

LMV321/LMV358/LMV324 Single/Dual/Quad

September 22, 2009

General Purpose, Low Voltage, Rail-to-Rail Output Operational Amplifiers

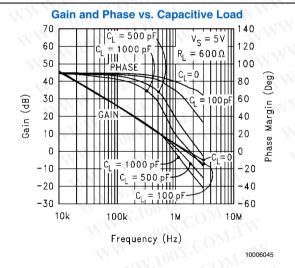
General Description

The LMV358/LMV324 are low voltage (2.7–5.5V) versions of the dual and quad commodity op amps, LM358/LMV324, which currently operate at 5–30V. The LMV321 is the single version

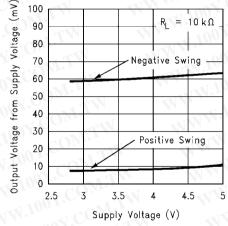
The LMV321/LMV358/LMV324 are the most cost effective solutions for the applications where low voltage operation, space saving and low price are needed. They offer specifications that meet or exceed the familiar LM358/LMV324. The LMV321/LMV358/LMV324 have rail-to-rail output swing capability and the input common-mode voltage range includes ground. They all exhibit excellent speed to power ratio, achieving 1 MHz of bandwidth and 1 V/µs of slew rate with low supply current.

The LMV321 is available in the space saving 5-Pin SC70, which is approximately half the size of the 5-Pin SOT23. The small package saves space on PC boards, and enables the design of small portable electronic devices. It also allows the designer to place the device closer to the signal source to reduce noise pickup and increase signal integrity.

The chips are built with National's advanced submicron silicon-gate BiCMOS process. The LMV321/LMV358/LMV324 have bipolar input and output stages for improved noise performance and higher output current drive.


Features

(For $V^+ = 5V$ and $V^- = 0V$, unless otherwise specified)


- Guaranteed 2.7V and 5V performance
- No crossover distortion
- Industrial temperature range −40°C to +85°C
 Gain-bandwidth product 1 MHz
- Low supply current
- LMV321
 LMV358
 LMV324
 130 μA
 210 μA
 410 μA
- Rail-to-rail output swing @ 10 k Ω V+ -10 mV V- +65 mV
- V_{CM} -0.2V to V+-0.8V

Applications

- Active filters
- General purpose low voltage applications
- General purpose portable devices

10006067

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw ESD Tolerance (Note 2)

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Infrared or Convection (30 sec) 260°C Storage Temp. Range -65°C to 150°C Junction Temperature (*Note 5*) 150°C

Operating Ratings (Note 1)

Human Body Model Supply Voltage 2.7V to 5.5V

LMV358/LMV324 2000V Temperature Range (*Note 5*)

LMV321 900V LMV321/LMV358/LMV324 -40°C to +85°C

Machine Model 100V Thermal Resistance (θ_{JA}) (*Note 10*)

Differential Input Voltage ±Supply Voltage 5-pin SC70 478°C/W -0.3V to +Supply Voltage Input Voltage 5-pin SOT23 265°C/W Supply Voltage (V+-V-) 5.5V 8-Pin SOIC 190°C/W Output Short Circuit to V+ (Note 3) 8-Pin MSOP 235°C/W

Output Short Circuit to V - (Note 4) 14-Pin SOIC 145°C/W
Soldering Information 14-Pin TSSOP 155°C/W

2.7V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for T_J = 25°C, V^+ = 2.7V, V^- = 0V, V_{CM} = 1.0V, V_O = V+/2 and R_L > 1 M Ω .

Symbol	Parameter	Conditions	Min (Note 7)	Typ (Note 6)	Max (Note 7)	Units
V _{os}	Input Offset Voltage	COMP	M.Ing	1.7	7	mV
TCVos	Input Offset Voltage Average Drift	OX. ONITH	10V.10V	5		μV/°C
I _B	Input Bias Current	OOY. OOY.	11	11	250	nA
I _{os}	Input Offset Current	CONTRACTOR	MAL	5	50	nA
CMRR	Common Mode Rejection Ratio	0V ≤ V _{CM} ≤ 1.7V	50	63	Diar.	dB
PSRR	Power Supply Rejection Ratio	$2.7V \le V^{+} \le 5V$ $V_{O} = 1V$	50	60	$O_{M, T}$	dB
V _{CM}	Input Common-Mode Voltage Range	For CMRR ≥ 50 dB	0	-0.2	- N.T	V
WW.	COM.	MM. TO COM. TW	WV	1.9	1.7	V
Vo	Output Swing	R_L = 10 kΩ to 1.35V	V+ -100	V+ -10	A COM	mV
	100Y.CONLTW	W.100Y. COM.TW	11	60	180	mV
I _S	Supply Current	LMV321	1	80	170	μA
	W.Too. COM: LA	LMV358 Both amplifiers	-7	140	340	μА
	WW.100Y.COM.TW	LMV324 All four amplifiers	N	260	680	μА

2.7V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for T $_J$ = 25°C, V+ = 2.7V, V- = 0V, V $_{CM}$ = 1.0V, V $_{O}$ = V+/2 and R $_L$ > 1 M Ω .

Symbol	Parameter	Conditions	Min (Note 7)	Typ (Note 6)	Max (Note 7)	Units
GBWP	Gain-Bandwidth Product	C _L = 200 pF	OWITH	1	1.11	MHz
Φ_{m}	Phase Margin	CM MM 100x	TIME	60	VI AL	Deg
G _m	Gain Margin	CAN MAN MA	LUST	10	MM	dB
e _n	Input-Referred Voltage Noise	f = 1 kHz	COM	46	MMA	nV √Hz
i _n	Input-Referred Current Noise	f = 1 kHz	ON.COM	0.17		pA √Hz

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787

5V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for T $_J$ = 25°C, V+ = 5V, V- = 0V, V $_{CM}$ = 2.0V, V $_{O}$ = V+/2 and R $_L$ > 1 M Ω . **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Min (Note 7)	Typ (Note 6)	Max (Note 7)	Units
V _{os}	Input Offset Voltage	CON.TW WWW	100X.C	1.7	7 9	mV
TCV _{OS}	Input Offset Voltage Average Drift	CONT	N. Ju	5	N .	μV/°C
I _B	Input Bias Current	V.COM.TW WY	N.100X	CO15	250 500	nA
I _{os}	Input Offset Current	DY.COM.TW W	M.V. 100	1.C 5	50 150	nA
CMRR	Common Mode Rejection Ratio	$0V \le V_{CM} \le 4V$	50	65		dB
PSRR	Power Supply Rejection Ratio	$2.7V \le V+ \le 5V$ $V_O = 1V, V_{CM} = 1V$	50	60	M.TW	dB
V _{CM}	Input Common-Mode Voltage	For CMRR ≥ 50 dB	0	-0.2	Divi	V
	Range	W.100 Y. COM. TW	W. Tall	4.2	4	V
A _V	Large Signal Voltage Gain (Note 8)	$R_L = 2 k\Omega$	15 10	100	COM^{T}	V/mV
Vo	Output Swing	$R_L = 2 \text{ k}\Omega \text{ to } 2.5 \text{V}$	V+ -300 V+ -400	V+ -40	I.COM	mV
	100Y.COM.TW	WWW.100X.COM.TW	N.	120	300 400	mV
	W.100X.COM.TW	$R_L = 10 \text{ k}\Omega \text{ to } 2.5 \text{V}$	V+ -100 V+ -200	V+ –10	100X.CO	mV
W	N.100Y.COM.TW	WWW.100Y.COM.	T N	65	180 280	mV
I _o	Output Short Circuit Current	Sourcing, V _O = 0V	5	60	N.100 1.	mA
*	MM. OUN.COM. TW	Sinking, $V_0 = 5V$	10	160	1007	IIIA
I _s	Supply Current	LMV321	MITW	130	250 350	μА
	WWW.100Y.COM.TW	LMV358 Both amplifiers	OM.TW	210	440 615	μΑ
	MMM.100X.COM.I	LMV324 All four amplifiers	OM.TV	410	830 1160	μAC

5V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for T_J = 25°C, V^+ = 5V, V^- = 0V, V_{CM} = 2.0V, V_O = V+/2 and R $_L$ > 1 M Ω . Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Min (Note 7)	Typ (<i>Note 6</i>)	Max (Note 7)	Units
SR	Slew Rate	(Note 9)	001.	M.H		V/µs
GBWP	Gain-Bandwidth Product	C _L = 200 pF	100 Y.C.	TT TT		MHz
Φ_{m}	Phase Margin	COMP.	ON.C	60		Deg
G _m	Gain Margin	COM.	I.In.	0 10	N	dB
e _n	Input-Referred Voltage Noise	f = 1 kHz	N.1007	39	CM.	nV √Hz
i _n	Input-Referred Current Noise	f = 1 kHz	W.100	0.21	TW	pA √Hz

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.

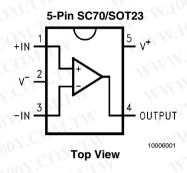
Note 2: Human Body Model, applicable std. MIL-STD-883, Method 3015.7. Machine Model, applicable std. JESD22-A115-A (ESD MM std. of JEDEC) Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC

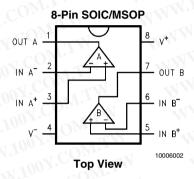
Note 3: Shorting output to V+ will adversely affect reliability.

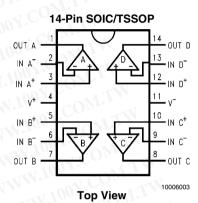
Note 4: Shorting output to V- will adversely affect reliability.

Note 5: The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly onto a PC Board.

Note 6: Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.

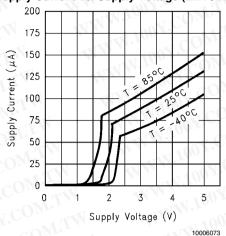

Note 7: All limits are guaranteed by testing or statistical analysis.


Note 8: R_1 is connected to V⁻. The output voltage is $0.5V \le V_0 \le 4.5V$.

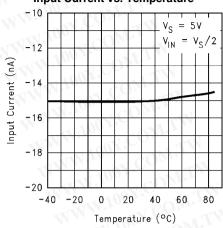

Note 9: Connected as voltage follower with 3V step input. Number specified is the slower of the positive and negative slew rates.

Note 10: All numbers are typical, and apply for packages soldered directly onto a PC board in still air.

Connection Diagrams

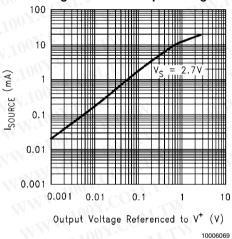

Ordering Information

	Temperature Range	M.Ing COM.	WWW.Io	
Package	Industrial -40°C to +85°C	Packaging Marking	Transport Media	NSC Drawing
5 Din 0070	LMV321M7	A12 CO	1k Units Tape and Reel	NAAOFA
5-Pin SC70	LMV321M7X	AIZ	3k Units Tape and Reel	MAA05A
Dia COTOO	LMV321M5	1410	1k Units Tape and Reel	MEGEA
5-Pin SOT23	LMV321M5X	A13	3k Units Tape and Reel	MF05A
Die COIC	LMV358M	LMVOCOM	Rails	MOGA
3-Pin SOIC	LMV358MX	LMV358M	2.5k Units Tape and Reel	M08A
Dia MCOD	LMV358MM	LMV050	1k Units Tape and Reel	MUADOA
3-Pin MSOP	LMV358MMX	LMV358	3.5k Units Tape and Reel	MUA08A
14 Dia 0010	LMV324M	1.00/00/404	Rails	NN MARK C
14-Pin SOIC	LMV324MX	LMV324M	2.5k Units Tape and Reel	M14A
IA Din TOCOD	LMV324MT	LMVOOAMT	Rails	MTC14
14-Pin TSSOP	LMV324MTX	LMV324MT	2.5k Units Tape and Reel	MTC14

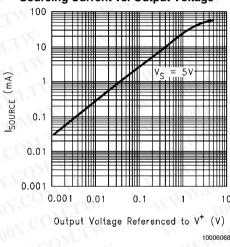

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Typical Performance Characteristics Unless otherwise specified, $V_S = +5V$, single supply, $T_A = 25^{\circ}C$.

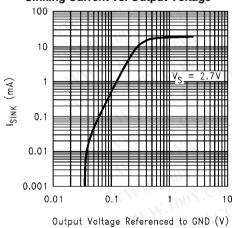
Supply Current vs. Supply Voltage (LMV321)

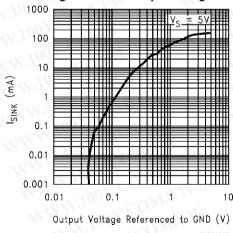


Input Current vs. Temperature



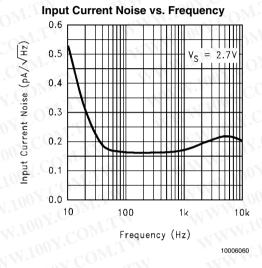
100060a9


Sourcing Current vs. Output Voltage

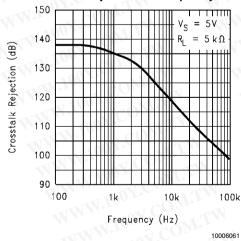

Sourcing Current vs. Output Voltage

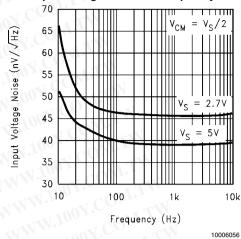
Sinking Current vs. Output Voltage

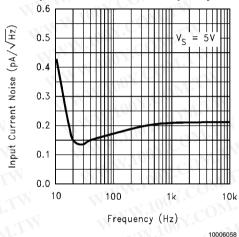

Sinking Current vs. Output Voltage

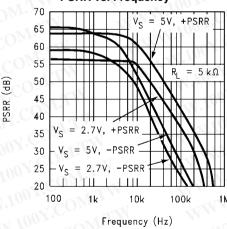

料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

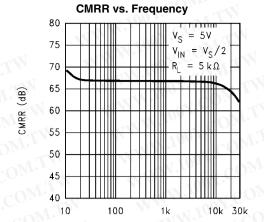

Output Voltage Swing vs. Supply Voltage


-1 CO


Crosstalk Rejection vs. Frequency


Input Voltage Noise vs. Frequency

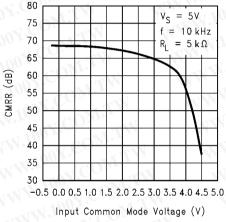
Input Current Noise vs. Frequency



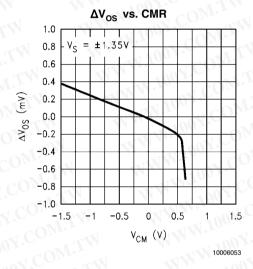
PSRR vs. Frequency

10006051

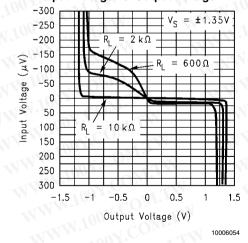
勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw



10006062


CMRR vs. Input Common Mode Voltage 80 $V_S = 2.7V$ 75 f = 10 kHz70 $R_{l} = 5 k \Omega$ 65 (dB) 60 55 50 45 40 35 30 -0.5 0.0 0.5 2.5 1.0 1.5 2.0 Input Common Mode Voltage (V) 10006064

CMRR vs. Input Common Mode Voltage


Frequency (Hz)

10006050

Input Voltage vs. Output Voltage

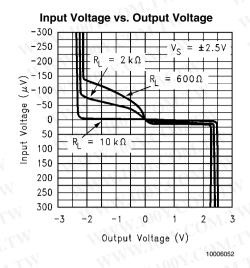
(mV) 0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -2 0 101 3 -3 V_{CM} (V)

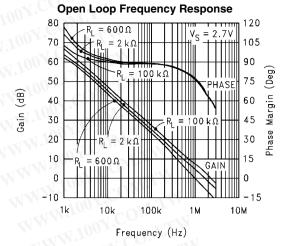
 ΔV_{OS} vs. CMR

 $V_S = \pm 2.5V$

1.0

0.8

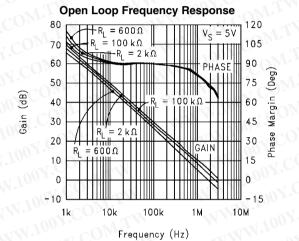

0.6

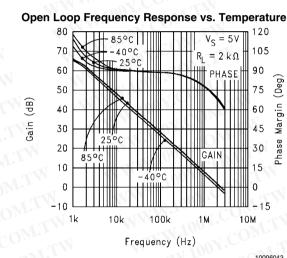

0.4

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787

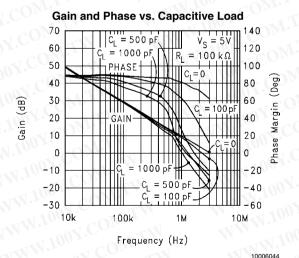
Http://www. 100y. com. tw

WWW.100Y.C CM www.national.com TONY.COM.TW

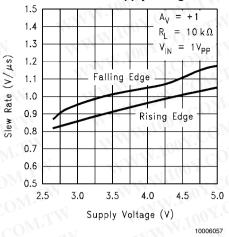


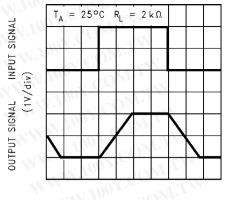


10006042


90

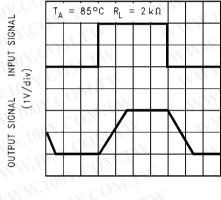
10M


Gain and Phase vs. Capacitive Load 70 = 5V 120 60 = 600Ω 50 100 40 80 30 60 (dB) 20 Gain 10 0 0 -10 -20 -20 -30 10k 100k 10M Frequency (Hz)


材料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

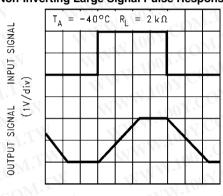
WWW.100Y.COM www.national.com

Slew Rate vs. Supply Voltage


Non-Inverting Large Signal Pulse Response

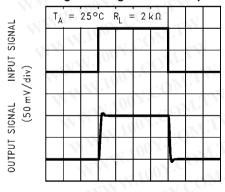
TIME (1 μ s/div)

10006088


Non-Inverting Large Signal Pulse Response

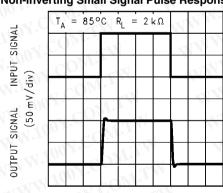
TIME (1 µs/div)

100060a1


Non-Inverting Large Signal Pulse Response

TIME $(1 \mu s/div)$

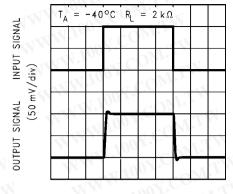
100060a0


Non-Inverting Small Signal Pulse Response

TIME $(1 \mu s/div)$

10006089

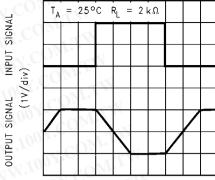
Non-Inverting Small Signal Pulse Response



TIME $(1 \mu s/div)$

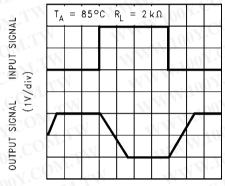
100060a2

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw


Non-Inverting Small Signal Pulse Response

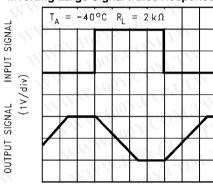
TIME (1 μ s/div)

100060a3


Inverting Large Signal Pulse Response

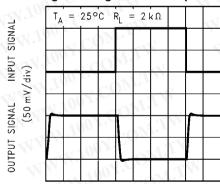
TIME (1 µs/div)

10006090


Inverting Large Signal Pulse Response

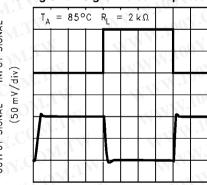
TIME $(1 \mu s/div)$

100060a4


Inverting Large Signal Pulse Response

TIME (1 μ s/div)

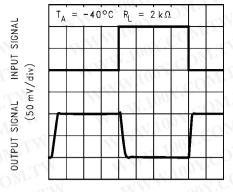
100060a5


Inverting Small Signal Pulse Response

TIME $(1 \mu s/div)$

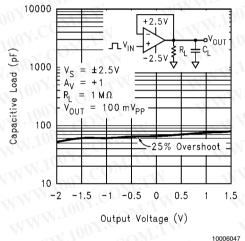
10006091

Inverting Small Signal Pulse Response

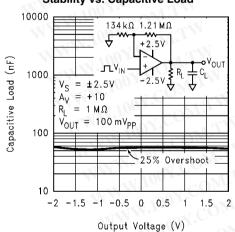

TIME (1 μ s/div)

100060a6

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787

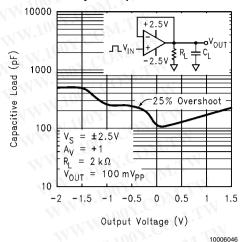

Http://www.100y.com.tw

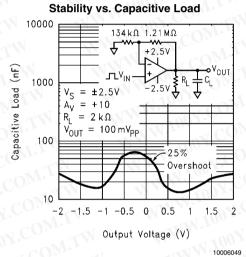
Inverting Small Signal Pulse Response

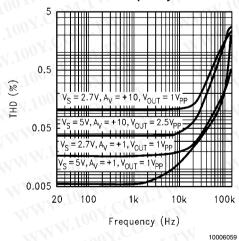


TIME $(1 \mu s/div)$ 100060a7

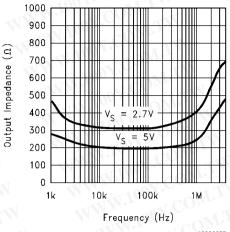
Stability vs. Capacitive Load



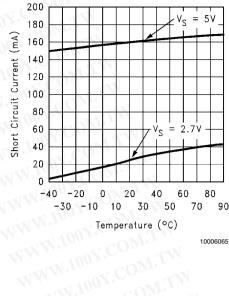

Stability vs. Capacitive Load


10006048

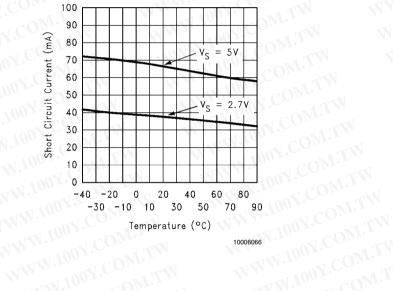
Stability vs. Capacitive Load



THD vs. Frequency


料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

Open Loop Output Impedance vs. Frequency


Short Circuit Current vs. Temperature (Sinking)

<u>w.</u>100Y.COM.T

10006065

Short Circuit Current vs. Temperature (Sourcing)

N.100Y.COM.TW WWW.100Y.COM.TW

WWW.100Y.COM.TW 特力材料886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw WW.100Y.COM.TW

WW.100Y.COM.TW

WWW.100Y.COM. 12 www.national.com TONY.COM.TV

WWW.100Y.COM.TW

Application Information

BENEFITS OF THE LMV321/LMV358/LMV324

Size

The small footprints of the LMV321/LMV358/LMV324 packages save space on printed circuit boards, and enable the design of smaller electronic products, such as cellular phones, pagers, or other portable systems. The low profile of the LMV321/LMV358/LMV324 make them possible to use in PCMCIA type III cards.

Signal Integrity

Signals can pick up noise between the signal source and the amplifier. By using a physically smaller amplifier package, the LMV321/LMV358/LMV324 can be placed closer to the signal source, reducing noise pickup and increasing signal integrity.

Simplified Board Layout

These products help you to avoid using long PC traces in your PC board layout. This means that no additional components, such as capacitors and resistors, are needed to filter out the unwanted signals due to the interference between the long PC traces.

Low Supply Current

These devices will help you to maximize battery life. They are ideal for battery powered systems.

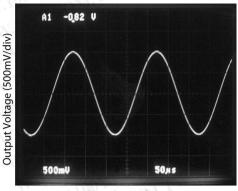
Low Supply Voltage

National provides guaranteed performance at 2.7V and 5V. These guarantees ensure operation throughout the battery lifetime.

Rail-to-Rail Output

Rail-to-rail output swing provides maximum possible dynamic range at the output. This is particularly important when operating on low supply voltages.

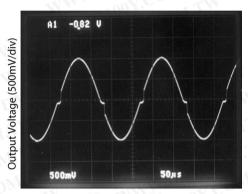
Input Includes Ground


Allows direct sensing near GND in single supply operation.

Protection should be provided to prevent the input voltages from going negative more than -0.3V (at 25°C). An input clamp diode with a resistor to the IC input terminal can be used.

Ease of Use and Crossover Distortion

The LMV321/LMV358/LMV324 offer specifications similar to the familiar LM324. In addition, the new LMV321/LMV358/LMV324 effectively eliminate the output crossover distortion. The scope photos in *Figure 1* and *Figure 2* compare the output swing of the LMV324 and the LM324 in a voltage follower configuration, with $V_S = \pm 2.5V$ and $R_L (= 2 k\Omega)$ connected to GND. It is apparent that the crossover distortion has been eliminated in the new LMV324.


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Time (50µs/div)

10006097

FIGURE 1. Output Swing of LMV324

Time (50µs/div)

10006098

FIGURE 2. Output Swing of LM324

CAPACITIVE LOAD TOLERANCE

The LMV321/LMV358/LMV324 can directly drive 200 pF in unity-gain without oscillation. The unity-gain follower is the most sensitive configuration to capacitive loading. Direct capacitive loading reduces the phase margin of amplifiers. The combination of the amplifier's output impedance and the capacitive load induces phase lag. This results in either an underdamped pulse response or oscillation. To drive a heavier capacitive load, the circuit in *Figure 3* can be used.

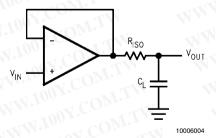


FIGURE 3. Indirectly Driving a Capacitive Load Using Resistive Isolation

In *Figure 3*, the isolation resistor $R_{\rm ISO}$ and the load capacitor $C_{\rm L}$ form a pole to increase stability by adding more phase margin to the overall system. The desired performance depends on the value of $R_{\rm ISO}$. The bigger the $R_{\rm ISO}$ resistor value, the more stable $V_{\rm OUT}$ will be. *Figure 4* is an output waveform of *Figure 3* using 620 Ω for $R_{\rm ISO}$ and 510 pF for $C_{\rm L}$.

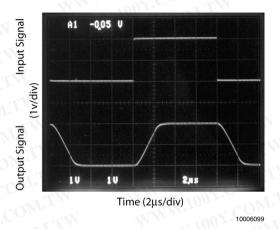


FIGURE 4. Pulse Response of the LMV324 Circuit in Figure 3

The circuit in *Figure 5* is an improvement to the one in *Figure 3* because it provides DC accuracy as well as AC stability. If there were a load resistor in *Figure 3*, the output would be voltage divided by $R_{\rm ISO}$ and the load resistor. Instead, in *Figure 5*, $R_{\rm F}$ provides the DC accuracy by using feed-forward techniques to connect $V_{\rm IN}$ to $R_{\rm L}$. Caution is needed in choosing the value of $R_{\rm F}$ due to the input bias current of the LMV321/ LMV358/LMV324. $C_{\rm F}$ and $R_{\rm ISO}$ serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop. Increased capacitive drive is possible by increasing the value of $C_{\rm F}$. This in turn will slow down the pulse response.

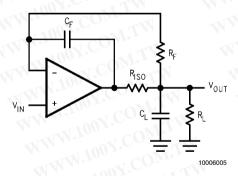


FIGURE 5. Indirectly Driving A Capacitive Load with DC Accuracy

INPUT BIAS CURRENT CANCELLATION

The LMV321/LMV358/LMV324 family has a bipolar input stage. The typical input bias current of LMV321/LMV358/LMV324 is 15 nA with 5V supply. Thus a 100 k Ω input resistor will cause 1.5 mV of error voltage. By balancing the resistor values at both inverting and non-inverting inputs, the error caused by the amplifier's input bias current will be reduced. The circuit in *Figure 6* shows how to cancel the error caused by input bias current.

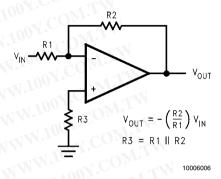
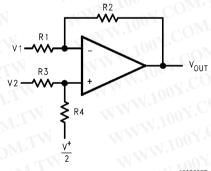



FIGURE 6. Cancelling the Error Caused by Input Bias Current

TYPICAL SINGLE-SUPPLY APPLICATION CIRCUITS

Difference Amplifier

The difference amplifier allows the subtraction of two voltages or, as a special case, the cancellation of a signal common to two inputs. It is useful as a computational amplifier, in making a differential to single-ended conversion or in rejecting a common mode signal.

$$\begin{split} &V_{OUT} = \left(\frac{R1+R2}{R3+R4}\right)\frac{R4}{R1}V_2 - \frac{R2}{R1}V_1 + \left(\frac{R1+R2}{R3+R4}\right)\frac{R3}{R1} \bullet \frac{V^4}{2} \\ &\text{for R1} = R3 \text{ and } R2 = R4 \\ &V_{OUT} = \frac{R2}{R1}\left(V_2 - V_1\right) + \frac{V^4}{2} \end{split}$$

1000601

FIGURE 7. Difference Amplifier

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Instrumentation Circuits

The input impedance of the previous difference amplifier is set by the resistors R_1 , R_2 , R_3 , and R_4 . To eliminate the problems of low input impedance, one way is to use a voltage follower ahead of each input as shown in the following two instrumentation amplifiers.

Three-Op-Amp Instrumentation Amplifier

The quad LMV324 can be used to build a three-op-amp instrumentation amplifier as shown in *Figure 8*.

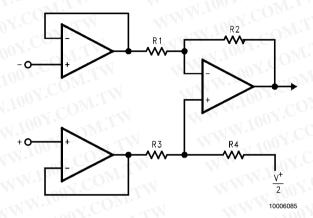


FIGURE 8. Three-Op-Amp Instrumentation Amplifier

The first stage of this instrumentation amplifier is a differential-input, differential-output amplifier, with two voltage followers. These two voltage followers assure that the input impedance is over 100 M Ω . The gain of this instrumentation amplifier is set by the ratio of R_2/R_1 . R_3 should equal R_1 , and R_4 equal R_2 . Matching of R_3 to R_1 and R_4 to R_2 affects the CMRR. For good CMRR over temperature, low drift resistors should be used. Making R_4 slightly smaller than R_2 and adding a trim pot equal to twice the difference between R_2 and R_4 will allow the CMRR to be adjusted for optimum performance.

Two-Op-Amp Instrumentation Amplifier

A two-op-amp instrumentation amplifier can also be used to make a high-input-impedance DC differential amplifier (*Figure 9*). As in the three-op-amp circuit, this instrumentation amplifier requires precise resistor matching for good CMRR. $\rm R_4$ should equal $\rm R_1$ and, $\rm R_3$ should equal $\rm R_2$.

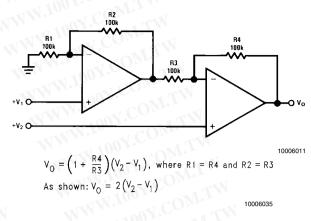
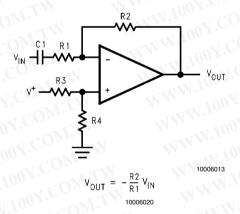


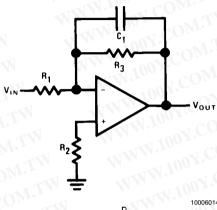
FIGURE 9. Two-Op-Amp Instrumentation Amplifier

Single-Supply Inverting Amplifier

There may be cases where the input signal going into the amplifier is negative. Because the amplifier is operating in single supply voltage, a voltage divider using R_3 and R_4 is implemented to bias the amplifier so the input signal is within the input common-mode voltage range of the amplifier. The capacitor C_1 is placed between the inverting input and resistor R_1 to block the DC signal going into the AC signal source, V_{IN} . The values of R_1 and C_1 affect the cutoff frequency, fc = $1/2\pi R_1 C_1$.

As a result, the output signal is centered around mid-supply (if the voltage divider provides V+/2 at the non-inverting input). The output can swing to both rails, maximizing the signal-to-noise ratio in a low voltage system.




FIGURE 10. Single-Supply Inverting Amplifier

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

ACTIVE FILTER

Simple Low-Pass Active Filter

The simple low-pass filter is shown in *Figure 11*. Its low-frequency gain $(\omega \rightarrow 0)$ is defined by $-R_3/R_1$. This allows low-frequency gains other than unity to be obtained. The filter has a -20 dB/decade roll-off after its corner frequency fc. R_2 should be chosen equal to the parallel combination of R_1 and R_3 to minimize errors due to bias current. The frequency response of the filter is shown in *Figure 12*.

$$A_{L} = -\frac{R_{3}}{R_{1}}$$

$$f_{c} = \frac{1}{2\pi R_{3} C_{1}}$$

$$R_{2} = R_{1} || R_{3}$$

FIGURE 11. Simple Low-Pass Active Filter

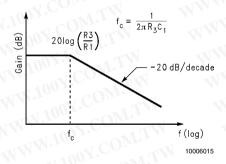
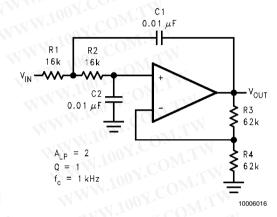


FIGURE 12. Frequency Response of Simple Low-Pass
Active Filter in Figure 11

Note that the single-op-amp active filters are used in the applications that require low quality factor, Q(\leq 10), low frequency (\leq 5 kHz), and low gain (\leq 10), or a small value for the product of gain times Q (\leq 100). The op amp should have an open loop voltage gain at the highest frequency of interest at least 50 times larger than the gain of the filter at this frequency. In addition, the selected op amp should have a slew rate that meets the following requirement:

Slew Rate $\geq 0.5 \times (\omega_H V_{OPP}) \times 10^{-6} \text{ V/}\mu\text{sec}$

where ω_{H} is the highest frequency of interest, and V_{OPP} is the output peak-to-peak voltage.


Sallen-Key 2nd-Order Active Low-Pass Filter

The Sallen-Key 2nd-order active low-pass filter is illustrated in *Figure 13*. The DC gain of the filter is expressed as

$$A_{LP} = \frac{R_3}{R_4} + 1 \tag{1}$$

Its transfer function is

$$\frac{V_{\text{OUT}}}{V_{\text{IN}}}(S) = \frac{\frac{1}{C_1 C_2 R_1 R_2} A_{LP}}{S^2 + S\left(\frac{1}{C_1 R_1} + \frac{1}{C_1 R_2} + \frac{1}{C_2 R_2} - \frac{A_{LP}}{C_2 R_2}\right) + \frac{1}{C_1 C_2 R_1 R_2}}$$
(2)

FIGURE 13. Sallen-Key 2nd-Order Active Low-Pass Filter

The following paragraphs explain how to select values for R_1 , R_2 , R_3 , R_4 , C_1 , and C_2 for given filter requirements, such as A_{LP} , Q, and f_c .

The standard form for a 2nd-order low pass filter is

$$\frac{V_{OUT}}{V_{IN}}(S) = \frac{A_{LP}\omega_c^2}{S^2 + \left(\frac{\omega_c}{Q}\right)S + \omega_c^2}$$
(3)

where

Q: Pole Quality Factor

 ω_C : Corner Frequency

A comparison between Equation 2 and Equation 3 yields

$$\omega_{c}^{2} = \frac{1}{C_{1} C_{2} R_{1} R_{2}}$$
(4)

$$\frac{\omega_{c}}{Q} = \frac{1}{C_{1}R_{1}} + \frac{1}{C_{1}R_{2}} + \frac{1}{C_{2}R_{2}} - \frac{A_{LP}}{C_{2}R_{2}}$$
(5)

To reduce the required calculations in filter design, it is convenient to introduce normalization into the components and design parameters. To normalize, let $\omega_C = \omega_n = 1$ rad/s, and $C_1 = C_2 = C_n = 1$ F, and substitute these values into *Equation 4* and *Equation 5*. From *Equation 4*, we obtain

$$R_1 = \frac{1}{R_2} \tag{6}$$

From *Equation 5*, we obtain

$$R_2 = \frac{1 \pm \sqrt{1 - 4Q^2 (2 - A_{LP})}}{2Q}$$
 (7)

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw

For minimum DC offset, $V^+ = V^-$, the resistor values at both inverting and non-inverting inputs should be equal, which means

$$R_1 + R_2 = \frac{R_3 R_4}{R_3 + R_4} \tag{8}$$

From Equation 1 and Equation 8, we obtain

$$R_3 = (R_1 + R_2)A_{LP} \tag{9}$$

$$R_4 = \left(\frac{A_{LP}}{A_{LP} - 1}\right) (R_1 + R_2) \tag{10}$$

The values of C1 and C2 are normally close to or equal to

$$C = \frac{10}{f_c} \mu F$$

As a design example:

Require: $A_{LP} = 2$, Q = 1, fc = 1 kHz

Start by selecting \mathbf{C}_1 and \mathbf{C}_2 . Choose a standard value that is close to

$$C = \frac{10}{f_c} \mu F$$

$$C_1 = C_2 = \frac{10}{1 \times 10^3} \, \mu F = 0.01 \, \mu F$$

From Equations 6, 7, 9, 10,

$$R_1 = 1\Omega$$

$$R_4 = 4\Omega$$

The above resistor values are normalized values with $\omega_n=1$ rad/s and $C_1=C_2=C_n=1$ F. To scale the normalized cutoff frequency and resistances to the real values, two scaling factors are introduced, frequency scaling factor (k_f) and impedance scaling factor (k_m) .

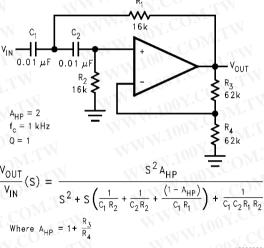
$$k_f = \frac{\omega_c}{\omega_n} = \frac{2\pi \times 1 \times 10^3}{1} = 2\pi \times 10^3$$

$$k_m k_f = \frac{Cn}{C1}$$

$$k_m = 1.59 \times 10^4$$

Scaled values:

$$R_2 = R_1 = 15.9 \text{ k}\Omega$$


$$R_3 = R_4 = 63.6 \text{ k}\Omega$$

$$C_1 = C_2 = 0.01 \ \mu F$$

An adjustment to the scaling may be made in order to have realistic values for resistors and capacitors. The actual value used for each component is shown in the circuit.

2nd-Order High Pass Filter

A 2nd-order high pass filter can be built by simply interchanging those frequency selective components $(\mathsf{R}_1,\,\mathsf{R}_2,\,\mathsf{C}_1,\,\mathsf{C}_2)$ in the Sallen-Key 2nd-order active low pass filter. As shown in Figure 14, resistors become capacitors, and capacitors become resistors. The resulted high pass filter has the same corner frequency and the same maximum gain as the previous 2nd-order low pass filter if the same components are chosen.

10006083

FIGURE 14. Sallen-Key 2nd-Order Active High-Pass Filter

State Variable Filter

A state variable filter requires three op amps. One convenient way to build state variable filters is with a quad op amp, such as the LMV324 (*Figure 15*).

This circuit can simultaneously represent a low-pass filter, high-pass filter, and bandpass filter at three different outputs. The equations for these functions are listed below. It is also called "Bi-Quad" active filter as it can produce a transfer function which is quadratic in both numerator and denominator.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

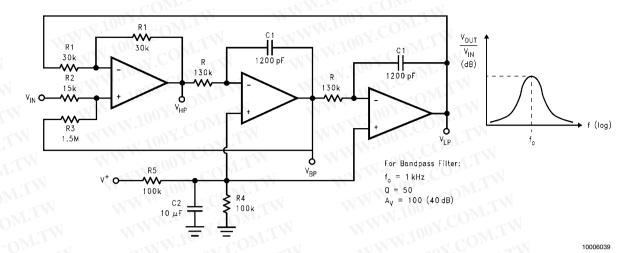


FIGURE 15. State Variable Active Filter

$$V_{LP} = \left(\frac{2R_3}{R_2 + R_3}\right) \frac{\frac{1}{R^2 c^2}}{S^2 + \frac{1}{\left(\frac{R_2 + R_3}{2R_2}\right) RC}} S + \frac{1}{R^2 c^2} V_{IN}$$

$$V_{HP} = \left(\frac{2R_3}{R_2 + R_3}\right) \frac{S^2}{S^2 + \frac{1}{\left(\frac{R_2 + R_3}{2R_2}\right)RC}S + \frac{1}{R^2c^2}} V_{IN}$$

$$V_{BP} = \left(\frac{2R_3}{R_2 + R_3}\right) \frac{\left(\frac{1}{RC}\right)S}{S^2 + \frac{1}{\left(\frac{R_2 + R_3}{2R_2}\right)RC}S + \frac{1}{R^2C^2}} V_{IN}$$

where for all three filters,

$$Q = \frac{R_2 + R_3}{2R_2} \tag{11}$$

$$\omega_0 = \frac{1}{RC}$$
 (resonant frequency) (12)

A design example for a bandpass filter is shown below:

Assume the system design requires a bandpass filter with f $_{\rm O}$ = 1 kHz and Q = 50. What needs to be calculated are capacitor and resistor values.

First choose convenient values for C₁, R₁ and R₂:

$$C_1 = 1200 \text{ pF}$$

$$2R_2 = R_1 = 30 \text{ k}\Omega$$

Then from Equation 11,

$$R_3 = R_2(2Q-1)$$

 $R_3 = 15 k\Omega \times (2 \times 50-1)$
= 1.5 M Ω

From Equation 12,

$$R = \frac{1}{\omega_0 C_1}$$

$$R = \frac{1}{(2\pi \times 10^3)(1.2 \times 10^{-9})}$$

$$= 132.7 \text{ k}\Omega$$

From the above calculated values, the midband gain is $H_0 = R_3/R_2 = 100$ (40 dB). The nearest 5% standard values have been added to *Figure 15*.

PULSE GENERATORS AND OSCILLATORS

A pulse generator is shown in *Figure 16*. Two diodes have been used to separate the charge and discharge paths to capacitor C.

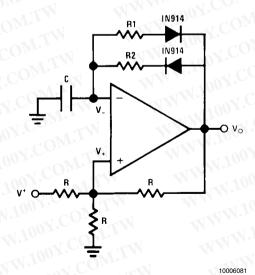


FIGURE 16. Pulse Generator

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw When the output voltage V_O is first at its high, V_{OH} , the capacitor C is charged toward V_{OH} through R_2 . The voltage across C rises exponentially with a time constant $\tau = R_2 C$, and this voltage is applied to the inverting input of the op amp. Meanwhile, the voltage at the non-inverting input is set at the positive threshold voltage (V_{TH+}) of the generator. The capacitor voltage continually increases until it reaches V_{TH+} , at which point the output of the generator will switch to its low, V_{OL} which 0V is in this case. The voltage at the non-inverting input is switched to the negative threshold voltage (V_{TH-}) of the generator. The capacitor then starts to discharge toward V_{OL} exponentially through R_1 , with a time constant $\tau = R_1 C$. When the capacitor voltage reaches V_{TH-} , the output of the pulse generator switches to V_{OH} . The capacitor starts to charge, and the cycle repeats itself.

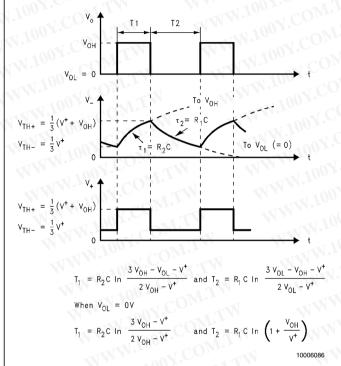


FIGURE 17. Waveforms of the Circuit in Figure 16

As shown in the waveforms in *Figure 17*, the pulse width (T_1) is set by R_2 , C and V_{OH} , and the time between pulses (T_2) is set by R_1 , C and V_{OL} . This pulse generator can be made to have different frequencies and pulse width by selecting different capacitor value and resistor values.

Figure 18 shows another pulse generator, with separate charge and discharge paths. The capacitor is charged through R_1 and is discharged through R_2 .

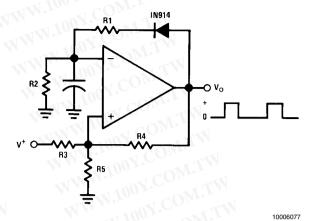


FIGURE 18. Pulse Generator

Figure 19 is a squarewave generator with the same path for charging and discharging the capacitor.

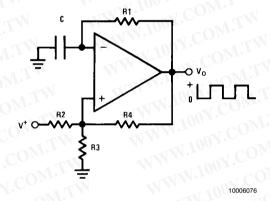


FIGURE 19. Squarewave Generator

CURRENT SOURCE AND SINK

The LMV321/LMV358/LMV324 can be used in feedback loops which regulate the current in external PNP transistors to provide current sources or in external NPN transistors to provide current sinks.

Fixed Current Source

A multiple fixed current source is shown in *Figure 20*. A voltage ($V_{REF} = 2V$) is established across resistor R_3 by the voltage divider (R_3 and R_4). Negative feedback is used to cause the voltage drop across R_1 to be equal to V_{REF} . This controls the emitter current of transistor Q_1 and if we neglect the base current of Q_1 and Q_2 , essentially this same current is available out of the collector of Q_1 .

Large input resistors can be used to reduce current loss and a Darlington connection can be used to reduce errors due to the β of $\mathbf{Q}_1.$

The resistor, R_2 , can be used to scale the collector current of Q_2 either above or below the 1 mA reference value.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

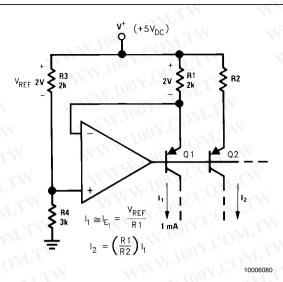


FIGURE 20. Fixed Current Source

High Compliance Current Sink

A current sink circuit is shown in *Figure 21*. The circuit requires only one resistor (R_E) and supplies an output current which is directly proportional to this resistor value.

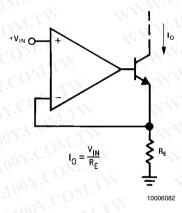


FIGURE 21. High Compliance Current Sink

POWER AMPLIFIER

A power amplifier is illustrated in *Figure 22*. This circuit can provide a higher output current because a transistor follower is added to the output of the op amp.

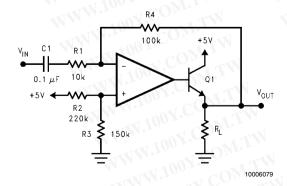


FIGURE 22. Power Amplifier

LED DRIVER

The LMV321/LMV358/LMV324 can be used to drive an LED as shown in *Figure 23*.

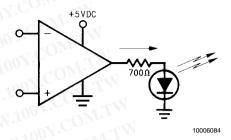


FIGURE 23. LED Driver

COMPARATOR WITH HYSTERESIS

The LMV321/LMV358/LMV324 can be used as a low power comparator. *Figure 24* shows a comparator with hysteresis. The hysteresis is determined by the ratio of the two resistors.

$$\begin{split} V_{TH+} &= V_{REF}/(1+R_1/R_2) + V_{OH}/(1+R_2/R_1) \\ V_{TH-} &= V_{REF}/(1+R_1/R_2) + V_{OL}/(1+R_2/R_1) \\ V_{H} &= (V_{OH-}V_{OI})/(1+R_2/R_1) \end{split}$$

where

V_{TH+}: Positive Threshold Voltage V_{TH-}: Negative Threshold Voltage

 ${\rm V}_{\rm OH}$: Output Voltage at High

V_{OL}: Output Voltage at Low

V_H: Hysteresis Voltage

Since LMV321/LMV358/LMV324 have rail-to-rail output, the (V $_{\rm OH-}$ V $_{\rm OL}$) is equal to V $_{\rm S}$, which is the supply voltage.

$$V_{H} = V_{S}/(1+R_{2}/R_{1})$$

The differential voltage at the input of the op amp should not exceed the specified absolute maximum ratings. For real comparators that are much faster, we recommend you use National's LMV331/LMV93/LMV339, which are single, dual and quad general purpose comparators for low voltage operation

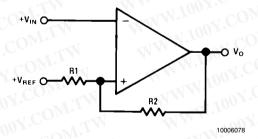
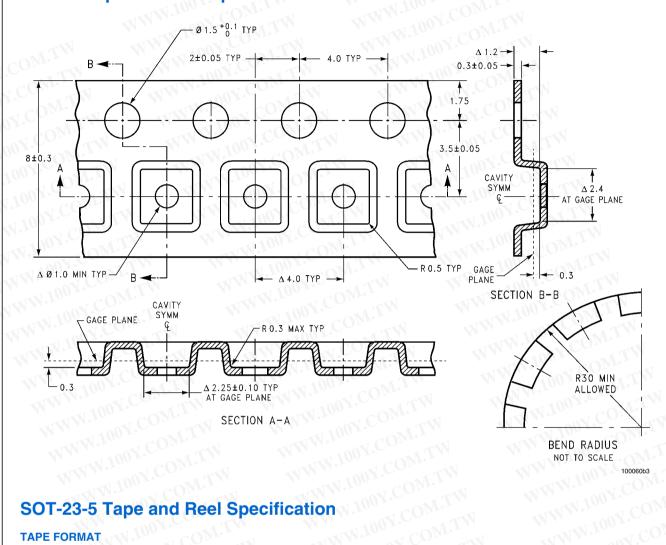



FIGURE 24. Comparator with Hysteresis

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

W.100Y.CO

SC70-5 Tape and Reel Specification

TAPE FORMAT

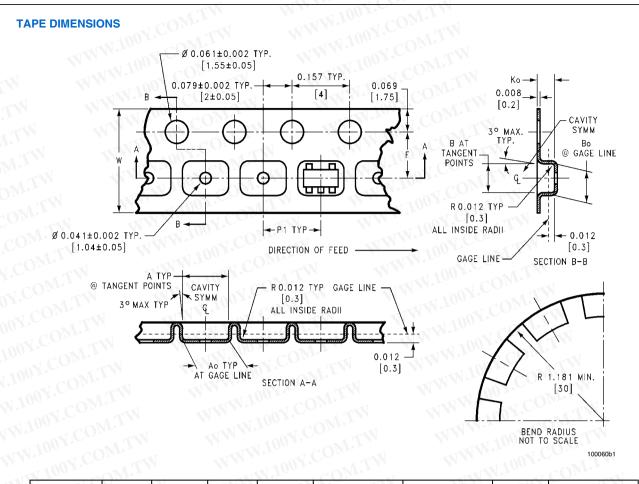
AM. CO	WT	MAN 1100 Y.CO.	WILLIAM WILLIAM
Tape Section	# Cavities	Cavity Status	Cover Tape Status
Leader	0 (min)	Empty	Sealed
(Start End)	75 (min)	Empty	Sealed
Carrier	3000	Filled	Sealed
11/W.100	250	Filled	Sealed
Trailer	125 (min)	Empty	Sealed
(Hub End)	0 (min)	Empty	Sealed

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw

WWW.100Y.

WWW.100Y.COM.TW

IN.100Y.COM.TW


WW.100Y.COM.TW WWW.100Y.C 21.11www.national.com TOW. COM.TW

W.100Y.COM.TW

WWW.100Y.COM.TW

WWW.

TAPE DIMENSIONS

<u>w.</u>100Y.COM.TV

0.130 (3.3)	0.124 (3.15)	0.130 (3.3)	0.126 (3.2)	0.138 ±0.002 (3.5 ±0.05)	0.055 ±0.004 (1.4 ±0.11)	0.157 (4)	0.315 ±0.012 (8 ±0.3)
DIM A	DIM Ao	DIM B	DIM Bo	DIM F	DIM Ko	DIM P1	DIM W
	1.17	,	111/10	Or. COW'I		. W.10	COM.
((3.3)	(3.3) (3.15)	(3.3) (3.15) (3.3)	(3.3) (3.15) (3.3) (3.2)	(3.3) (3.15) (3.3) (3.2) (3.5 ±0.05)	(3.3) (3.15) (3.3) (3.2) (3.5 ±0.05) (1.4 ±0.11)	(3.3) (3.15) (3.3) (3.2) (3.5 ±0.05) (1.4 ±0.11) (4)

WWW.100Y.COM.TW

OY.COM.TW

N.100Y.COM.TW

WWW.100Y.COM.TW

WW.100Y.COM.TW

WWW.100Y.COM

WWW.100Y.COM

WWW.100Y.CO

WWW.100Y.C

WWW.1007

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw

EW.100Y.COM.TW COM.TW WWW.100Y.COM. www.national.com

WWW.100Y.CC

WWW.100Y.COM.TW

WWW

WWW.100

N.COM.TW

WWW.100Y.COM

WWW.100Y.COM

WWW.100Y.CO

WWW.100Y.C0

WWW.100Y.C

WWW.1007

WWW.100

WWW.19

WWW

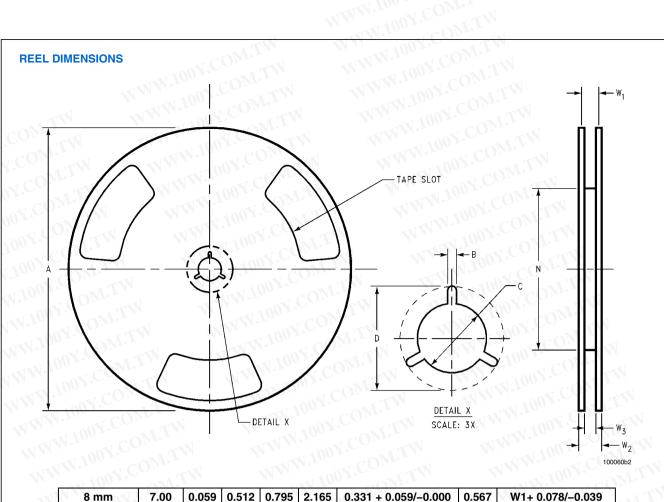
M.TW

M.TW

OM.TW

COM.TW

Y.COM.TV


ox.com.T

OOX.COM.

100X.COM N.100Y.CO2

W.100Y.CC

REEL DIMENSIONS

W400Y.COM.LY

8 mm	7.00 330.00	0.059 1.50	1	7 '	2.165 55.00	0.331 + 0.059/-0.000 8.40 + 1.50/-0.00	0.567 14.40	W1+ 0.078/-0.039 W1 + 2.00/-1.00
ape Size	A	В	С	D	N	W1	W2	W3

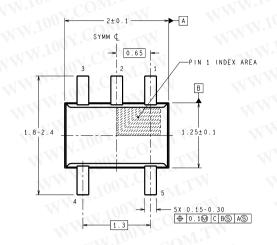
WWW.100Y.COM.TW

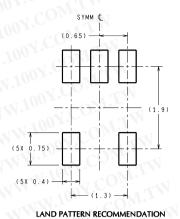
100Y.COM.TW

WWW.100Y.COM.TW

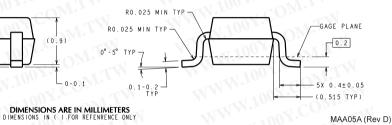
WWW.100Y.COM.TW 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www.100y.com.tw

WWW.100Y.COM.TW

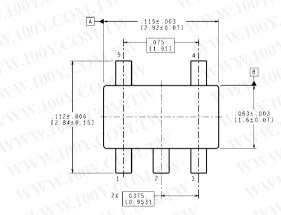

WWW.100Y.CO

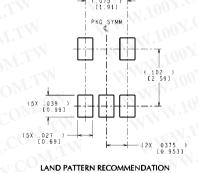

WWW.100Y.COM.TW

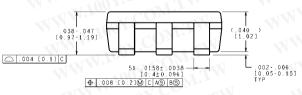
MMM.1002

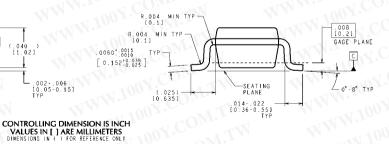

CWW.100Y.COM.TW NW.100Y.COM.TW COM.TW WWW.100Y.0 23 A. www.national.com THE LONG. COM.TW

Physical Dimensions inches (millimeters) unless otherwise noted

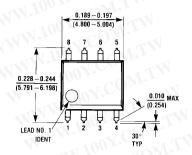


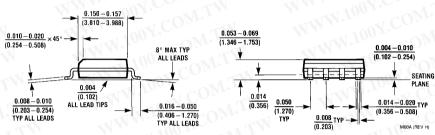



0.8-1.1 (0.9)
SEATING PLANE 0-0.

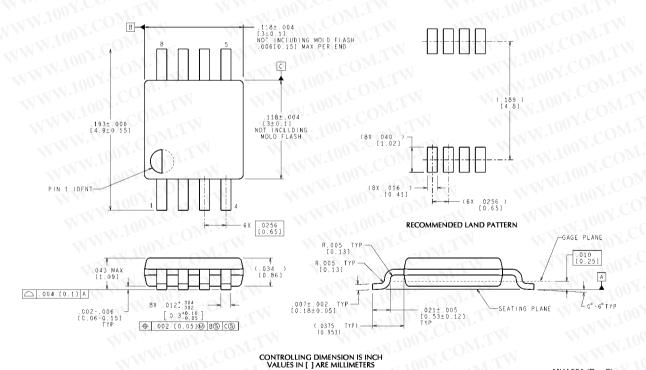

5-Pin SC70 NS Package Number MAA05A

WWW.100Y.COM



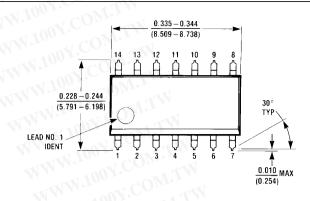

5-Pin SOT23 NS Package Number MF05A

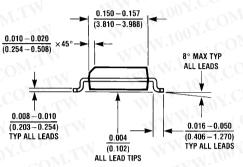
MF05A (Rev D)

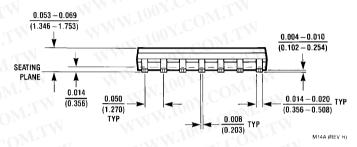

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

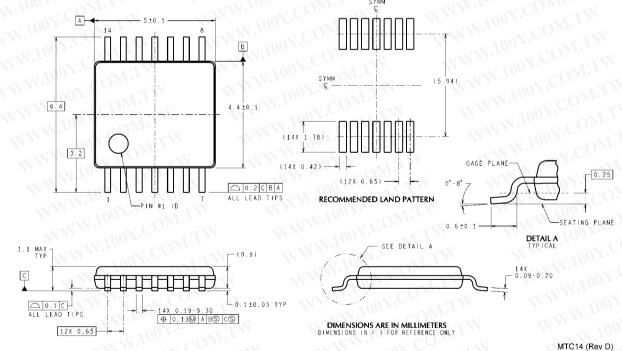
8-Pin SOIC NS Package Number M08A




8-Pin MSOP NS Package Number MUA08A


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

www.national.com


MUA08A (Rev F)

14-Pin SOIC NS Package Number M14A

14-Pin TSSOP NS Package Number MTC14

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw

M.TW

M.TW

.COM.TW

Y.COM.TV

ox.com.T

OOY.COM.

.100Y.COM N.100Y.CO?

W.100Y.CC

WWW.100Y.COM.T WWW.100Y.COM WWW.100Y.COM

WWW.100Y.CO

WWW.100Y.CO WWW.100Y.C

WWW.1001

WWW.100

WWW.19

WWW

WWW.100Y.CON.T WWW.100Y.COM.TW **Notes**

WWW.100Y.COM.T

Y.COM.TW M.COM.TW boy.COM.TW 100Y.COM.TW

W.100Y.COM.TW W.100Y.COM:TW WW.100Y.COM.TW

WWW.100Y.COM.TW

W.100X.COM.11 W.100Y.COM.TW

WWW.100Y.COM.TW

料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787

WWW.100Y.COM.TW

100Y.COM.TW

MMM. 100

Http://www. 100y. com. tw

100X.COM.TW

WWW.100Y.COM.TW