www.ti.com 特力材料886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw SNOS725D - MAY 1999 - REVISED MARCH 2013 # LMC6462 Dual/LMC6464 Quad Micropower, Rail-to-Rail Input and Output CMOS **Operational Amplifier** Check for Samples: LMC6462, LMC6464 #### **FEATURES** - (Typical Unless Otherwise Noted) - **Ultra Low Supply Current** 20 µA/Amplifier - **Ensured Characteristics at 3V and 5V** - Rail-to-Rail Input Common-Mode Voltage Range - Rail-to-Rail Output Swing - (within 10 mV of rail, $V_S = 5V$ and $R_L = 25$ - Low Input Current 150 fA - Low Input Offset Voltage 0.25 mV #### APPLICATIONS - **Battery Operated Circuits** - **Transducer Interface Circuits** - **Portable Communication Devices** - **Medical Applications** - **Battery Monitoring** Figure 1. 8-Pin PDIP/SOIC - Top View (See Package Number P or D) #### DESCRIPTION The LMC6462/4 is a micropower version of the popular LMC6482/4, combining Rail-to-Rail Input and Output Range with very low power consumption. The LMC6462/4 provides an input common-mode voltage range that exceeds both rails. The rail-to-rail output swing of the amplifier, ensured for loads down to 25 kΩ, assures maximum dynamic signal range. rail-to-rail performance of the amplifier, combined with its high voltage gain makes it unique among rail-to-rail amplifiers. The LMC6462/4 is an excellent upgrade for circuits using limited commonmode range amplifiers. The LMC6462/4, with ensured specifications at 3V and 5V, is especially well-suited for low voltage applications. A quiescent power consumption of 60 μ W per amplifier (at $V_S = 3V$) can extend the useful life of battery operated systems. The amplifier's 150 fA input current, low offset voltage of 0.25 mV, and 85 dB CMRR maintain accuracy in battery-powered systems. Figure 2. 14-Pin PDIP/SOIC - Top View (See Package Number NFF0014A or D) Figure 3. Low-Power Two-Op-Amp Instrumentation Amplifier Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. # Absolute Maximum Ratings (1)(2)(3) | ESD Tolerance (4) | 2.0 kV | |---|------------------------------| | Differential Input Voltage | ±Supply Voltage | | Voltage at Input/Output Pin | $(V^+) + 0.3V, (V^-) - 0.3V$ | | Supply Voltage (V ⁺ - V ⁻) | 16V | | Current at Input Pin ⁽⁵⁾ | ±5 mA | | Current at Output Pin ⁽⁶⁾⁽⁷⁾ | ±30 mA | | Current at Power Supply Pin | 40 mA | | Lead Temp. (Soldering, 10 sec.) | 260°C | | Storage Temperature Range | −65°C to +150°C | | Junction Temperature (8) | 150°C | | | | - (1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test conditions, see the Electrical Characteristics. - (2) For specified Military Temperature Range parameters see RETSMC6462/4X. - (3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications. - (4) Human body model, 1.5 k Ω in series with 100 pF. All pins rated per method 3015.6 of MIL-STD-883. This is a class 2 device rating. - (5) Limiting input pin current is only necessary for input voltages that exceed absolute maximum input voltage ratings. - (6) Applies to both single supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of ±30 mA over long term may adversely affect reliability. - (7) Do not short circuit output to V⁺, when V⁺ is greater than 13V or reliability will be adversely affected. - (8) The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} T_A)/\theta_{JA}$. All numbers apply for packages soldered directly into a PC board. # Operating Ratings | $ \begin{array}{c} {\rm Range} & {\rm LMC6462AI, LMC6464AI} & -40^{\circ}{\rm C} \le {\rm T_{J}} \le + \\ {\rm LMC6462BI, LMC6464BI} & -40^{\circ}{\rm C} \le {\rm T_{J}} \le + \\ {\rm Thermal Resistance} \ (\theta_{\rm JA}) & {\rm P Package, 8-Pin PDIP} & 115 \\ {\rm D Package, 8-Pin SOIC} & 193 \\ {\rm NFF Package, 14-Pin PDIP} & 81 \\ \end{array} $ | Supply Voltage | | 3.0V ≤ V ⁺ ≤ 15.5V | |--|---------------------------------------|--------------------------|---------------------------------| | | | LMC6462AM, LMC6464AM | -55°C ≤ T _J ≤ +125°C | | Thermal Resistance (θ _{JA}) P Package, 8-Pin PDIP 115 D Package, 8-Pin SOIC 193 NFF Package, 14-Pin PDIP 81 | Range | LMC6462AI, LMC6464AI | -40°C ≤ T _J ≤ +85°C | | D Package, 8-Pin SOIC 193 NFF Package, 14-Pin PDIP 81 | W.100 - | LMC6462BI, LMC6464BI | -40°C ≤ T _J ≤ +85°C | | NFF Package, 14-Pin PDIP | Thermal Resistance (θ _{JA}) | P Package, 8-Pin PDIP | 115°C/W | | | WWW | D Package, 8-Pin SOIC | 193°C/W | | D Package, 14-Pin SOIC 126 | MWW.IO. | NFF Package, 14-Pin PDIP | 81°C/W | | | | D Package, 14-Pin SOIC | 126°C/W | ⁽¹⁾ Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test conditions, see the Electrical Characteristics. #### **5V DC Electrical Characteristics** Unless otherwise specified, all limits ensured for $T_J = 25$ °C, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$ and $R_L > 1M$. **Boldface** limits apply at the temperature extremes. | Symbol | Parameter | Conditions | Typ ⁽¹⁾ | LMC6462AI
LMC6464AI
Limit ⁽²⁾ | LMC6462BI
LMC6464BI
Limit ⁽²⁾ | LMC6462AM
LMC6464AM
Limit ⁽²⁾ | Units | |-------------------|---------------------------------------|--------------------|--------------------|--|--|--|-----------| | V _{OS} | Input Offset Voltage | 100X.COM.TW | 0.25 | 0.5
1.2 | 3.0
3.7 | 0.5
1.5 | mV
max | | TCV _{OS} | Input Offset Voltage
Average Drift | W.100Y.COM.TW | 1.5 | WW.100 | COM: | N V | μV/°C | | I _B | Input Current | See ⁽³⁾ | 0.15 | 10 | 10 | 200 | pA max | - (1) Typical Values represent the most likely parametric norm. - (2) All limits are specified by testing or statistical analysis. - (3) Specified limits are dictated by tester limitations and not device performance. Actual performance is reflected in the typical value. Submit Documentation Feedback Copyright © 1999–2013, Texas Instruments Incorporated # **5V DC Electrical Characteristics (continued)** Unless otherwise specified, all limits ensured for $T_J = 25$ °C, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$ and $R_L > 1M$. **Boldface** limits apply at the temperature extremes. | Symbol | Parameter | Conditions | Typ ⁽¹⁾ | LMC6462AI
LMC6464AI
Limit ⁽²⁾ | LMC6462BI
LMC6464BI
Limit ⁽²⁾ | LMC6462AM
LMC6464AM
Limit ⁽²⁾ | Units | |-----------------|--|---|--------------------|--|--|--|----------------------------| | los | Input Offset Current | See (3) | 0.075 | 5 | 5 | 100 | pA max | | C _{IN} | Common-Mode
Input Capacitance | HOOY.CONL. | 3 | W. 100Y.C | WI.M | | pF | | R _{IN} | Input Resistance | TW.Co. TW | >10 | 100Y | TITY | | Tera Ω | | CMRR | Common Mode
Rejection Ratio | $0V \le V_{CM} \le 15.0V$,
$V^+ = 15V$ | 85 | 70
67 | 65
62 | 70
65 | dB
min | | | M.TW WY | $0V \le V_{CM} \le 5.0V$ $V^+ = 5V$ | 85 | 70
67 | 65
62 | 70
65 | - | | +PSRR | Positive Power Supply
Rejection Ratio | $5V \le V^+ \le 15V$,
$V^- = 0V$, $V_0 = 2.5V$ | 85 | 70
67 | 65
62 | 70
65 | dB
min | | -PSRR | Negative Power Supply
Rejection Ratio | $-5V \le V^- \le -15V$,
$V^+ = 0V$, $V_0 = -2.5V$ | 85 | 70
67 | 65
62 | 70
65 | dB
min | | V _{CM} | Input Common-Mode
Voltage Range | V ⁺ = 5V
For CMRR ≥ 50 dB | -0.2 | -0.10
0.00 | -0.10
0.00 | -0.10
0.00 | V
max | | | OY.COM.TW | WWW.100Y.CC | 5.30 | 5.25
5.00 | 5.25
5.00 | 5.25
5.00 | V
min | | | OOX.COM.TV | V ⁺ = 15V
For CMRR ≥ 50 dB | -0.2 | -0.15
0.00 | -0.15
0.00 | -0.15
0.00 | V
max | | | W.100Y.COM.TW | WWW.100X. | 15.30 | 15.25
15.00 | 15.25
15.00 | 15.25
15.00 | V
min | | A _V | Large Signal
Voltage Gain | $R_L = 100 \text{ k}\Omega^{(4)}$ Sourcing | 3000 | TW | WWW. | M. COM | V/mV
min | | W | NW.100X.COM | Sinking | 400 | WII | WWW | 1.100X.CO | V/mV
min | | 1 | WWW.100X.COM | $R_L = 25 \text{ k}\Omega^{(4)}$ Sourcing Sinking | 2500 | M.TW
| W. | M.100X.C | V/mV
min
V/mV
min | | Vo | Output Swing | $V^{+} = 5V$
R _L = 100 k Ω to $V^{+}/2$ | 4.995 | 4.990
4.980 | 4.950
4.925 | 4.990
4.970 | V | | | WWW.100Y.C | OW.TW WW | 0.005 | 0.010
0.020 | 0.050
0.075 | 0.010
0.030 | V
max | | | MMM.100 | $V^{+} = 5V$
$R_{L} = 25 \text{ k}\Omega \text{ to } V^{+}/2$ | 4.990 | 4.975
4.965 | 4.950
4.850 | 4.975
4.955 | V | | | WWW.100Y | N.COM.TW | 0.010 | 0.020
0.035 | 0.050
0.150 | 0.020
0.045 | V
max | | | TWW.IO | $R_1 = 100 \text{ k}\Omega \text{ to V}^+/2$ | 14.990 | 14.975
14.965 | 14.950
14.925 | 14.975
14.955 | V
min | | | WWW. | COM | 0.010 | 0.025
0.035 | 0.050
0.075 | 0.025
0.050 | V
max | | | WWY | $V^{+} = 15V$
$R_{L} = 25 \text{ k}\Omega \text{ to } V^{+}/2$ | 14.965 | 14.900
14.850 | 14.850
14.800 | 14.900
14.800 | V
min | | | MM | W.100Y.COW.TW | 0.025 | 0.050
0.150 | 0.100
0.200 | 0.050
0.200 | V
max | (4) $V^+ = 15V$, $V_{CM} = 7.5V$ and R_L connected to 7.5V. For Sourcing tests, $7.5V \le V_O \le 11.5V$. For Sinking tests, $3.5V \le V_O \le 7.5V$. # **5V DC Electrical Characteristics (continued)** Unless otherwise specified, all limits ensured for $T_J = 25$ °C, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$ and $R_L > 1M$. **Boldface** limits apply at the temperature extremes. | Symbol | Parameter | Conditions | Typ ⁽¹⁾ | LMC6462AI
LMC6464AI
Limit ⁽²⁾ | LMC6462BI
LMC6464BI
Limit ⁽²⁾ | LMC6462AM
LMC6464AM
Limit ⁽²⁾ | Units | |-----------------|---------------------------------|-------------------------------|--------------------|--|--|--|-------| | I _{SC} | Output Short Circuit | Sourcing, V _O = 0V | 27 | 19 | 19 | 19 | mA | | | Current
V+ = 5V | COM | WW | 15 | 15 | 15 | min | | | VT = 3V | Sinking, $V_0 = 5V$ | 27 | 22 | 22 | 22 | mA | | | IM MM. | 100Y.COM.TW | | 17 | 17 | 17 | min | | I _{SC} | Output Short Circuit | Sourcing, V _O = 0V | 38 🕥 | 24 | 24 | 24 | mA | | | Current
V ⁺ = 15V | N.Ing. COM. | | 17 | 17 | 17 | min | | | V = 15V | Sinking, $V_O = 12V^{(5)}$ | 75 | 55 | 55 | 55 | mA | | | WIT | 100Y. | | 45 | 45 | 45 | min | | l _s | Supply Current | Dual, LMC6462 | 40 | 55 | 55 | 55 | μΑ | | | COM.1 | $V^+ = +5V, V_O = V^+/2$ | XXI | 70 | 70 | 75 | max | | | T.M.TW | Quad, LMC6464 | 80 | 110 | 110 | 110 | μΑ | | | COMMENT | $V^+ = +5V, V_O = V^+/2$ | WILL | 140 | 140 | 150 | max | | | V COM. | Dual, LMC6462 | 50 | 60 | 60 | 60 | μΑ | | | COM.I | $V^+ = +15V, V_O = V^+/2$ | DITT | 70 | 70 | 75 | max | | | OY.COM.TW | Quad, LMC6464 | 90 | 120 | 120 | 120 | μΑ | | | MY.COM | $V^+ = +15V, V_O = V^+/2$ | WILL | 140 | 140 | 150 | max | ⁽⁵⁾ Do not short circuit output to V+, when V+ is greater than 13V or reliability will be adversely affected. #### **5V AC Electrical Characteristics** Unless otherwise specified, all limits ensured for $T_J = 25$ °C, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$ and $R_L > 1M$. **Boldface** limits apply at the temperature extremes. | Symbol | Parameter | Conditions | Typ ⁽¹⁾ | LMC6462AI
LMC6464AI
Limit ⁽²⁾ | LMC6462BI
LMC6464BI
Limit ⁽²⁾ | LMC6462AM
LMC6464AM
Limit ⁽²⁾ | Units | |----------------|---------------------------------|-----------------------------------|--------------------|--|--|--|--------------------| | SR N | Slew Rate | See ⁽³⁾ | 28 | 15 | 15
8 | 15
8 | V/ms
min | | GBW | Gain-Bandwidth Product | V ⁺ = 15V | 50 | A COMP. | J N | WW. | kHz | | φ _m | Phase Margin | 1 | 50 | COM. | - 41 | MW.IOO | Deg | | G _m | Gain Margin | IN | 15 | OY. | 77 | N 100 | dB | | | Amp-to-Amp Isolation | See ⁽⁴⁾ | 130 | OUX.CO | rW. | MM . 100 | dB | | e _n | Input-Referred
Voltage Noise | f = 1 kHz
V _{CM} = 1V | 80 | 100X'COM | TW | WWW.10 | nV/√ Hz | | i _n | Input-Referred Current Noise | f = 1 kHz | 0.03 | TOON CO. | WT | MM | pA/√Hz | - 1) Typical Values represent the most likely parametric norm. - (2) All limits are specified by testing or statistical analysis. - (3) V⁺ = 15V. Connected as Voltage Follower with 10V step input. Number specified is the slower of either the positive or negative slew rates. - (4) Input referred, $V^+ = 15V$ and $R_L = 100 \text{ k}\Omega$ connected to 7.5V. Each amp excited in turn with 1 kHz to produce $V_O = 12 \text{ V}_{PP}$. #### **3V DC Electrical Characteristics** Unless otherwise specified, all limits ensured for $T_J = 25$ °C, $V^+ = 3V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$ and $R_L > 1M$. **Boldface** limits apply at the temperature extremes. | Symbol | Parameter | Conditions | Typ ⁽¹⁾ | LMC6462AI
LMC6464AI
Limit ⁽²⁾ | LMC6462BI
LMC6464BI
Limit ⁽²⁾ | LMC6462AM
LMC6464AM
Limit ⁽²⁾ | Units | |-------------------|---------------------------------------|---|--------------------|--|--|--|-----------| | V _{OS} | Input Offset Voltage | A. TOOA' COM' LA | 0.9 | 2.0
2.7 | 3.0
3.7 | 2.0
3.0 | mV
max | | TCV _{OS} | Input Offset Voltage
Average Drift | VIV.100Y.COM.TW | 2.0 | MM.100X | COM.TV | J | μV/°C | | l _B | Input Current | See ⁽³⁾ | 0.15 | 10 | 10 | 200 | pА | | los | Input Offset Current | See ⁽³⁾ | 0.075 | 5 100 | 5 | 100 | pА | | CMRR | Common Mode
Rejection Ratio | $0V \le V_{CM} \le 3V$ | 74 | 60 | 60 | 60 | dB
min | | PSRR | Power Supply
Rejection Ratio | $3V \le V^+ \le 15V, V^- = 0V$ | 80 | 60 | 60 | 60 | dB
min | | V _{CM} | Input Common-Mode
Voltage Range | For CMRR ≥ 50 dB | -0.10 | 0.0 | 0.0 | 0.0 | V
max | | | K.COM.I | WWW.100Y.CO | 3.0 | 3.0 | 3.0 | 3.0 | V
min | | Vo | Output Swing | $R_L = 25 \text{ k}\Omega \text{ to V}^+/2$ | 2.95 | 2.9 | 2.9 | 2.9 | V
min | | | OOY.COM.TW | WW.1007.C | 0.15 | 0.1 | 0.1 | 0.1 | V
max | | ls | Supply Current | Dual, LMC6462 | 40 | 55 | 55 | 55 | μA | | | LOOY.COM TY | $V_0 = V^+/2$ | LUCALT | 70 | 70 | 70 | N | | | N.100Y.COM.T | Quad, LMC6464
V _O = V ⁺ /2 | 80 | 110
140 | 110
140 | 110
140 | μA
max | Typical Values represent the most likely parametric norm. # **3V AC Electrical Characteristics** Unless otherwise specified, $V^+ = 3V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$ and $R_L > 1M$. **Boldface limits** apply at the temperature extremes. | Symbol | Parameter | Conditions | Typ ⁽¹⁾ | LMC6462AI
LMC6464AI
Limit ⁽²⁾ | LMC6462BI
LMC6464BI
Limit ⁽²⁾ | LMC6462AM
LMC6464AM
Limit ⁽²⁾ | Units | |--------|------------------------|--------------------|--------------------|--|--|--|-------| | SR | Slew Rate | See ⁽³⁾ | 23 | COM | TVV | WWW | V/ms | | GBW | Gain-Bandwidth Product | W.L. | 50 | 100 COM | - 1 | INW.IO | kHz | ⁽¹⁾ Typical Values represent the most likely parametric norm. Product Folder Links: LMC6462 LMC6464 ⁽²⁾ All limits are specified by testing or statistical analysis. ⁽³⁾ Specified limits are dictated by tester limitations and not device performance. Actual performance is reflected in the typical value. ⁽²⁾ All limits are specified by testing or statistical analysis. ⁽³⁾ Connected as Voltage Follower with 2V step input. Number specified is the slower of either the positive or negative slew rates. # **Typical Performance Characteristics** $V_S = +5V$, Single Supply, $T_A = 25$ °C unless otherwise specified Figure 4. Figure 5. OUTPUT VOLTAGE REFERENCED TO GND (V) Figure 9. CONTRACTOR CONTRACTOR $V_S = +5V$, Single Supply, $T_A = 25$ °C unless otherwise specified OUTPUT VOLTAGE REFERENCED TO GND (V) Figure 10. Figure 11. ΔV_{OS} vs CMR 0.2 (Λε) 0.1 $V_S = +5V$, Single Supply, $T_A = 25$ °C unless otherwise specified Figure 18. Slew Rate vs. Supply Voltage 30 FALLING EDGE 29 28 RISING EDGE SLEW RATE (1V/ms) 27 26 25 24 23 22 21 20 SUPPLY VOLTAGE (V) Figure 20. Figure 17. TIME $(115 \mu s/DIV)$ Figure 21. $V_S = +5V$, Single Supply, $T_A = 25$ °C unless otherwise specified TIME $(115 \mu s/DIV)$ Figure 22. Non-Inverting Large Signal Pulse Response TIME (115 μ s/DIV) Figure 23. TIME (115 μ s/DIV) Figure 24. TIME (115 μ s/DIV) Figure 25. TIME (115 μ s/DIV) **Figure 26.** TIME (115 μs/DIV) Figure 27. $V_S = +5V$, Single Supply, $T_A = 25$ °C unless otherwise specified TIME (115 µs/DIV) Figure 28. TIME (115 µs/DIV) Figure 29. TIME (115 µs/DIV) Figure 30. WWW.100Y.COM.TW #### **APPLICATION INFORMATION** # **Input Common-Mode Voltage Range** The LMC6462/4 has a rail-to-rail input common-mode voltage range. Figure 33 shows an input voltage exceeding both supplies with no resulting phase inversion on the output. Figure 33. An Input Voltage Signal Exceeds the LMC6462/4 Power Supply Voltage with No Output Phase Inversion The absolute maximum input voltage at $V^+ = 3V$ is 300 mV beyond either supply rail at room temperature. Voltages greatly exceeding this absolute maximum rating, as in Figure 34, can cause excessive current to flow in or out of the input pins, possibly affecting reliability. The input current can be externally limited to ± 5 mA, with an input resistor, as shown in Figure 35. Product Folder Links: LMC6462 LMC6464 Figure 34. A ±7.5V Input Signal Greatly Exceeds the 3V Supply in Figure 35 Causing No Phase Inversion Due to R_I Figure 35. Input Current Protection for Voltages Exceeding
the Supply Voltage # Rail-to-Rail Output The approximated output resistance of the LMC6462/4 is 180Ω sourcing, and 130Ω sinking at $V_S = 3V$, and 110Ω sourcing and 83Ω sinking at $V_S = 5V$. The maximum output swing can be estimated as a function of load using the calculated output resistance. #### **Capacitive Load Tolerance** The LMC6462/4 can typically drive a 200 pF load with $V_S = 5V$ at unity gain without oscillating. The unity gain follower is the most sensitive configuration to capacitive load. Direct capacitive loading reduces the phase margin of op-amps. The combination of the op-amp's output impedance and the capacitive load induces phase lag. This results in either an underdamped pulse response or oscillation. Capacitive load compensation can be accomplished using resistive isolation as shown in Figure 36. If there is a resistive component of the load in parallel to the capacitive component, the isolation resistor and the resistive load create a voltage divider at the output. This introduces a DC error at the output. Figure 36. Resistive Isolation of a 300 pF Capacitive Load Figure 37. Pulse Response of the LMC6462 Circuit Shown in Figure 36 Figure 37 displays the pulse response of the LMC6462/4 circuit in Figure 36. Another circuit, shown in Figure 38, is also used to indirectly drive capacitive loads. This circuit is an improvement to the circuit shown in Figure 36 because it provides DC accuracy as well as AC stability. R1 and C1 serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifiers inverting input, thereby preserving phase margin in the overall feedback loop. The values of R1 and C1 should be experimentally determined by the system designer for the desired pulse response. Increased capacitive drive is possible by increasing the value of the capacitor in the feedback loop. Product Folder Links: LMC6462 LMC6464 Figure 38. LMC6462 Non-Inverting Amplifier, Compensated to Handle a 300 pF Capacitive and 100 kΩ **Resistive Load** Figure 39. Pulse Response of LMC6462 Circuit in Figure 38 The pulse response of the circuit shown in Figure 38 is shown in Figure 39 # **Compensating for Input Capacitance** It is quite common to use large values of feedback resistance with amplifiers that have ultra-low input current, like the LMC6462/4. Large feedback resistors can react with small values of input capacitance due to transducers, photodiodes, and circuits board parasitics to reduce phase margins. Figure 40. Canceling the Effect of Input Capacitance The effect of input capacitance can be compensated for by adding a feedback capacitor. The feedback capacitor (as in Figure 40), C_F , is first estimated by: $$\frac{1}{2\pi\mathsf{R}_1\,\mathsf{C}_{\mathsf{IN}}} \ge \frac{1}{2\pi\mathsf{R}_2\,\mathsf{C}_{\mathsf{F}}} \tag{1}$$ 10 $$R_1 C_{IN} \le R_2 C_F \tag{2}$$ which typically provides significant overcompensation. Printed circuit board stray capacitance may be larger or smaller than that of a breadboard, so the actual optimum value for C_F may be different. The values of C_F should be checked on the actual circuit. (Refer to the LMC660 quad CMOS amplifier data sheet for a more detailed discussion.) # Offset Voltage Adjustment Offset voltage adjustment circuits are illustrated in Figure 41 and Figure 42. Large value resistances and potentiometers are used to reduce power consumption while providing typically ± 2.5 mV of adjustment range, referred to the input, for both configurations with $V_S = \pm 5V$. Figure 41. Inverting Configuration Offset Voltage Adjustment Figure 42. Non-Inverting Configuration Offset Voltage Adjustment #### **SPICE Macromodel** A Spice macromodel is available for the LMC6462/4. This model includes a simulation of: Input common-mode voltage range - Frequency and transient response - GBW dependence on loading conditions - Quiescent and dynamic supply current - Output swing dependence on loading conditions and many more characteristics as listed on the macromodel disk. Contact the Texas Instruments Customer Response Center to obtain an operational amplifier Spice model library disk # Printed-Circuit-Board Layout for High-Impedance Work It is generally recognized that any circuit which must operate with less than 1000 pA of leakage current requires special layout of the PC board. When one wishes to take advantage of the ultra-low input current of the LMC6462/4, typically 150 fA, it is essential to have an excellent layout. Fortunately, the techniques of obtaining low leakages are quite simple. First, the user must not ignore the surface leakage of the PC board, even though it may sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage will be appreciable. To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC6462's inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, etc. connected to the op-amp's inputs, as in Figure 43. To have a significant effect, guard rings should be placed in both the top and bottom of the PC board. This PC foil must then be connected to a voltage which is at the same voltage as the amplifier inputs, since no leakage current can flow between two points at the same potential. For example, a PC board trace-to-pad resistance of $10^{12}\Omega$, which is normally considered a very large resistance, could leak 5 pA if the trace were a 5V bus adjacent to the pad of the input. This would cause a 30 times degradation from the LMC6462/4's actual performance. However, if a guard ring is held within 5 mV of the inputs, then even a resistance of $10^{11}\Omega$ would cause only 0.05 pA of leakage current. See Figure 44 through Figure 46 for typical connections of guard rings for standard op-amp configurations. Figure 43. Example of Guard Ring in P.C. Board Layout Figure 44. Typical Connections of Guard Rings – Inverting Amplifier Figure 45. Typical Connections of Guard Rings - Non-Inverting Amplifier Figure 46. Typical Connections of Guard Rings – Follower The designer should be aware that when it is inappropriate to lay out a PC board for the sake of just a few circuits, there is another technique which is even better than a guard ring on a PC board: Don't insert the amplifier's input pin into the board at all, but bend it up in the air and use only air as an insulator. Air is an excellent insulator. In this case you may have to forego some of the advantages of PC board construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See Figure 47. (Input pins are lifted out of PC board and soldered directly to components. All other pins connected to PC board.) Figure 47. Air Wiring #### **Instrumentation Circuits** The LMC6464 has the high input impedance, large common-mode range and high CMRR needed for designing instrumentation circuits. Instrumentation circuits designed with the LMC6464 can reject a larger range of common-mode signals than most in-amps. This makes instrumentation circuits designed with the LMC6464 an excellent choice for noisy or industrial environments. Other applications that benefit from these features include analytic medical instruments, magnetic field detectors, gas detectors, and silicon-based transducers. Product Folder Links: LMC6462 LMC6464 A small valued potentiometer is used in series with R_G to set the differential gain of the three op-amp instrumentation circuit in Figure 48. This combination is used instead of one large valued potentiometer to increase gain trim accuracy and reduce error due to vibration. Figure 48. Low Power Three Op-Amp Instrumentation Amplifier A two op-amp instrumentation amplifier designed for a gain of 100 is shown in Figure 49. Low sensitivity trimming is made for offset voltage, CMRR and gain. Low cost and low power consumption are the main advantages of this two op-amp circuit. Higher frequency and larger common-mode range applications are best facilitated by a three op-amp instrumentation amplifier. Figure 49. Low-Power Two-Op-Amp Instrumentation Amplifier # TYPICAL SINGLE-SUPPLY APPLICATIONS #### **Transducer Interface Circuits** Figure 50. Photo Detector Circuit Photocells can be used in portable light measuring instruments. The LMC6462, which can be operated off a battery, is an excellent choice for this circuit because of its very low input current and offset voltage. # LMC6462 as a Comparator Figure 51. Comparator with Hysteresis Figure 51 shows the application of the LMC6462 as a comparator. The hysteresis is determined by the ratio of the two resistors. The LMC6462 can thus be used as a micropower comparator, in applications where the quiescent current is an important parameter. ### Half-Wave and Full-Wave Rectifiers Figure 52. Half-Wave Rectifier with Input Current Protection (R_I) Figure 53. Full-Wave Rectifier with Input Current Protection (R_I) In Figure 52 Figure 53, R_I limits current into the amplifier since excess current can be caused by the input voltage exceeding the supply voltage. ### **Precision Current Source** Figure 54. Precision Current Source The output current I_{OUT} is given by: $$I_{OUT} = \left(\frac{V^+ - V_{IN}}{R}\right) \tag{3}$$ #### Oscillators Figure 55. 1 Hz Square-Wave Oscillator For single supply 5V operation, the output of the circuit will swing from 0V to 5V. The voltage divider set up R_2 , R_3 and R_4 will cause the non-inverting input of the LMC6462 to move from 1.67V ($\frac{1}{3}$ of 5V) to 3.33V ($\frac{1}{3}$ of 5V). This voltage behaves as the threshold voltage. R₁ and C₁ determine the time constant of the circuit. The frequency of oscillation, f_{OSC} is $$\left(\frac{1}{2\Delta t}\right)$$ (4 where Δt is the time the amplifier input takes to move from 1.67V to 3.33V. The calculations are shown below. $$1.67 = 5\left(1 -
e^{-\frac{t_1}{\tau}}\right) \tag{5}$$ where $\tau = RC = 0.68$ seconds \rightarrow t₁ = 0.27 seconds. and $$3.33 = 5\left(1 - e^{-\frac{ly}{\tau}}\right) \tag{6}$$ \rightarrow t₂ = 0.75 seconds 20 Submit Documentation Feedback Copyright © 1999–2013, Texas Instruments Incorporated Then, $$f_{OSC} = \left(\frac{1}{2\Delta t}\right) \tag{7}$$ $\overline{2(0.75-0.27)}$ (8) = 1 Hz # **Low Frequency Null** Figure 56. High Gain Amplifier with Low Frequency Null Output offset voltage is the error introduced in the output voltage due to the inherent input offset voltage V_{OS} , of an amplifier. Output Offset Voltage = (Input Offset Voltage) (Gain) In the above configuration, the resistors R_5 and R_6 determine the nominal voltage around which the input signal, V_{IN} should be symmetrical. The high frequency component of the input signal V_{IN} will be unaffected while the low frequency component will be nulled since the DC level of the output will be the input offset voltage of the LMC6462 plus the bias voltage. This implies that the output offset voltage due to the top amplifier will be eliminated. Product Folder Links: LMC6462 LMC6464 W.100Y.COM #### **REVISION HISTORY** WW.100Y.COM.TW | Changes from Re | evision C (March 2013) to Revision D | | Page | |-----------------|--|-----------------|------| | Changed layo | ut of National Data Sheet to TI format | 11 M. W. W. J. | 21 | | OM.TW
COM.TW | WWW.1007.COM.TW | WWW.100X.COM.TW | | Submit Documentation Feedback 100Y.COM.TW 11-Apr-2013 # **PACKAGING INFORMATION** | Orderable Device | Status (1) | Package Type | Package
Drawing | Pins P | Package
Qty | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Top-Side Markings (4) | Samples | |------------------|------------|--------------|--------------------|--------|----------------|----------------------------|------------------|--------------------|--------------|-----------------------|---------| | LMC6462AIM | ACTIVE | SOIC | D | 8 | 95 | TBD | Call TI | Call TI | -40 to 85 | LMC64
62AIM | Samples | | LMC6462AIM/NOPB | ACTIVE | SOIC | N D | 8 | 95 | Green (RoHS
& no Sb/Br) | CU SN | Level-1-260C-UNLIM | -40 to 85 | LMC64
62AIM | Samples | | LMC6462AIMX | ACTIVE | SOIC | D | 8 | 2500 | TBD | Call TI | Call TI | -40 to 85 | LMC64
62AIM | Samples | | LMC6462AIMX/NOPB | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU SN | Level-1-260C-UNLIM | -40 to 85 | LMC64
62AIM | Samples | | LMC6462AIN | ACTIVE | PDIP | PW | 8 | 40 | TBD | Call TI | Call TI | -40 to 85 | LMC6462
AIN | Samples | | LMC6462AIN/NOPB | ACTIVE | PDIP | PIV | 8 | 40 | Green (RoHS
& no Sb/Br) | Call TI | Level-1-NA-UNLIM | -40 to 85 | LMC6462
AIN | Samples | | LMC6462BIM | ACTIVE | SOIC | O D | 8 | 95 | TBD | Call TI | Call TI | -40 to 85 | LMC64
62BIM | Samples | | LMC6462BIM/NOPB | ACTIVE | SOIC | CD | 8 | 95 | Green (RoHS
& no Sb/Br) | CU SN | Level-1-260C-UNLIM | -40 to 85 | LMC64
62BIM | Samples | | LMC6462BIMX | ACTIVE | SOIC | D | 8 | 2500 | TBD | Call TI | Call TI | -40 to 85 | LMC64
62BIM | Samples | | LMC6462BIMX/NOPB | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU SN | Level-1-260C-UNLIM | -40 to 85 | LMC64
62BIM | Samples | | LMC6462BIN | ACTIVE | PDIP | P.C | 8 | 40 | TBD | Call TI | Call TI | -40 to 85 | LMC6462
BIN | Samples | | LMC6462BIN/NOPB | ACTIVE | PDIP | LIOPY. | 8 | 40 | Green (RoHS
& no Sb/Br) | Call TI | Level-1-NA-UNLIM | -40 to 85 | LMC6462
BIN | Samples | | LMC6464AIM | ACTIVE | SOIC | D | 14 | 55 | TBD | Call TI | Call TI | -40 to 85 | LMC6464
AIM | Samples | | LMC6464AIM/NOPB | ACTIVE | SOIC | D | 14 | 55 | Green (RoHS
& no Sb/Br) | CUSN | Level-1-260C-UNLIM | -40 to 85 | LMC6464
AIM | Samples | | LMC6464AIMX | ACTIVE | SOIC | D | 14 | 2500 | TBD | Call TI | Call TI | -40 to 85 | LMC6464
AIM | Sample | | LMC6464AIMX/NOPB | ACTIVE | SOIC | D | 14 | 2500 | Green (RoHS
& no Sb/Br) | CU SN | Level-1-260C-UNLIM | -40 to 85 | LMC6464
AIM | Sample | | LMC6464BIM | ACTIVE | SOIC | D | 14 | 55 | TBD | Call TI | Call TI | -40 to 85 | LMC6464
BIM | Samples | # **PACKAGE OPTION ADDENDUM** 11-Apr-2013 | Status (1) | Package Type | Package
Drawing | Pins I | Package
Qty | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Top-Side Markings | Samples | |------------|------------------------|--|--|---|---|---|--|--|---|---| | ACTIVE | SOIC | D | 14 | 55 | Green (RoHS
& no Sb/Br) | CU SN | Level-1-260C-UNLIM | -40 to 85 | LMC6464
BIM | Samples | | ACTIVE | SOIC | D | 14 | 2500 | TBD | Call TI | Call TI | -40 to 85 | LMC6464
BIM | Samples | | ACTIVE | SOIC | N D | 14 | 2500 | Green (RoHS
& no Sb/Br) | CU SN | Level-1-260C-UNLIM | -40 to 85 | LMC6464
BIM | Samples | | ACTIVE | PDIP | NFF | 14 | 25 | 10 TBD | Call TI | Call TI | -40 to 85 | LMC6464BIN | Samples | | ACTIVE | PDIP | NFF | 14 | 25 | Green (RoHS
& no Sb/Br) | SN | Level-1-NA-UNLIM | -40 to 85 | LMC6464BIN | Samples | | | ACTIVE ACTIVE ACTIVE | ACTIVE SOIC ACTIVE SOIC ACTIVE SOIC ACTIVE PDIP | (1) Drawing ACTIVE SOIC D ACTIVE SOIC D ACTIVE SOIC D ACTIVE PDIP NFF | (1) Drawing ACTIVE SOIC D 14 ACTIVE SOIC D 14 ACTIVE SOIC D 14 ACTIVE PDIP NFF 14 | (1) Drawing Qty ACTIVE SOIC D 14 55 ACTIVE SOIC D 14 2500 ACTIVE SOIC D 14 2500 ACTIVE PDIP NFF 14 25 | (1) Drawing Qty (2) ACTIVE SOIC D 14 55 Green (RoHS & no Sb/Br) ACTIVE SOIC D 14 2500 TBD ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) ACTIVE PDIP NFF 14 25 TBD ACTIVE PDIP NFF 14 25 Green (RoHS | (1) Drawing Qty (2) ACTIVE SOIC D 14 55 Green (RoHS & CU SN & no Sb/Br) ACTIVE SOIC D 14 2500 TBD Call TI ACTIVE SOIC D 14 2500 Green (RoHS & CU SN & no Sb/Br) ACTIVE PDIP NFF 14 25 TBD Call TI ACTIVE PDIP NFF 14 25 Green (RoHS & SN | (1) Drawing Qty (2) (3) ACTIVE SOIC D 14 55 Green (RoHS & CU SN & Level-1-260C-UNLIM & no Sb/Br) ACTIVE SOIC D 14 2500 TBD Call TI Call TI ACTIVE SOIC D 14 2500 Green (RoHS & CU SN & Level-1-260C-UNLIM & no Sb/Br) ACTIVE PDIP NFF 14 25 TBD Call TI Call TI ACTIVE PDIP NFF 14 25 Green (RoHS & SN & Level-1-NA-UNLIM) | (1) Drawing Qty (2) (3) ACTIVE SOIC D 14 55 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 ACTIVE SOIC D 14 2500
TBD Call TI Call TI -40 to 85 ACTIVE SOIC D 14 2500 Green (RoHS & CU SN Level-1-260C-UNLIM -40 to 85 ACTIVE PDIP NFF 14 25 TBD Call TI Call TI -40 to 85 ACTIVE PDIP NFF 14 25 Green (RoHS SN Level-1-NA-UNLIM -40 to 85 | (1) Drawing Qty (2) (3) (4) ACTIVE SOIC D 14 55 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 LMC6464 BIM ACTIVE SOIC D 14 2500 TBD Call TI Call TI -40 to 85 LMC6464 BIM ACTIVE SOIC D 14 2500 Green (RoHS & CU SN Level-1-260C-UNLIM -40 to 85 LMC6464 BIM ACTIVE PDIP NFF 14 25 TBD Call TI Call TI -40 to 85 LMC6464BIN ACTIVE PDIP NFF 14 25 Green (RoHS SN Level-1-NA-UNLIM -40 to 85 LMC6464BIN | (1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. **Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. WW.100Y.COM.TW WWW.100Y.COM. WWW.100Y.COM.TW W 100 Y.COM.TW TIMY COM.TW WWW.100Y.COM.TW MMM.Tor V.COM.TW MMM.100, WWW.100Y.COM.7 11-Apr-2013 TW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.1007.C WW.100Y.COM.TW WWW.100Y.COM. WWW.100' WWW.100Y.C PACKAGE MATERIALS INFORMATION W.100Y.COM.TW 8-Apr-2013 www ti com ### TAPE AND REEL INFORMATION # QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | (mm) | Pin1
Quadrant | |------------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|------|------------------| | LMC6462AIMX | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.5 | 5.4 | 2.0 | 8.0 | 12.0 | Q1 | | LMC6462AIMX/NOPB | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.5 | 5.4 | 2.0 | 8.0 | 12.0 | Q1 | | LMC6462BIMX | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.5 | 5.4 | 2.0 | 8.0 | 12.0 | Q1 | | LMC6462BIMX/NOPB | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.5 | 5.4 | 2.0 | 8.0 | 12.0 | Q1 | | LMC6464AIMX | SOIC | D | 14 | 2500 | 330.0 | 16.4 | 6.5 | 9.35 | 2.3 | 8.0 | 16.0 | Q1 | | LMC6464AIMX/NOPB | SOIC | D | 14 | 2500 | 330.0 | 16.4 | 6.5 | 9.35 | 2.3 | 8.0 | 16.0 | Q1 | | LMC6464BIMX | SOIC | D | 14 | 2500 | 330.0 | 16.4 | 6.5 | 9.35 | 2.3 | 8.0 | 16.0 | Q1 | | LMC6464BIMX/NOPB | SOIC | - D | 14 | 2500 | 330.0 | 16.4 | 6.5 | 9.35 | 2.3 | 8.0 | 16.0 | Q1 | WWW.100Y.COM.TW 100Y.COM.TW TWW.100Y.COM W.COM.TW 8-Apr-2013 www ti com *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |-----------------|--------------|-----------------|------|------|-------------|------------|-------------| | LMC6462AIMX | SOIC | D 1100 | 8 | 2500 | 367.0 | 367.0 | 35.0 | | MC6462AIMX/NOPB | SOIC | D 10 | 8 | 2500 | 367.0 | 367.0 | 35.0 | | LMC6462BIMX | SOIC | D | 8 | 2500 | 367.0 | 367.0 | 35.0 | | MC6462BIMX/NOPB | SOIC | D | 8 | 2500 | 367.0 | 367.0 | 35.0 | | LMC6464AIMX | SOIC | D | 14 | 2500 | 367.0 | 367.0 | 35.0 | | MC6464AIMX/NOPB | SOIC | D | 14 | 2500 | 367.0 | 367.0 | 35.0 | | LMC6464BIMX | SOIC | D | 14 | 2500 | 367.0 | 367.0 | 35.0 | | MC6464BIMX/NOPB | SOIC | D | 14 | 2500 | 367.0 | 367.0 | 35.0 | WWW.100Y.COM.TW WWW.100Y.C WWW.100Y.COM.TW 100Y.COM.TW # P (R-PDIP-T8) # PLASTIC DUAL-IN-LINE PACKAGE NOTES: - All linear dimensions are in inches (millimeters). - This drawing is subject to change without notice. В. WW.100Y.COM.TW Falls within JEDEC MS-001 variation BA. WW.100Y.COM.TW WWW.100Y.CO W.100Y.COM.TW WWW.100 W.100Y.COM.TW WWW.100Y.COM WWW.100 COM.TW # D (R-PDS0-G14) # PLASTIC SMALL OUTLINE NOTES: - All linear dimensions are in inches (millimeters). - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side. WWW.100Y.COM. - Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side. - E. Reference JEDEC MS-012 variation AB. WWW.100Y.C # PLASTIC SMALL OUTLINE NOTES: - All linear dimensions are in inches (millimeters). - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side. WWW.100Y.COM. - Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side. - E. Reference JEDEC MS-012 variation AA. WWW.100Y.C 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and
deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial www.ti.com/medical Interface interface.ti.com Medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com/omap Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>