RUMENTS Http://www.100y.com.tw # LM10 Operational Amplifier and Voltage Reference Check for Samples: LM10 #### **FEATURES** Input Offset Voltage: 2 mV (max) Input Offset Current: 0.7 nA (max) Input Bias Current: 20 nA (max) Reference Regulation: 0.1% (max) Offset Voltage Drift: 2 µV/°C Reference Drift: 0.002%/°C #### DESCRIPTION The LM10 series are monolithic linear ICs consisting of a precision reference, an adjustable reference buffer and an independent, high quality op amp. SNOSBH4D-MAY 1998-REVISED MARCH 2013 The unit can operate from a total supply voltage as low as 1.1V or as high as 40V, drawing only 270µA. A complementary output stage swings within 15 mV of the supply terminals or will deliver ±20 mA output current with ±0.4V saturation. Reference output can be as low as 200 mV. The circuit is recommended for portable equipment and is completely specified for operation from a single power cell. In contrast, high output-drive capability, both voltage and current, along with thermal overload protection, suggest it in demanding general-purpose applications. The device is capable of operating in a floating mode, independent of fixed supplies. It can function as a remote comparator, signal conditioner, SCR controller or transmitter for analog signals, delivering the processed signal on the same line used to supply power. It is also suited for operation in a wide range of voltage- and current-regulator applications, from low voltages to several hundred volts, providing greater precision than existing ICs. This series is available in the three standard temperature ranges, with the commercial part having relaxed limits. In addition, a low-voltage specification (suffix "L") is available in the limited temperature ranges at a cost savings. #### **Connection and Functional Diagrams** Figure 1. TO Package (NEV) See Package Number NEV0008A Figure 2. SOIC Package (NPA) See Package Number NPA0014B Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. Figure 3. PDIP Package (P) See Package Number P (R-PDIP-T8) Figure 4. These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. # Absolute Maximum Ratings (1)(2)(3) | W. OV. COM WWW. ONV. COM TV | LM10/LM10B/ | LM10BL/ | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------| | | LM10C | LM10CL | | Total Supply Voltage | 45V | 7V | | Differential Input Voltage (4) | ±40V | ±7V | | Power Dissipation (5) | internally li | mited | | Output Short-circuit Duration ⁽⁶⁾ | continuo | ous | | Storage-Temp. Range | −55°C to + | 150°C | | Lead Temp. (Soldering, 10 seconds) | MITH WWW 100 | Y. OM.TW | | TO WWW. COMMANDER OF | 300°C | Y.Co. TW | | Lead Temp. (Soldering, 10 seconds) DIP | 260°C | COM | | Vapor Phase (60 seconds) | 215°0 | on COW. | | Infrared (15 seconds) | 220°C | T.Mo. | | ESD rating is to be determined. | CONTRACTOR WWW | JONY CO | | Maximum Junction Temperature | T COM. | A.TO. COMP. | | LM10 | Dr. COMITY | 150°C | | LM10B | OX.CO. ILIN WA | 100°C | | LM10C | OV.COM WY | 85°C | - (1) Refer to RETS10X for LM10H military specifications. - (2) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. - (3) If Military/Aerospace specified devices are required, please contact the TI Sales Office/Distributors for availability and specifications. - (4) The Input voltage can exceed the supply voltages provided that the voltage from the input to any other terminal does not exceed the maximum differential input voltage and excess dissipation is accounted for when V_{IN}<V⁻. - (5) The maximum, operating-junction temperature is 150°C for the LM10, 100°C for the LM10B(L) and 85°C for the LM10C(L). At elevated temperatures, devices must be derated based on package thermal resistance. - (6) Internal thermal limiting prevents excessive heating that could result in sudden failure, but the IC can be subjected to accelerated stress with a shorted output and worst-case conditions. #### **Operating Ratings** | Package Thermal Resistance | MAN. TON. COM. | | |----------------------------|------------------------------------------|---------| | θ_{JA} | M. M | | | NEV Package | M. MIOO. CONT. | 150°C/W | | P Package | MM. 100X COUTTN | 87°C/W | | NPA Package | WWW. Son L.CO. | 90°C/W | | θ _{JC} | W.Ing. COM. | | | NEV Package | W. TATODI. CONT.TV | 45°C/W | #### **Electrical Characteristics** T_J=25°C, T_{MIN}≤T_J≤T_{MAX} (Boldface type refers to limits over temperature range)⁽¹⁾ | Parameter | Conditions | N | LM10/LM1 | 0B | COM | LM10C | | Units | |-------------------------------------|---------------------------------------------------------------|-----------|------------|---------|--------|------------|---------------------|-------| | ON.CO | MM 1007.Co. | Min | Тур | Max | Min | Тур | Max | | | Input offset voltage | MW. TO CONT | TW | 0.3 | 2.0 | V.Co | 0.5 | 4.0 | mV | | | W.100 LCOM | | | 3.0 | ZI CC | M | 5.0 | mV | | Input offset current ⁽²⁾ | 1007. | V.LA | 0.25 | 0.7 | 10 x. | 0.4 | 2.0 | nA | | | MANN. OOX.CO. | WT | 4 | 1.5 | OOY.C | TIME | 3.0 | nA | | Input bias current | W TWW.Ite OV.CC | Mr. | 10 | 20 | · vor. | 12 | 30 | nA | | | W. 100 1 | $O_{W,r}$ | сT | 30 | 100 | CO_{M} . | 40 | nA | | Input resistance | IN WW. 1001.6 | 250 | 500 | 1 | 150 | 400 | TIA | kΩ | | | TW WWW. | 150 | W | WW | 115 | Y.Co | WILL | kΩ | | Large signal voltage | V _S =±20V, I _{OUT} =0 | 120 | 400 | WV | 80 | 400 | TV | V/mV | | gain | V _{OUT} =±19.95V | 80 | 7. | 1 | 50 | -7 CC | $M_{r_{r_{r_{r}}}}$ | V/mV | | | V _S =±20V, V _{OUT} =±19.4V | 50 | 130 | | 25 | 130 | OMIT | V/mV | | | I _{OUT} =±20 mA (±15 mA) | 20 | WT | | 15 | OOY.C | ,0- | V/mV | | | V _S =±0.6V (0.65V), I _{OUT} =±2 mA | 1.5 | 3.0 | | 1.0 | 3.0 | CO_{Dr} | V/mV | | | V _{OUT} =±0.4V (±0.3V), V _{CM} =-0.4V | 0.5 | M_{II} | T | 0.75 | 1.100 | COM | V/mV | | Shunt gain (3) | 1.2V (1.3V) ≤V _{OUT} ≤40V, | 14 | 33 | N | 10 | 33 | | V/mV | | | R _L =1.1 kΩ | . Jony. C | Oh | N | WW | 100 | M.Co. | VTI | | | 0.1 mA≤l _{OUT} ≤5 mA | 6 | CO_{M^*} | -XX | 6 | M. 70 | V CO | V/mV | | | 1.5V≤V ⁺ ≤40V, R _L =250Ω | 8 | 25 | 1.11 | 6 | 25 |)() x (| V/mV | | | 0.1 mA≤l _{OUT} ≤20 mA | 4 | | TW | 4 | 1 | 001. | V/mV | | Common-mode | -20V≤V _{CM} ≤19.15V (19V) | 93 | 102 | W | 90 | 102 | LOOY! | dB | | rejection | V _S =±20V | 87 | - T CO | M. I | 87 | WWI | 100 | dB | | Supply-voltage | -0.2V≥V⁻≥-39V | 90 | 96 | William | 87 | 96 | V .100 . | dB | | rejection | V ⁺ =1.0V (1.1V) | 84 | OOX.C | VILVE | 84 | MAN | 1100 | dB | | | 1.0V (1.1V) ≤V ⁺ ≤39.8V | 96 | 106 | Ohr. | N 93 | 106 | M | dB | | | V ⁻ =-0.2V | 90 | .100 - | COM | 90 | - 1 | M.In | dB | | Offset voltage drift | 1100Y. OM.TW | 111 | 2.0 | Mos | . An | 5.0 | TINI. | μV/°C | | Offset current drift | MAN. CONT.CO. | WW | 2.0 | | TW | 5.0 | _ <1 | pA/°C | | Bias current drift | T _C <100°C | wV | 60 | A'COM | - TW | 90 | OLIN W | pA/°C | | Line regulation | 1.2V (1.3V) ≤V _S ≤40V | 1 | 0.001 | 0.003 | 1.1 | 0.001 | 0.008 | %/V | | | 0≤I _{REF} ≤1.0 mA, V _{REF} =200 mV | | 11 | 0.006 | MIN | | 0.01 | %/V | ⁽¹⁾ These specifications apply for $V^- \le V_{CM} \le V^+ - 0.85 V$ (1.0V), 1.2V (1.3V) $< V_S \le V_{MAX}$, $V_{REF} = 0.2 V$ and $0 \le I_{REF} \le 1.0$ mA, unless otherwise specified: $V_{MAX} = 40 V$ for the standard part and 6.5V for the low voltage part. Normal typeface indicates 25°C limits. **Boldface type** indicates limits and altered test conditions for full-temperature-range operation; this is -55°C to 125°C for the LM10, -25°C to 85°C for the LM10B(L) and 0°C to 70°C for the LM10C(L). The specifications do not include the effects of thermal gradients (τ_1 =20 ms), die heating (τ_2 =0.2s) or package heating. Gradient effects are small and tend to offset the electrical error (see curves). For T_J >90°C, I_{OS} may exceed 1.5 nA for V_{CM} = V^- . With T_J =125°C and V^- ≤ V_{CM} ≤ V^- +0.1V, I_{OS} ≤5 nA. Product Folder Links: LM10 This defines operation in floating applications such as the bootstrapped regulator or two-wire transmitter. Output is connected to the V⁺ terminal of the IC and input common mode is referred to V⁻ (see Typical Applications). Effect of larger output-voltage swings with higher load resistance can be accounted for by adding the positive-supply rejection error. ### **Electrical Characteristics (continued)** T_J=25°C, T_{MIN}≤T_J≤T_{MAX} (Boldface type refers to limits over temperature range)⁽¹⁾ | Parameter | Conditions | | LM10/LM1 | 0B | -TA | LM10C | | Units | |-----------------------|------------------------------------------------------|---------|----------|------|--------------|-------|------|-------| | MIN | 1001. COM. IV | Min | Тур | Max | Min | Тур | Max | | | Load regulation | 0≤l _{REF} ≤1.0 mA | 41/1/ | 0.01 | 0.1 | TW | 0.01 | 0.15 | % | | | V ⁺ −V _{REF} ≥1.0V (1.1V) | W | VW | 0.15 | WT | | 0.2 | % | | Amplifier gain | 0.2V≤V _{REF} ≤35V | 50 | 75 | ~ CO | 25 | 70 | | V/mV | | | WW. 1007. | 23 | -TXV.1 | | 15 | - 7 | | V/mV | | Feedback sense | WWW. 100Y.CO. | 195 | 200 | 205 | 190 | 200 | 210 | mV | | voltage | MAN. TO. COM. | 194 | WWW | 206 | 189 | W | 211 | mV | | Feedback current | M. Jon COM. | 1 | 20 | 50 | CO_{M_I} . | 22 | 75 | nA | | | WW. 1007. | TW | W. A. | 65 | MOD | JA | 90 | nA | | Reference drift | MM | TTV | 0.002 | 1100 | | 0.003 | | %/°C | | Supply current | TWW. CO | NI | 270 | 400 | V.CO | 300 | 500 | μA | | | W. 100 1. | Mil | | 500 | -1 CC | M. I | 570 | μA | | Supply current change | 1.2V (1.3V) ≤V _S ≤40V | and I'm | 15 | 75 | 001. | 15 | 75 | μΑ | #### **Electrical Characteristics** T_J=25°C, T_{MIN}≤T_J≤T_{MAX} (Boldface type refers to limits over temperature range)⁽¹⁾ | Parameter | Conditions | M.J. | LM10BL | | W.100 | LM10CL | | Units | |-------------------------------------|----------------------------------------------------------------|------|--------|-----------|-------|---------|--------|-------| | MM. CO. | MAN TOOK | Min | Тур | Max | Min | Тур | Max | | | Input offset voltage | I WWW. TO Y.C. | Ohr. | 0.3 | 2.0 | MM | 0.5 | 4.0 | √ mV | | | M .1 | COM | | 3.0 | WW. | ~ < 7 C | 5.0 | mV | | Input offset current ⁽²⁾ | 1.TW WW. 100x. | | 0.1 | 0.7 | - TAN | 0.2 | 2.0 | nA | | | WWW.100 | .Co. | | 1.5 | MM | 1100X | 3.0 | nA | | Input bias current | CM. | V.CO | 10 | 20 | WW | 12 | 30 | nA | | | OM.17 | C(| | 30 | | W.100 | 40 | nA | | Input resistance | NIII | 250 | 500 | 1 | 150 | 400 | 7. | kΩ | | | Y.COM. | 150 | | W | 115 | 110 | OY.Co | kΩ | | Large signal voltage | V _S =±3.25V, I _{OUT} =0 | 60 | 300 | XX | 40 | 300 | ov.C | V/mV | | gain | V _{OUT} =±3.2V | 40 | | 7 1 | 25 | WW. | -1 (| V/mV | | | V _S =±3.25V, I _{OUT} =10 mA | 10 | 25 | (TV) | 5 | 25 | 700 %. | V/mV | | | V _{OUT} =±2.75 V | 4 | | WT | 3 | MMA | - 100X | V/mV | | | V _S =±0.6V (0.65V) , I _{OUT} =±2 mA | 1.5 | 3.0 | M | 1.0 | 3.0 | 1.10 | V/mV | | | V _{OUT} =±0.4V (±0.3V), V _{CM} =-0.4V | 0.5 | | M_{II} | 0.75 | | W.100 | V/mV | | Shunt gain (3) | 1.5V≤V ⁺ ≤6.5V, R _L =500Ω | 8 | 30 | TIMO | 6 | 30 | 10 | V/mV | | | 0.1 mA≤l _{OUT} ≤10 mA | 4 | | One | 4 | | 1 | V/mV | | Common-mode | -3.25V≤V _{CM} ≤2.4V (2.25V) | 89 | 102 | CO_{Mr} | 80 | 102 | MM. | dB | | rejection | V _S =±3.25V | 83 | | MOD | 74 | | W. | dB | | Supply-voltage | -0.2V≥V ⁻ ≥-5.4V | 86 | 96 | 1.0 | 80 | 96 | N. A. | dB | | rejection | V ⁺ =1.0V (1.2V) | 80 | | Y.CO | 74 | | MAIN | dB | | | 1.0V (1.1V) ≤V ⁺ ≤6.3V | 94 | 106 | ₹ CC | 80 | 106 | WIX | dB | | | V ⁻ =0.2V | 88 | | 00x | 74 | | N | dB | ⁽¹⁾ These specifications apply for V⁻≤V_{CM}≤V⁺−0.85V (1.0V), 1.2V (1.3V) <V_S≤V_{MAX}, V_{REF}=0.2V and 0≤I_{REF}≤1.0 mA, unless otherwise specified: V_{MAX}=40V for the standard part and 6.5V for the low voltage part. Normal typeface indicates 25°C limits. **Boldface type indicates limits and altered test conditions for full-temperature-range operation**; this is −55°C to 125°C for the LM10, −25°C to 85°C for the LM10B(L) and 0°C to 70°C for the LM10C(L). The specifications do not include the effects of thermal gradients (τ₁≃20 ms), die heating (τ₂≃0.2s) or package heating. Gradient effects are small and tend to offset the electrical error (see curves). Submit Documentation Feedback Copyright © 1998–2013, Texas Instruments Incorporated ⁽²⁾ For T_J>90°C, I_{OS} may exceed 1.5 nA for V_{CM}=V⁻. With T_J=125°C and V⁻≤V_{CM}≤V⁻+0.1V, I_{OS}≤5 nA. ⁽³⁾ This defines operation in floating applications such as the bootstrapped regulator or two-wire transmitter. Output is connected to the V⁺ terminal of the IC and input common mode is referred to V⁻ (see Typical Applications). Effect of larger output-voltage swings with higher load resistance can be accounted for by adding the positive-supply rejection error. #### **Electrical Characteristics (continued)** T_J=25°C, T_{MIN}≤T_J≤T_{MAX} (Boldface type refers to limits over temperature range)⁽¹⁾ | Parameter | Conditions | | LM10BL | $^{1}CO_{N_{I}}$ | -WV | LM10CL | | Units | |------------------------|------------------------------------------------------|------------|--------|------------------|------------|--------|------|-------| | MITH | W 1007. | Min | Тур | Max | Min | Тур | Max | | | Offset voltage drift | TINOY.CO TITY | 4/1/1/ | 2.0 | N.O. | V.T.V | 5.0 | | μV/°C | | Offset current drift | INN. TO OX. COM | W | 2.0 | NY.CO | | 5.0 | | pA/°C | | Bias current drift | MAN TOO COM. | | 60 | ~√7 C | DMr. | 90 | | pA/°C | | Line regulation | 1.2V (1.3V) ≤V _S ≤6.5V | | 0.001 | 0.01 | $OM_{i,j}$ | 0.001 | 0.02 | %/V | | | 0≤I _{REF} ≤0.5 mA, V _{REF} =200 mV | 4 | MM. | 0.02 | | | 0.03 | %/V | | Load regulation | 0≤I _{REF} ≤0.5 mA | | 0.01 | 0.1 | COR | 0.01 | 0.15 | % | | | V ⁺ −V _{REF} ≥1.0V (1.1V) | <u>*</u> 1 | | 0.15 | CON | | 0.2 | % | | Amplifier gain | 0.2V≤V _{REF} ≤5.5V | 30 | 70 | N.100 | 20 | 70 | | V/mV | | | WWW. TOOX.CO. | 20 | WW | 100 | 15 | WILL | | V/mV | | Feedback sense voltage | TIWW. TO COM | 195 | 200 | 205 | 190 | 200 | 210 | mV | | | W. 100 r. COM | 194 | | 206 | 189 | OM., | 211 | mV | | Feedback current | WW 1007. | V.L.M | 20 | 50 | 100 1. | 22 | 75 | nA | | | MMM. OOX.CO. | W | - | 65 | 100X | | 90 | nA | | Reference drift | TWW.TO CO | N | 0.002 | WWW | | 0.003 | TW | %/°C | | Supply current | W.100 2 | OM^{-1} | 260 | 400 | N.700 | 280 | 500 | μΑ | | | TW WW 100Y.C | MI | N | 500 | XX 100 | 17.0 | 570 | μA | #### **Definition of Terms** **Input offset voltage:** That voltage which must be applied between the input terminals to bias the unloaded output in the linear region. **Input offset current:** The difference in the currents at the input terminals when the unloaded output is in the linear region. **Input bias current:** The absolute value of the average of the two input currents. **Input resistance:** The ratio of the change in input voltage to the change in input current on either input with the other grounded. **Large signal voltage gain:** The ratio of the specified output voltage swing to the change in differential input voltage required to produce it. **Shunt gain:** The ratio of the specified output voltage swing to the change in differential input voltage required to produce it with the output tied to the V⁺ terminal of the IC. The load and power source are connected between the V⁺ and V⁻ terminals, and input common-mode is referred to the V⁻ terminal. **Common-mode rejection:** The ratio of the input voltage range to the change in offset voltage between the extremes. **Supply-voltage rejection:** The ratio of the specified supply-voltage change to the change in offset voltage between the extremes. Line regulation: The average change in reference output voltage over the specified supply voltage range. Load regulation: The change in reference output voltage from no load to that load specified. **Feedback sense voltage:** The voltage, referred to V⁻, on the reference feedback terminal while operating in regulation. **Reference amplifier gain:** The ratio of the specified reference output change to the change in feedback sense voltage required to produce it. Feedback current: The absolute value of the current at the feedback terminal when operating in regulation. **Supply current:** The current required from the power source to operate the amplifier and reference with their outputs unloaded and operating in the linear range. ### **Typical Performance Characteristics (Op Amp)** #### Typical Performance Characteristics (Op Amp) (continued) **Output Saturation Output Saturation** Figure 12. Figure 13. Figure 14. **Minimum Supply Voltage** Figure 16. Figure 17. Comparator Response Time For Various Input Overdrives Figure 21. Large Signal Response Comparator Response Time For Various Input Overdrives Figure 22. ### Typical Performance Characteristics (Op Amp) (continued) Figure 23. Figure 26. 0.25 2 **OUTPUT VOLTAGE (V)** Figure 29. Figure 30. Figure 31. Figure 33. Figure 34. ### **Typical Performance Characteristics (Reference)** Figure 35. #### TYPICAL APPLICATIONS (Pin numbers are for devices in 8-pin packages) Circuit descriptions available in application note AN-211 (Literature Number SNOA638). # **Op Amp Offset Adjustment** Figure 41. Standard Figure 42. Limited Range Figure 43. Limited Range With Boosted Reference #### **Positive Regulators** Figure 44. Low Voltage Figure 45. Best Regulation WWW.100Y.COM.TW (Pin numbers are for devices in 8-pin packages) WWW.100Y.COM.TW Use only electrolytic output capacitors. WWW.100Y.CO Figure 46. Zero Output Figure 47. Current Regulator Required For Capacitive Loading WWW.100Y.COM Figure 48. Shunt Regulator WWW.100Y.COM.TW WWW.100Y.COM Product Folder Links: *LM10* *Electrolytic Figure 49. Negative Regulator Figure 50. Precision Regulator Figure 51. Laboratory Power Supply Submit Documentation Feedback Copyright © 1998–2013, Texas Instruments Incorporated $$V_{OUT} = \frac{R2}{R1} V_{REF}$$ Figure 52. HV Regulator Figure 53. Protected HV Regulator *800°C Threshold Is Established By Connecting Balance To V_{REF}. Figure 54. Flame Detector VWW.100Y.COM.TW *Provides Hysteresis WWW.100Y.COM WWW.100Y.CO. Figure 56. Remote Amplifier Figure 57. Remote Thermocouple Amplifier WWW.100Y.CO WWW.100Y.CO WWW.100Y.COM.TW Submit Documentation Feedback Figure 58. Transmitter for Bridge Sensor 10 mA≤l_{OUT}≤50 mA 500°C≤T_P≤1500°C *Gain Trim Figure 59. Precision Thermocouple Transmitter Figure 60. Resistance Thermometer Transmitter WWW.100Y.COM. WWW.100Y.COM.T ††Level-shift Trim *Scale Factor Trim †Copper Wire Wound 1 mA \leq IOUT \leq 5 mA $0.01 \le \frac{I_{D2}}{1} \le 100$ I_{D1} WWW.100Y.COM.T Figure 61. Optical Pyrometer 200°C≤T_p≤700°C 1 mA≤l_{OUT}≤5 mA †Gain Trim Figure 62. Thermocouple Transmitter WWW.100Y.COM.TW WWW.100Y.COM.TW 1 mA≤l_{OUT}≤5 mA ‡50 μA≤I_D≤500 μA ††Center Scale Trim **†Scale Factor Trim** *Copper Wire Wound WWW.100Y.COM.TW WWW.100Y.COM.TW Figure 63. Logarithmic Light Sensor Figure 64. Battery-level Indicator Figure 65. Battery-threshold Indicator WWW.100Y.COM.TW Copyright © 1998–2013, Texas Instruments Incorporated Submit Documentation Feedback Flashes Above 1.2V Rate Increases With Voltage Figure 66. Single-cell Voltage Monitor Flash Rate Increases Above 6V and Below 15V Figure 67. Double-ended Voltage Monitor INPUT 10 mV, 100nA FULL-SCALE Figure 68. Meter Amplifier WWW.100Y.COM.TWn For Span †Trim For Zero WWW.100Y.COM. Figure 69. Thermometer 1≤λ/λ₀≤10⁵ WWW.100Y.COM.TW Z_{OUT} ~680 Ω @ 5 kHz A_V ≤1k f_1 ~100 Hz f_2 ~5 kHz R_L ~500 *Max Gain Trim Figure 71. Microphone Amplifier †Controls "Loop Gain" *Optional Frequency Shaping Figure 72. Isolated Voltage Sensor Figure 73. Light-level Controller WWW.100Y.COM. #### APPLICATION HINTS With heavy amplifier loading to V⁻, resistance drops in the V⁻ lead can adversely affect reference regulation. Lead resistance can approach 1Ω . Therefore, the common to the reference circuitry should be connected as close as possible to the package. #### **Operational Amplifier Schematic** (Pin numbers are for 8-pin packages) # Reference and Internal Regulator (Pin numbers are for 8-pin packages) Submit Documentation Feedback 24 W.100Y.COM. #### **REVISION HISTORY** WW.100Y.COM.TW | Changes from Re | evision C (March 2013) to Revision D | | Page | |-----------------|----------------------------------------|-----------------|------| | Changed layo | ut of National Data Sheet to TI format | M. 200 2 W. J. | 25 | | OM.TW
COM.TW | WWW.1007.COM.TW | WWW.100X.COM.TW | | WWW.1001 Submit Documentation Feedback 100Y.COM.TW 100Y.C 11-Apr-2013 #### **PACKAGING INFORMATION** | Orderable Device | | Status (1) | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Top-Side Markings (4) | Samples | |------------------|----|------------|--------------|--------------------|------|----------------|----------------------------|------------------|---------------------|--------------|-----------------------|---------| | LM10BH | WW | ACTIVE | COLLO | NEV | 8 | 500 | TBD | Call TI | Call TI | -40 to 85 | LM10BH | Sample | | LM10BH/NOPB | NW | ACTIVE | V.CCTO | NEV | 8 | 500 | Green (RoHS
& no Sb/Br) | POST-PLATE | Level-1-NA-UNLIM | -40 to 85 | LM10BH | Sample | | LM10CH | W | ACTIVE | Сто | NEV | 8 < | 500 | TBD | Call TI | Call TI | 0 to 70 | LM10CH | Sample | | LM10CH/NOPB | W | ACTIVE | OOY. TO | NEV | 8 | 500 | Green (RoHS
& no Sb/Br) | POST-PLATE | Level-1-NA-UNLIM | 0 to 70 | LM10CH | Sample | | LM10CLN | | ACTIVE | PDIP | Р | 8 | 40 | TBD | Call TI | Call TI | 0 to 70 | LM10CLN | Sample | | LM10CLN/NOPB | | ACTIVE | PDIP | P | 8 | 40 | Green (RoHS
& no Sb/Br) | CONSN | Level-1-NA-UNLIM | 0 to 70 | LM10CLN | Sample | | LM10CN | | ACTIVE | PDIP | ONP
OM.T | 8 | 40 | TBD | Call TI | Call TI | 0 to 70 | LM
10CN | Sample | | LM10CN/NOPB | | ACTIVE | PDIP | P | 8 | 40 | Green (RoHS
& no Sb/Br) | Call TI | Level-1-NA-UNLIM | 0 to 70 | LM
10CN | Sample | | LM10CWM | | ACTIVE | SOIC | NPA | 14 | 50 | TBD | Call TI | Call TI | 0 to 70 | LM10CWM | Sample | | LM10CWM/NOPB | | ACTIVE | SOIC | NPA | 14 | 50 | Green (RoHS
& no Sb/Br) | CU SN | Level-3-260C-168 HR | 0 to 70 | LM10CWM | Sample | | LM10CWMX | | ACTIVE | SOIC | NPA | 14 | 1000 | TBD | Call TI | Call TI | 0 to 70 | LM10CWM | Sample | | LM10CWMX/NOPB | | ACTIVE | SOIC | NPA | 14 | 1000 | Green (RoHS
& no Sb/Br) | CU SN | Level-3-260C-168 HR | 0 to 70 | LM10CWM | Sample | ⁽¹⁾ The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. **TBD:** The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. ⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. # **PACKAGE OPTION ADDENDUM** 11-Apr-2013 Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. WWW.100Y.C PACKAGE MATERIALS INFORMATION Ф 0 0 B₀ W.100Y.COM.TW 8-Apr-2013 www ti com #### TAPE AND REEL INFORMATION #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Package
Type | | | SPQ | | | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |-----------------|--------------|-----------------------|-------------|--------------------------------|---|--|--|---|---|---|---| | SOIC | NPA | 14 | 1000 | 330.0 | 16.4 | 10.9 | 9.5 | 3.2 | 12.0 | 16.0 | Q1 | | SOIC | NPA | 14 | 1000 | 330.0 | 16.4 | 10.9 | 9.5 | 3.2 | 12.0 | 16.0 | Q1 | | | Type
SOIC | Type Drawing SOIC NPA | SOIC NPA 14 | Type Drawing SOIC NPA 14 1000 | Type Drawing Diameter (mm) SOIC NPA 14 1000 330.0 | Type Drawing Diameter (mm) Width W1 (mm) SOIC NPA 14 1000 330.0 16.4 | Type Drawing Diameter (mm) Width W1 (mm) (mm) SOIC NPA 14 1000 330.0 16.4 10.9 | Type Drawing Diameter (mm) Width W1 (mm) (mm) (mm) SOIC NPA 14 1000 330.0 16.4 10.9 9.5 | Type Drawing Diameter (mm) Width W1 (mm) (mm) (mm) (mm) (mm) SOIC NPA 14 1000 330.0 16.4 10.9 9.5 3.2 | Type Drawing Diameter (mm) Width W1 (mm) | Type Drawing Diameter (mm) Width W1 (mm) | WWW.100Y.COM.TW WWW.100X. WWW.100Y.COM.TW COM.TW 8-Apr-2013 www ti com #### *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |--------------|--------------|-----------------|------|------|-------------|------------|-------------| | LM10CWMX | SOIC | NPA | 14 | 1000 | 367.0 | 367.0 | 38.0 | | M10CWMX/NOPB | SOIC | NPA | 14 | 1000 | 367.0 | 367.0 | 38.0 | WWW.100Y.COM.TW WWW.100Y.C WWW.100Y.COM.TW HOOY.COM.TW # P (R-PDIP-T8) ## PLASTIC DUAL-IN-LINE PACKAGE NOTES: - All linear dimensions are in inches (millimeters). - This drawing is subject to change without notice. В. WW.100Y.COM.TW Falls within JEDEC MS-001 variation BA. WW.100Y.COM.TW WWW.100Y.CO W.100Y.COM.TW WWW.100 W.100Y.COM.TW WWW.100Y.COM WWW.10 W.100Y.COM.TW WWW.100 W.100Y.COM.TW WWW.100Y.COM COM.TW 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/security Power Mgmt <u>power.ti.com</u> Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u> Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u> RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com/omap Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>