FAMILY OF NANOPOWER OPERATIONAL AMPLIFIERS AND PUSH－PULL COMPARATORS

FEATURES

－Micro－Power Operation．．． $1.4 \mu \mathrm{~A}$
－Input Common－Mode Range Exceeds the Rails ．．．－0．1 V to VCC +5 V
－Supply Voltage Range ．．．2．5 V to 16 V
－Rail－to－Rail Input／Output（Amplifier）
－Reverse Battery Protection Up to 18 V
－Gain Bandwidth Product ．．． 5.5 kHz （Amplifier）
－Push－Pull CMOS Output Stage（Comparator）
－Specified Temperature Range
$-\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ ．．．Industrial Grade
－Ultrasmall Packaging
－8－Pin MSOP（TLV2702）
－Universal Op－Amp EVM（See the SLOU060 For More Information）

APPLICATIONS

－Portable Battery Monitoring
－Consumer Medical Electronics
－Security Detection Systems

DESCRIPTION

The TLV270x combines sub－micropower operational amplifier and comparator into a single package that produces excellent micropower signal conditioning with only $1.4 \mu \mathrm{~A}$ of supply current．This combination gives the designer more board space and reduces part counts in systems that require an operational amplifier and comparator．The low supply current makes it an ideal choice for battery powered portable applications where quiescent current is the primary concern．Reverse battery protection guards the amplifier from an over－current condition due to improper battery installation．For harsh environments，the inputs can be taken 5 V above the positive supply rail without damage to the device．

The TLV270x＇s low supply current is coupled with extremely low input bias currents enabling them to be used with mega－ohm resistors making them ideal for portable，long active life，applications．DC accuracy is ensured with a low typical offset voltage as low as $390 \mu \mathrm{~V}$ ，CMRR of 90 dB ，and minimum open loop gain of $130 \mathrm{~V} / \mathrm{mV}$ at 2.7 V ．

The maximum recommended supply voltage is as high as 16 V and ensured operation down to 2.5 V ，with electrical characteristics specified at $2.7 \mathrm{~V}, 5 \mathrm{~V}$ ，and 15 V ．The $2.5-\mathrm{V}$ operation makes it compatible with Li－Ion battery－powered systems and many micro－power microcontrollers available today including TI＇s MSP430．

All members are available in PDIP and SOIC with the duals，one op－amp and one comparator，in the small MSOP package and quads，two operational amplifiers and two comparators，in the TSSOP package．

SUPPLY CURRENT
vs

Please be aware that an important notice concerning availability，standard warranty，and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet．

A SELECTION OF OUTPUT COMPARATORS \dagger

DEVICE	$\mathbf{V}_{\mathbf{C C}}$ (\mathbf{V})	$\mathbf{V}_{\mathbf{I O}}$ $(\mu \mathbf{V})$	$\mathbf{I} \mathbf{C C} / \mathbf{C h}$ $(\mu \mathbf{A})$	$\mathbf{G B W}$ $(\mathbf{k H z})$	$\mathbf{S R}$ $(\mathbf{V} / \mu \mathbf{s})$	$\mathbf{t} \mathbf{P L H}$ $(\mu \mathbf{s})$	$\mathbf{t P H L}_{(\mu \mathbf{s})}$	$\mathbf{t}_{\mathbf{f}}$ $(\mu \mathbf{s})$	RAIL-TO- RAIL	OUTPUT STAGE
TLV270x	$2.5-16$	390	$1.4 \ddagger$	5.5	0.0025	56	83	8	I / O	PP
TLV230x	$2.5-16$	390	$1.4 \ddagger$	5.5	0.0025	55	30	5	I / O	OD
TLV240x	$2.5-16$	390	880	5.5	0.0025	-	-	-	I / O	-
TLV224x	$2.5-12$	600	1	5.5	0.002	-	-	-	I / O	-
TLV340x	$2.5-16$	250	0.47	-	-	55	30	5	I	OD
TLV370x	$2.5-16$	250	0.56	-	-	56	83	8	I	PP

\dagger All specifications are typical values measured at 5 V .
\ddagger ICC is specified as one op-amp and one comparator.
TLV2702 AVAILABLE OPTIONS

$\mathrm{T}_{\mathbf{A}}$	$V_{\text {IO max }}$ AT $25^{\circ} \mathrm{C}$	PACKAGED DEVICES			
		SMALL OUTLINE \dagger (D)	MSOP		PLASTIC DIP (P)
			$\begin{gathered} \hline \text { MSOP } \dagger \\ \text { (DGK) } \end{gathered}$	SYMBOLS	
$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$4000 \mu \mathrm{~V}$	TLV2702ID	TLV2702IDGK	xxTIAQF	TLV2702IP

\dagger This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2702IDR).

TLV2704 AVAILABLE OPTIONS

$\mathbf{T}_{\mathbf{A}}$	$\mathbf{V}_{\text {IOmax }}$ AT $25^{\circ} \mathrm{C}$	PACKAGED DEVICES			
		SMALL OUTLINE (D)	TSSOP (PW)	PLASTIC DIP (N)	
	$4000 \mu \mathrm{~V}$	TLV2704ID	TLV2704IPW	TLV2704IN	

\dagger This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2704IDR).

TLV270x PACKAGE PINOUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Differential input voltage, V_{ID}

Continuous total power dissipation See Dissipation Rating Table
Operating free-air temperature range, T_{A} : I suffix ... $40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Lead temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{inch})$ from case for 10 seconds $260^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to GND
2. Input voltage range is limited to 20 V max or $\mathrm{V}_{\mathrm{CC}}+5 \mathrm{~V}$, whichever is smaller.

DISSIPATION RATING TABLE

PACKAGE	$\Theta_{\mathbf{J C}}$ $\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right)$	$\Theta_{\mathbf{J A}}$ $\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right)$	$\mathbf{T}_{\mathbf{A}} \leq \mathbf{2 5}{ }^{\circ} \mathbf{C}$ POWER RATING	$\mathbf{T}_{\mathbf{A}}=\mathbf{1 2 5}{ }^{\circ} \mathbf{C}$ POWER RATING
$\mathrm{D}(8)$	38.3	176	710 mW	142 mW
$\mathrm{D}(14)$	26.9	122.3	1022 mW	204.4 mW
$\mathrm{DGK}(8)$	54.2	259.9	481 mW	96.2 mW
$\mathrm{~N}(14)$	32	78	1600 mW	320.5 mW
$\mathrm{P}(8)$	41	104	1200 mW	240.4 mW
$\mathrm{PW}(14)$	29.3	173.6	720 mW	144 mW

recommended operating conditions

		MIN	MAX	UNIT
Supply voltage, V_{CC}	Single supply	2.5	16	V
	Split supply	± 1.25	± 8	
Common-mode input voltage range, $\mathrm{V}_{\text {ICR }}$	Amplifier and comparator	-0.1	$\mathrm{~V}_{\mathrm{CC}}+5$	V
Operating free-air temperature, T_{A}		-40	125	${ }^{\circ} \mathrm{C}$

electrical characteristics at recommended operating conditions, $\mathrm{V}_{\mathrm{CC}}=2.7,5 \mathrm{~V}$, and 15 V (unless otherwise noted)

amplifier dc performance

	PARAMETER	TEST CONDITIONS		TA ${ }^{\dagger}$	MIN	TYP	MAX	UNIT	
V_{10}	Input offset voltage	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} / 2 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{IC}}=\mathrm{V}_{\mathrm{CC}} / 2 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{S}}=50 \Omega$		$25^{\circ} \mathrm{C}$		390	4000	$\mu \mathrm{V}$	
				Full range	6000				
$\alpha \mathrm{VIO}$ Offset voltage draft				$25^{\circ} \mathrm{C}$	3			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
CMRR Common-mode rejection ratio		$\mathrm{V}_{\text {IC }}=0$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{R}_{\mathrm{S}}=50 \Omega$	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	55	73		dB	
		Full range		52					
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	60	80				
		Full range	55						
		$V_{C C}=15 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	66	90				
		Full range	60	90					
AvD	Large-signal differential voltage amplification		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{~V}_{(0 \mathrm{pp})}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \mathrm{k} \Omega$		$25^{\circ} \mathrm{C}$	130	400		V/mV
		Full range			30				
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}(\mathrm{pp})=3 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{L}}=500 \mathrm{k} \Omega$		$25^{\circ} \mathrm{C}$	300	1000			
				Full range	100				
		$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}(\mathrm{pp})}=8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \mathrm{k} \Omega$		$25^{\circ} \mathrm{C}$	400	1800			
				Full range	120				
PSRR	Power supply rejection ratio$\left(\Delta \mathrm{V}_{\mathrm{CC}} / \Delta \mathrm{V}_{I O}\right)$	V IC $=\mathrm{V}_{\text {CC }} / 2 \mathrm{~V}$, No load	$\mathrm{V}_{\mathrm{CC}}=2.7$ to 5 V	$25^{\circ} \mathrm{C}$	90	120		dB	
				Full range	85				
			$\mathrm{V}_{\mathrm{CC}}=5$ to 15 V	$25^{\circ} \mathrm{C}$	94	120			
				Full range	90				

\dagger Full range is $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
amplifier and comparator input characteristics

	PARAMETER	TEST CONDITIONS	$\mathrm{T}_{\mathbf{A}}{ }^{\dagger}$	MIN	TYP	MAX	UNIT
1 I	Input offset current	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} / 2 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{IC}}=\mathrm{V}_{\mathrm{CC}} / 2 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{S}}=50 \Omega \end{aligned}$	$25^{\circ} \mathrm{C}$		25	250	pA
			0 to $70^{\circ} \mathrm{C}$			300	
			Full range			700	
IB	Input bias current		$25^{\circ} \mathrm{C}$		100	500	pA
			0 to $70^{\circ} \mathrm{C}$			550	
			Full range			1700	
$\mathrm{r}_{\mathrm{i}}(\mathrm{d})$	Differential input resistance		$25^{\circ} \mathrm{C}$		300		$\mathrm{M} \Omega$
$\mathrm{C}_{\mathrm{i}(\mathrm{c})}$	Common-mode input capacitance	$\mathrm{f}=100 \mathrm{kHz}$	$25^{\circ} \mathrm{C}$		3		pF

\dagger Full range is $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

electrical characteristics at recommended operating conditions, $\mathrm{V}_{\mathrm{CC}}=2.7,5 \mathrm{~V}$, and 15 V (unless otherwise noted) (continued)

amplifier output characteristics

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathbf{A}}{ }^{\text {t }}$	MIN	TYP	MAX	UNIT
V OH High-level	$\begin{aligned} & \mathrm{V}_{\mathrm{IC}}=\mathrm{V}_{\mathrm{CC}} / 2, \\ & \mathrm{IOH}=-50 \mu \mathrm{~A} \end{aligned}$		$25^{\circ} \mathrm{C}$	2.55	2.65		V
		$V_{C C}=2.7$	Full range	2.5			
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	4.85	4.95		
			Full range	4.8			
		$\mathrm{V}_{C C}=15 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	14.8	14.95		
			Full range	14.8			
VOL Low-level output voltage	$\mathrm{V}_{\mathrm{IC}}=\mathrm{V}_{\mathrm{CC}} / 2, \quad \mathrm{IOL}=50 \mu \mathrm{~A}$		$25^{\circ} \mathrm{C}$		180	260	mV
			Full range			300	
IO Output current	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ from rail		$25^{\circ} \mathrm{C}$		± 200		$\mu \mathrm{A}$
$\mathrm{Z}_{\mathrm{O}} \quad$ Closed-loop output impedance	$\mathrm{f}=100 \mathrm{~Hz}$,	$A_{V}=10$	$25^{\circ} \mathrm{C}$		1.2		k Ω

\dagger Full range is $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
amplifier dynamic performance

supply current

	PARAMETER	TEST CONDITIONS		TA ${ }^{\dagger}$	MIN	TYP	MAX	UNIT
${ }^{\text {ICC }}$	Supply current (one op-amp and one comparator)	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} / 2$	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ or 5 V	$25^{\circ} \mathrm{C}$		1.4		$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		1.4	1.9	
				Full range			3.7	
	Reverse supply current	$\mathrm{V}_{\mathrm{CC}}=-18 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=$ open		$25^{\circ} \mathrm{C}$		50		nA

\dagger Full range is $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
electrical characteristics at recommended operating conditions, $\mathrm{V}_{\mathrm{CC}}=2.7,5 \mathrm{~V}$, and 15 V (unless otherwise noted) (continued)
comparator dc performance

	PARAMETER	TEST CONDITIONS \dagger		TA ${ }^{\dagger}$	MIN	TYP	MAX	UNIT
V_{10}	Input offset voltage	$\mathrm{V}_{\mathrm{IC}}=\mathrm{V}_{\mathrm{CC}} / 2, \quad \mathrm{R} \mathrm{S}=50 \Omega$		$25^{\circ} \mathrm{C}$		250	5000	$\mu \mathrm{V}$
				Full range			7000	
$\alpha \mathrm{VIO}$	Offset voltage drift			$25^{\circ} \mathrm{C}$		3		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
CMRR	Common-mode rejection ratio	$\begin{aligned} & \mathrm{V}_{I C}=0 \text { to } \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{R}_{\mathrm{S}}=50 \Omega \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	55	72		dB
				Full range	50			
			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	60	76		
				Full range	55			
			$V_{C C}=15 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	65	88		
				Full range	60			
AvD	Large-signal differential voltage amplification			$25^{\circ} \mathrm{C}$		1000		V/mV
PSRR	Power supply rejection ratio $\left(\Delta \mathrm{V}_{\mathrm{CC}} / \Delta \mathrm{V}_{\mathrm{IO}}\right)$	$\mathrm{V}_{I C}=\mathrm{V}_{\mathrm{CC}} / 2 \mathrm{~V},$ No load	$\mathrm{V}_{\mathrm{CC}}=2.7$ to 5 V	$25^{\circ} \mathrm{C}$	75	100		dB
				Full range	70			
			$V_{C C}=5$ to 15 V	$25^{\circ} \mathrm{C}$	85	105		
				Full range	80			

\dagger Full range is $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
comparator output characteristics

	PARAMETER	TEST CONDITIONS \dagger	$\mathrm{T}_{\mathbf{A}}{ }^{\dagger}$	MIN	TYP	MAX	UNIT
$\mathrm{r}_{\mathrm{i}}(\mathrm{d})$	Differential input resistance		$25^{\circ} \mathrm{C}$		300		$\mathrm{M} \Omega$
VOH	High-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IC}}=\mathrm{V}_{\mathrm{CC}} / 2, \quad \mathrm{I} \mathrm{OL}=-50 \mu \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{ID}}=1 \mathrm{~V} \end{aligned}$	$25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}-320$			mV
			Full range	$\mathrm{V}_{\mathrm{CC}}-450$			
V_{OL}	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IC}}=\mathrm{V}_{\mathrm{CC}} / 2, \quad \mathrm{IOL}=50 \mu \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{ID}}=-1 \mathrm{~V} \end{aligned}$	$25^{\circ} \mathrm{C}$		80	200	mV
			Full range			300	

\dagger Full range is $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
switching characteristics at recommended operating conditions, $\mathrm{V}_{\mathrm{Cc}}=2.7 \mathrm{~V}, 5 \mathrm{~V}$, 15 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\text {A }}$	MIN TYP	MAX	UNIT
${ }^{\text {t }}$ (PLH)	Propagation response time, low-to-high-level output	$\begin{aligned} & \mathrm{f}=10 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{STEP}}=100 \mathrm{mV}, \\ & \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V} \end{aligned}$	Overdrive $=2 \mathrm{mV}$	$25^{\circ} \mathrm{C}$	240		$\mu \mathrm{S}$
			Overdrive $=10 \mathrm{mV}$		64		
			Overdrive $=50 \mathrm{mV}$		36		
${ }^{\text {t }}$ (PHL)	Propagation response time, high-to-low-level output		Overdrive $=2 \mathrm{mV}$	$25^{\circ} \mathrm{C}$	167		
			Overdrive $=10 \mathrm{mV}$		67		
			Overdrive $=50 \mathrm{mV}$		37		
tr_{r}	Rise time	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$,	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	7		$\mu \mathrm{s}$
tf	Fall time	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$,	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	9		$\mu \mathrm{s}$

NOTE: The propagation response time specified is the interval between the input step function and the instant when the output crosses 1.4 V . Propagation responses are longer at higher supply voltages, refer to Figure 18 through Figure 36 for further details.

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
V_{10}	Input offset voltage	vs Common-mode input voltage	1,2
		vs Free-air temperature	3, 5, 7
IIB	Input bias current	vs Common-mode input voltage	4, 6
		vs Free-air temperature	3, 5, 7
1 O	Input offset current	vs Common-mode input voltage	4,6
		vs Supply voltage	8
ICC	Supply current	vs Free-air temperature	9
Amplifie			
CMRR	Common-mode rejection ratio	vs Frequency	10
V_{OH}	High-level output voltage	vs High-level output current	11, 13
V_{OL}	Low-level output voltage	vs Low-level output current	12, 14
$\mathrm{V}_{\mathrm{O}}(\mathrm{PP})$	Output voltage, peak-to-peak	vs Frequency	15
PSRR	Power supply rejection ratio	vs Frequency	16
	Voltage noise over a 10 Second Period		17
$\phi_{\text {m }}$	Phase margin	vs Capacitive load	18
AVD	Differential voltage gain	vs Frequency	19
	Phase	vs Frequency	19
	Gain-bandwidth product	vs Supply voltage	20
SR	Slew rate	vs Free-air temperature	21
	Large-signal follower pulse response		22
	Small-signal follower pulse response		23
	Large-signal inverting pulse response		24
	Small-signal inverting pulse response		25
Compar			
V_{OH}	High-level output voltage	vs High-level output current	26, 28
V_{OL}	Low-level output voltage	vs Low-level output current	27, 29
	Output rise/fall time	vs Supply voltage	30
	Low-to-high level output response for various input overdrives		31, 33, 35
	High-to-low level output response for various input overdrives		32, 34, 36

AMPLIFIER AND COMPARATOR TYPICAL CHARACTERISTICS

AMPLIFIER TYPICAL CHARACTERISTICS

AMPLIFIER TYPICAL CHARACTERISTICS

SMALL-SIGNAL FOLLOWER PULSE RESPONSE

Figure 23

SMALL-SIGNAL INVERTING PULSE RESPONSE

Figure 24

COMPARATOR TYPICAL CHARACTERISTICS

Figure 26

HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT

Figure 28

LOW-LEVEL OUTPUT VOLTAGE
vs LOW-LEVEL OUTPUT CURRENT

Figure 27

LOW-LEVEL OUTPUT VOLTAGE
VS

Figure 29

OUTPUT RISE/FALL TIME
vs
SUPPLY VOLTAGE

Figure 30

TYPICAL CHARACTERISTICS

Figure 31

Figure 33

Figure 35

Figure 32
HIGH-TO-LOW LEVEL OUTPUT RESPONSE

Figure 34
HIGH-TO-LOW LEVEL OUTPUT RESPONSE

FOR VARIOUS INPUT OVERDRIVES

Figure 36

APPLICATION INFORMATION

reverse battery protection

The TLV2702/4 are protected against reverse battery voltage up to 18 V . When subjected to reverse battery condition the supply current is typically less than 100 nA at $25^{\circ} \mathrm{C}$ (inputs grounded and outputs open). This current is determined by the leakage of 6 Schottky diodes and will therefore increase as the ambient temperature increases.

When subjected to reverse battery conditions and negative voltages applied to the inputs or outputs, the input ESD structure will turn on-this current should be limited to less than 10 mA . If the inputs or outputs are referred to ground, rather than midrail, no extra precautions need be taken.

common-mode input range

The TLV2702/4 has rail-rail input and outputs. For common-mode inputs from -0.1 V to $\mathrm{V}_{\mathrm{CC}}-0.8 \mathrm{~V}$ a PNP differential pair will provide the gain.

For inputs between $\mathrm{V}_{\mathrm{CC}}-0.8 \mathrm{~V}$ and V_{CC}, two NPN emitter followers buffering a second PNP differential pair provide the gain. This special combination of NPN/PNP differential pair enables the inputs to be taken 5 V above the rails; because as the inputs go above V_{CC}, the NPNs switch from functioning as transistors to functioning as diodes. This will lead to an increase in input bias current. The second PNP differential pair continues to function normally as the inputs exceed V_{CC}.
The TLV2702/4 has a negative common-input range that exceeds ground by 100 mV . If the inputs are taken much below this, reduced open loop gain will be observed with the ultimate possibility of phase inversion.

offset voltage

The output offset voltage, (V_{OO}) is the sum of the input offset voltage $\left(\mathrm{V}_{\mathrm{IO}}\right)$ and both input bias currents (I_{IB}) times the corresponding gains. The following schematic and formula can be used to calculate the output offset voltage.

Figure 37. Output Offset Voltage Model

APPLICATION INFORMATION

general configurations

When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier (see Figure 38).

Figure 38. Single-Pole Low-Pass Filter
If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth. Failure to do this can result in phase shift of the amplifier.

$$
\mathbf{R} 1=\mathbf{R} 2=\mathbf{R}
$$

$$
\mathrm{C} 1=\mathrm{C} 2=\mathrm{C}
$$

$$
Q=\text { Peaking Factor }
$$

$$
\text { (Butterworth } \mathbf{Q}=0.707 \text {) }
$$

$$
\mathrm{f}_{-3 \mathrm{~dB}}=\frac{1}{2 \pi \mathrm{RC}}
$$

$$
R_{G}=\frac{R_{F}}{\left(2-\frac{1}{Q}\right)}
$$

Figure 39. 2-Pole Low-Pass Sallen-Key Filter

APPLICATION INFORMATION

circuit layout considerations

To achieve the levels of high performance of the TLV270x, follow proper printed-circuit board design techniques. A general set of guidelines is given in the following.

- Ground planes-It is highly recommended that a ground plane be used on the board to provide all components with a low inductive ground connection. However, in the areas of the amplifier inputs and output, the ground plane can be removed to minimize the stray capacitance.
- Proper power supply decoupling-Use a $6.8-\mu \mathrm{F}$ tantalum capacitor in parallel with a $0.1-\mu \mathrm{F}$ ceramic capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers depending on the application, but a $0.1-\mu \mathrm{F}$ ceramic capacitor should always be used on the supply terminal of every amplifier. In addition, the $0.1-\mu \mathrm{F}$ capacitor should be placed as close as possible to the supply terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less effective. The designer should strive for distances of less than 0.1 inches between the device power terminals and the ceramic capacitors.
- Sockets-Sockets can be used but are not recommended. The additional lead inductance in the socket pins will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board is the best implementation.
- Short trace runs/compact part placements-Optimum high performance is achieved when stray series inductance has been minimized. To realize this, the circuit layout should be made as compact as possible, thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of the amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at the input of the amplifier.
- Surface-mount passive components-Using surface-mount passive components is recommended for high performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be kept as short as possible.

general power dissipation considerations

For a given θ_{JA}, the maximum power dissipation is shown in Figure 40 and is calculated by the following formula:

$$
P_{D}=\left(\frac{T_{M A X}{ }^{-T} A}{\theta_{J A}}\right)
$$

Where:
$P_{D}=$ Maximum power dissipation of TLV270x IC (watts)
$\mathrm{T}_{\mathrm{MAX}}=$ Absolute maximum junction temperature $\left(150^{\circ} \mathrm{C}\right)$
$\mathrm{T}_{\mathrm{A}}=$ Free-ambient air temperature $\left({ }^{\circ} \mathrm{C}\right)$
$\theta_{\mathrm{JA}}=\theta_{\mathrm{JC}}+\theta_{\mathrm{CA}}$
$\theta_{\mathrm{JC}}=$ Thermal coefficient from junction to case
$\theta_{\mathrm{CA}}=$ Thermal coefficient from case to ambient air (${ }^{\circ} \mathrm{C} / \mathrm{W}$)

MAXIMUM POWER DISSIPATION
vs
FREE-AIR TEMPERATURE

NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB.
Figure 40. Maximum Power Dissipation vs Free-Air Temperature

APPLICATION INFORMATION

amplifier macromodel information

Macromodel information provided was derived using Microsim Parts ${ }^{\text {TM }}$ Release 8, the model generation software used with Microsim PSpice ${ }^{\text {TM }}$. The Boyle macromodel (see Note 2) and subcircuit in Figure 41 are generated using the TLV270x typical electrical and operating characteristics at $T_{A}=25^{\circ} \mathrm{C}$. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

- Maximum positive output voltage swing
- Maximum negative output voltage swing
- Slew rate
- Quiescent power dissipation
- Input bias current
- Open-loop voltage amplification
- Unity-gain frequency
- Common-mode rejection ratio
- Phase margin
- DC output resistance
- AC output resistance
- Short-circuit output current limit

NOTE 3: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers", IEEE Journal of Solid-State Circuits, SC-9, 353 (1974).

Figure 41. Boyle Macromodels and Subcircuit

PSpice and Parts are trademarks of MicroSim Corporation.

MECHANICAL DATA
 D (R-PDSO-G**)
 PLASTIC SMALL-OUTLINE PACKAGE
 14 PIN SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed $0.006(0,15)$.

MECHANICAL INFORMATION

DGK (R-PDSO-G8)
PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion.
D. Falls within JEDEC MO-187

MECHANICAL INFORMATION

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001 (20-pin package is shorter than MS-001).

MECHANICAL INFORMATION

P (R-PDIP-T8)
PLASTIC DUAL-IN-LINE PACKAGE

4040082/B 03/95

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001

MECHANICAL INFORMATION

PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN

DIM PINS $^{* *}$	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

PACKAGING INFORMATION

| Orderable Device | Status ${ }^{(1)}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TLV2702ID | ACTIVE | SOIC | D | 8 | 75 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| TLV2702IDG4 | ACTIVE | SOIC | D | 8 | 75 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| TLV2702IDGK | ACTIVE | MSOP | DGK | 8 | 80 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| TLV2702IDGKG4 | ACTIVE | MSOP | DGK | 8 | 80 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| TLV2702IDGKR | ACTIVE | MSOP | DGK | 8 | 2500 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| TLV2702IDGKRG4 | ACTIVE | MSOP | DGK | 8 | 2500 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| TLV2702IP | ACTIVE | PDIP | P | 8 | 50 | Pb-Free
 (RoHS) | CU NIPDAU | N/A for Pkg Type |
| TLV2702IPE4 | ACTIVE | PDIP | P | 8 | 50 | Pb-Free
 (RoHS) | CU NIPDAU | N/A for Pkg Type |
| TLV2704ID | ACTIVE | SOIC | D | 14 | 50 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| TLV2704IDG4 | ACTIVE | SOIC | D | 14 | 50 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb -Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Pb -Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Package Drawing	Pins	SPQ		Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	$\begin{gathered} \text { P1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{W} \\ (\mathrm{~mm}) \end{gathered}$	Pin1 Quadrant
TLV2702IDGKR	MSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLV2702IDGKR	MSOP	DGK	8	2500	358.0	335.0	35.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries（TI）reserve the right to make corrections，modifications，enhancements，improvements， and other changes to its products and services at any time and to discontinue any product or service without notice．Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete．All products are sold subject to Tl＇s terms and conditions of sale supplied at the time of order acknowledgment．
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI＇s standard warranty．Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty．Except where mandated by government requirements，testing of all parameters of each product is not necessarily performed．
TI assumes no liability for applications assistance or customer product design．Customers are responsible for their products and applications using TI components．To minimize the risks associated with customer products and applications，customers should provide adequate design and operating safeguards．
TI does not warrant or represent that any license，either express or implied，is granted under any TI patent right，copyright，mask work right， or other TI intellectual property right relating to any combination，machine，or process in which TI products or services are used．Information published by TI regarding third－party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof．Use of such information may require a license from a third party under the patents or other intellectual property of the third party，or a license from TI under the patents or other intellectual property of TI ．
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties，conditions，limitations，and notices．Reproduction of this information with alteration is an unfair and deceptive business practice．TI is not responsible or liable for such altered documentation．Information of third parties may be subject to additional restrictions．
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice．TI is not responsible or liable for any such statements．
TI products are not authorized for use in safety－critical applications（such as life support）where a failure of the TI product would reasonably be expected to cause severe personal injury or death，unless officers of the parties have executed an agreement specifically governing such use．Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications，and acknowledge and agree that they are solely responsible for all legal，regulatory and safety－related requirements concerning their products and any use of TI products in such safety－critical applications，notwithstanding any applications－related information or support that may be provided by TI．Further，Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety－critical applications．
TI products are neither designed nor intended for use in military／aerospace applications or environments unless the TI products are specifically designated by TI as military－grade or＂enhanced plastic．＂Only products designated by TI as military－grade meet military specifications．Buyers acknowledge and agree that any such use of TI products which TI has not designated as military－grade is solely at the Buyer＇s risk，and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use．
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO／TS 16949 requirements．Buyers acknowledge and agree that，if they use any non－designated products in automotive applications， TI will not be responsible for any failure to meet such requirements．
Following are URLs where you can obtain information on other Texas Instruments products and application solutions：

Products		Applications	
Amplifiers	amplifier．ti．com	Audio	www．ti．com／audio
Data Converters	dataconverter．ti．com	Automotive	www．ti．com／automotive
DLP® Products	www．dlp．com	Broadband	www．ticom／broadband
DSP	asp．ti．com	Digital Control	www．ti．com／digitalcontro
Clocks and Timers	www．ti．com／clocks	Medical	www．ti．com／medica
Interface	nterface．ti．com	Military	www．ti．com／military
Logic	ogic．ti．com	Optical Networking	www．ti．com／opticalnetwork
Power Mgmt	bower．ti．com	Security	www．ti．com／security
Microcontrollers	microcontroller．ti．com	Telephony	www．ti．com／telephony
RFID	www．ti－rfid．com	Video \＆Imaging	www．ti．com／vided
RF／IF and ZigBee® Solutions	www．ti．com／lpr	Wireless	www．ti．com／wireless

Mailing Address：Texas Instruments，Post Office Box 655303，Dallas，Texas 75265
Copyright © 2009，Texas Instruments Incorporated

