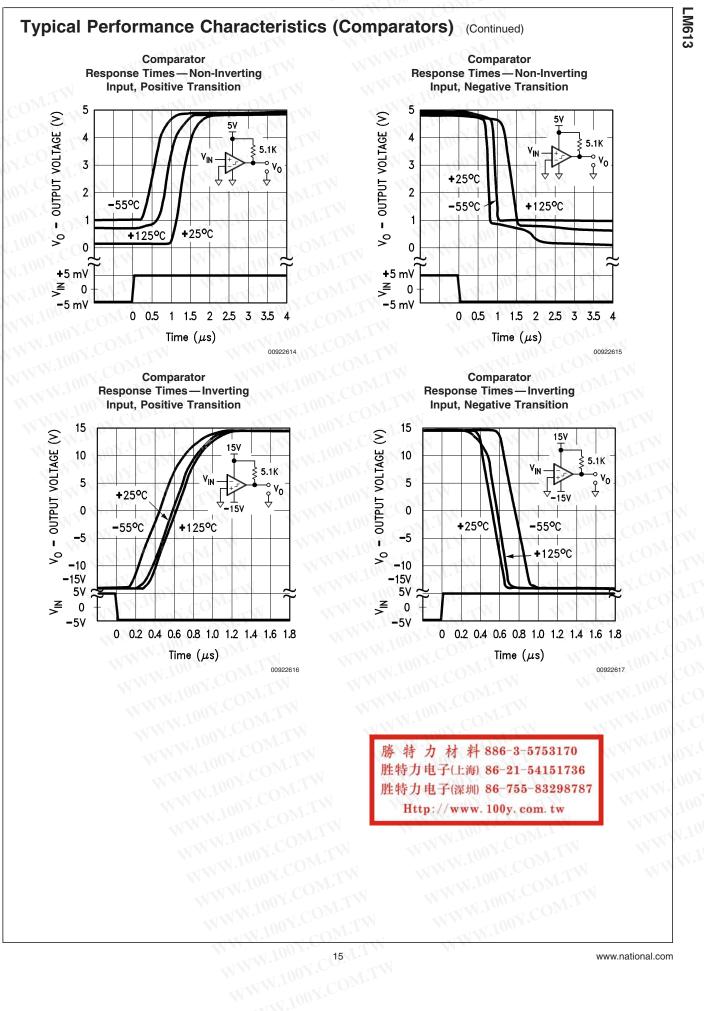

Input Bias Current vs Junction Temperature

LM613

Input Offset Current vs **Junction Temperature**

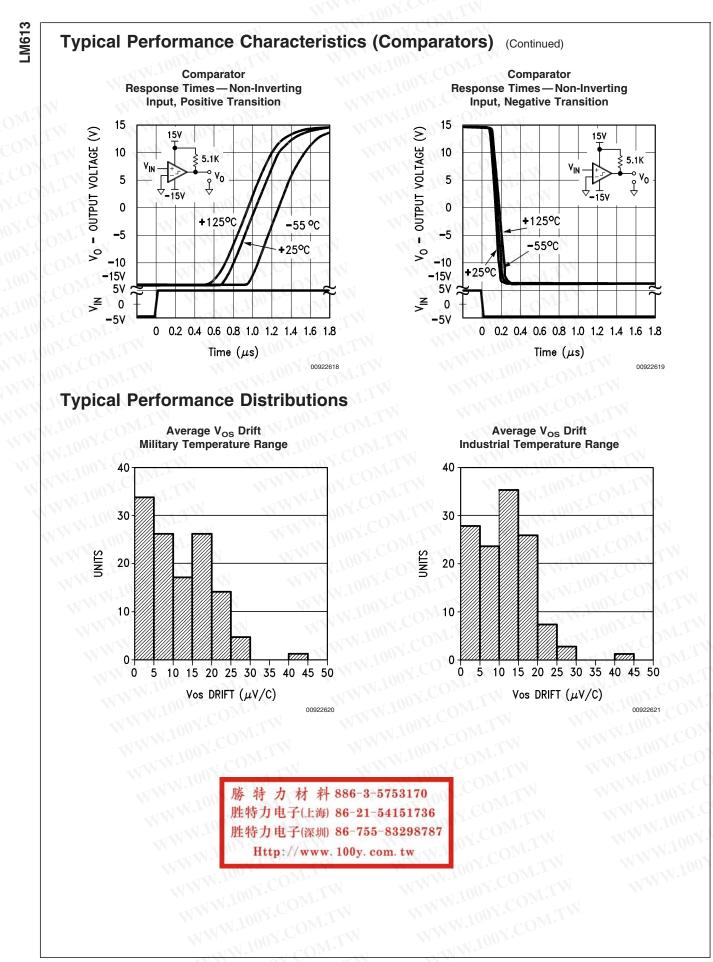

勝特力材料	886-3-5753170
胜特力电子(上海)	86-21-54151736
胜特力电子(深圳)	86-755-83298787
Http://www.	100y. com. tw

W.100Y.COM

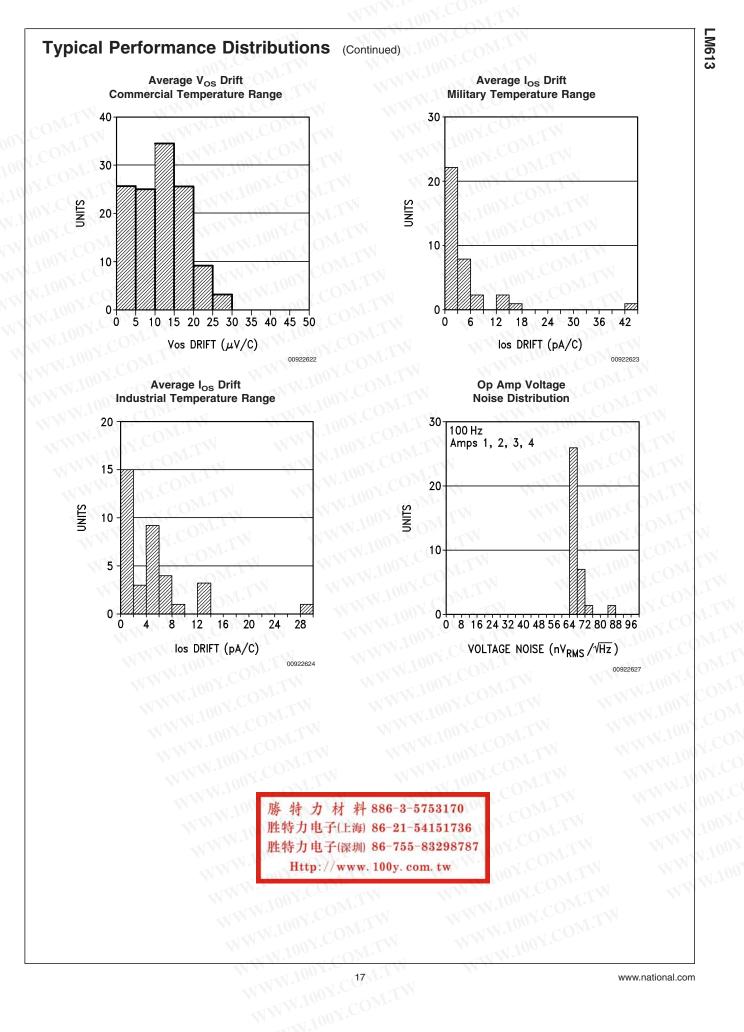

www.national.com

WWW.1001.

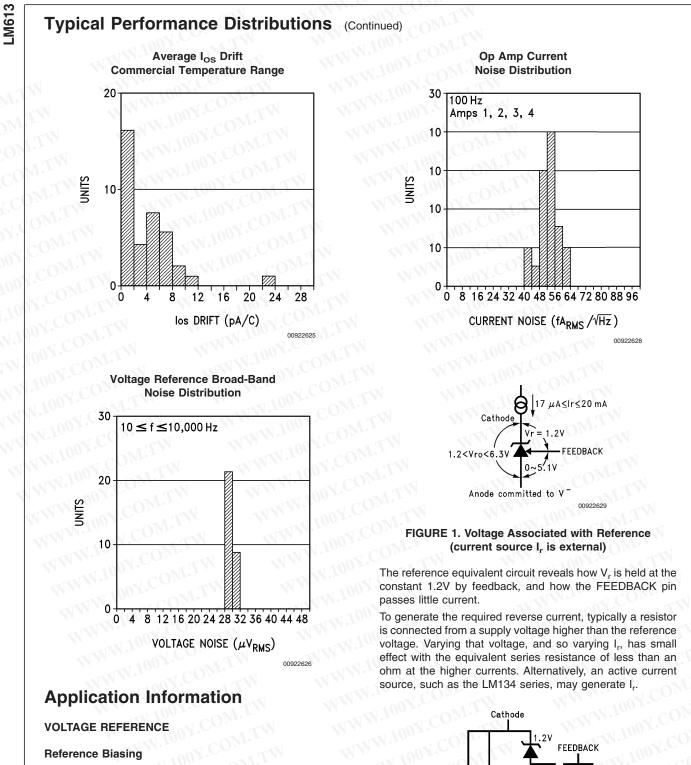
WWW.100Y.COM



14 WWW 100Y.COM.TW


www.national.com

WW 100Y.COM.TW

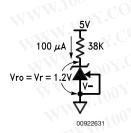


www.national.com

N.1004.COM.116 N.1007.COM.119

WWW 100Y.COM.TW

Anode = V-


FIGURE 2. Reference Equivalent Circuit

00922630

The voltage reference is of a shunt regulator topology that models as a simple zener diode. With current I_r flowing in the "forward" direction there is the familiar diode transfer function. I_r flowing in the reverse direction forces the reference voltage to be developed from cathode to anode. The cathode may swing from a diode drop below V⁻ to the reference voltage or to the avalanche voltage of the parallel protection diode, nominally 7V. A 6.3V reference with V⁺ = 3V is allowed.

www.national.com

Application Information (Continued)

FIGURE 3. 1.2V Reference

Capacitors in parallel with the reference are allowed. See the Reference AC Stability Range typical curve for capacitance values—from 20 μ A to 3 mA any capacitor value is stable. With the reference's wide stability range with resistive and capacitive loads, a wide range of RC filter values will perform noise filtering.

Adjustable Reference

The FEEDBACK pin allows the reference output voltage, V_{ro} , to vary from 1.24V to 6.3V. The reference attempts to hold V_r at 1.24V. If V_r is above 1.24V, the reference will conduct current from Cathode to Anode; FEEDBACK current always remains low. If FEEDBACK is connected to Anode, then $V_{ro} = V_r = 1.24V$. For higher voltages FEEDBACK is held at a constant voltage above Anode—say 3.76V for $V_{ro} = 5V$. Connecting a resistor across the constant V_r generates a current I=R1/V_r flowing from Cathode into FEEDBACK node. A Thevenin equivalent 3.76V is generated from FEEDBACK to Anode with R2=3.76/I. Keep I greater than one thousand times larger than FEEDBACK bias current for <0.1% error—I≥32 μ A for the military grade over the military temperature range (I≥5.5 μ A for a 1% untrimmed error for a commercial part).

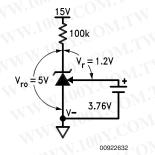
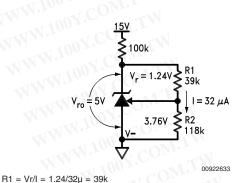



FIGURE 4. Thevenin Equivalent of Reference with 5V Output

 $R2 = R1 \{(Vro/Vr) - 1\} = 39k \{(5/1.24) - 1)\} = 118k$

FIGURE 5. Resistors R1 and R2 Program Reference Output Voltage to be 5V

Understanding that V_r is fixed and that voltage sources, resistors, and capacitors may be tied to the FEEDBACK pin, a range of V, temperature coefficients may be synthesized.

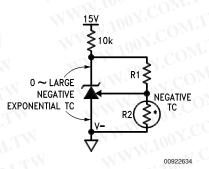


FIGURE 6. Output Voltage has Negative Temperature Coefficient (TC) if R2 has Negative TC

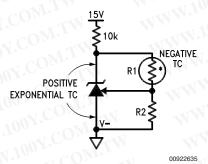
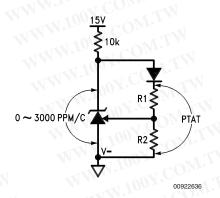
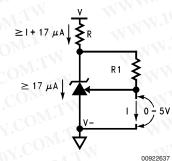
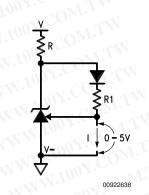



FIGURE 7. Output Voltage has Positive TC if R1 has Negative TC

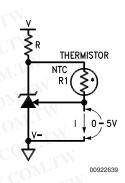
勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw LM613


LM613

Application Information (Continued)


FIGURE 8. Diode in Series with R1 Causes Voltage Across R1 and R2 to be Proportional to Absolute Temperature (PTAT)

Connecting a resistor across Cathode-to-FEEDBACK creates a 0 TC current source, but a range of TCs may be synthesized.



I = Vr/R1 = 1.24/R1

FIGURE 9. Current Source is Programmed by R1

FIGURE 10. Proportional-to-Absolute-Temperature Current Source

FIGURE 11. Negative-TC Current Source

Reference Hysteresis

The reference voltage depends, slightly, on the thermal history of the die. Competitive micro-power products vary always check the data sheet for any given device. Do not assume that no specification means no hysteresis.

OPERATIONAL AMPLIFIERS AND COMPARATORS

Any amp, comparator, or the reference may be biased in any way with no effect on the other sections of the LM613, except when a substrate diode conducts, see Electrical Characteristics (Note 1). For example, one amp input may be outside the common-mode range, another amp may be operating as a comparator, and all other sections may have all terminals floating with no effect on the others. Tying inverting input to output and non-inverting input to V⁻ on unused amps is preferred. Unused comparators should have non-inverting input and output tied to V⁺, and inverting input tied to V⁻. Choosing operating points that cause oscillation, such as driving too large a capacitive load, is best avoided.

Op Amp Output Stage

These op amps, like the LM124 series, have flexible and relatively wide-swing output stages. There are simple rules to optimize output swing, reduce cross-over distortion, and optimize capacitive drive capability:

- Output Swing: Unloaded, the 42 μA pull-down will bring the output within 300 mV of V⁻ over the military temperature range. If more than 42 μA is required, a resistor from output to V⁻ will help. Swing across any load may be improved slightly if the load can be tied to V⁺, at the cost of poorer sinking open-loop voltage gain.
- 2. Cross-Over Distortion: The LM613 has lower cross-over distortion (a 1 V_{BE} deadband versus 3 V_{BE} for the LM124), and increased slew rate as shown in the characteristic curves. A resistor pull-up or pull-down will force class-A operation with only the PNP or NPN output transistor conducting, eliminating cross-over distortion.
- 3. Capacitive Drive: Limited by the output pole caused by the output resistance driving capacitive loads, a pulldown resistor conducting 1 mA or more reduces the output stage NPN r_e until the output resistance is that of the current limit 25 Ω . 200 pF may then be driven without oscillation.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Application Information (Continued)

Comparator Output Stage

W.100Y.COM.TW WW.100Y.COM.TW

The comparators, like the LM139 series, have open-collector output stages. A pull-up resistor must be added from each output pin to a positive voltage for the output transistor to switch properly. When the output transistor is OFF, the output voltage will be this external positive voltage.

For the output voltage to be under the TTL-low voltage threshold when the output transistor is ON, the output current must be less than 8 mA (over temperature). This impacts the minimum value of pull-up resistor.

The offset voltage may increase when the output voltage is low and the output current is less than 30 µA. Thus, for best accuracy, the pull-up resistor value should be low enough to allow the output transistor to sink more than 30 µA.

Op Amp and Comparator Input Stage

The lateral PNP input transistors, unlike those of most op amps, have BV_{EBO} equal to the absolute maximum supply voltage. Also, they have no diode clamps to the positive supply nor across the inputs. These features make the inputs look like high impedances to input sources producing large differential and common-mode voltages.

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

W.100Y.COM.TW

VVVV.100X.C²¹/17

TATW 100Y.COM.TW

WWW.100X.

WWW.100Y.COM.TW

NW.100Y.COM.TW

WWW.W

WWW

OX.COM.TW 100Y.COM.TV

N.100Y.COM.

LM613

Typical Applications

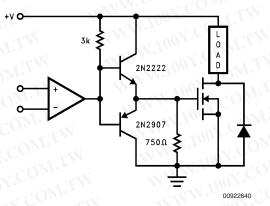


FIGURE 12. High Current, High Voltage Switch

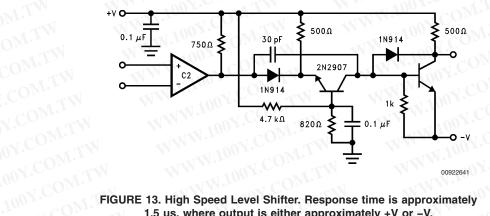
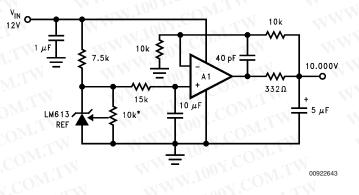



FIGURE 13. High Speed Level Shifter. Response time is approximately 1.5 μ s, where output is either approximately +V or -V.

*10k must be low t.c. trimpot

FIGURE 14. Ultra Low Noise, 10.00V Reference. Total output noise is typically 14 µV_{RMS}.

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.COM

Typical Applications (Continued)

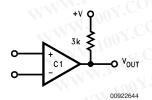
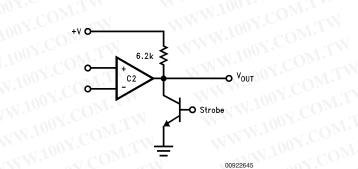
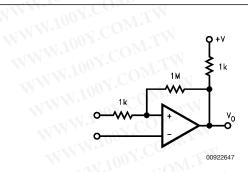
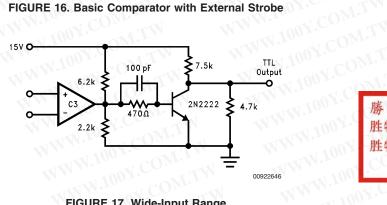




FIGURE 15. Basic Comparator



100Y.COM.TW

FIGURE 18. Comparator with Hysteresis ($\Delta V_H = {}^+V(1k/1M)$) WWW.100Y.COM

FIGURE 16. Basic Comparator with External Strobe

勝 特 力 材 料 8 胜特力电子(上海) 8 胜特力电子(深圳) 8 Http://www.1	36-21-54151736 36-755-83298787
N.COM.TW	WWW.100X.COM

100Y.COM

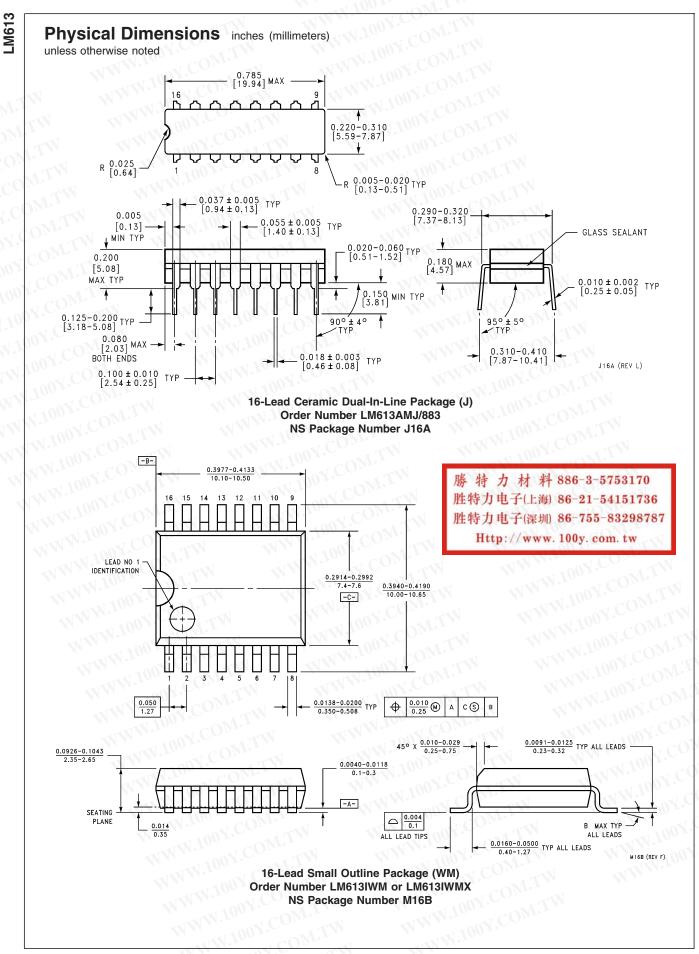
Ordering Information

WWW	ON Temperature Range		WT5	NWW
Reference Tolerance & V _{os}	Military –55°C ≤ T _A ≤ +125°C	Industrial −40°C ≤ T _A ≤ +85°C	Package	NSC Drawing
:0.6% ⁄0 ppm/°C Max. ⁄ _{OS} ≤ 3.5 mV	LM613AMJ/883 (Note 14)	WWW.1007.0	16-Pin Ceramic DIP	J16A
:2.0% 50 ppm/°C Max. ′ _{OS} ≤ 5.0 mV Max.	W.100Y.COM.TW	LM613IWM LM613IWMX	16-Pin Wide Surface Mount	M16B

Note 14: A military RETS 613AMX electrical test specification is available on request. The Military screened parts can also be procured as a Standard Military WWW.100X Drawing.

OM.TW

W.100Y.COM.TW


WWW.100Y.C²³

TATIN INDY.COM.TW

WWW.1001.

W.100Y.COM.TW

N.100Y.COM.

24 111112 COM 24

LIFE SUPPORT POLICY

WW.100X.COM.

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

www.national.com

National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +44 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560 C

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.