1. Electrical Characteristics

1.1 Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameters	Value	Unit
Operating temperature	-40 to +85	°C
Storage temperature	–65 to +175	°C
Voltage on any pin except RESET with respect to ground	–0.5 to V _{CC} + 0.5	V
Maximum operating voltage	6.0	V
DC current per I/O pin	30.0	mA
DC current V_{CC} and GND pins	200.0	mA

1.2 DC Characteristics

Parameters	Condition	Symbol	Min.	Тур.	Max.	Unit
Input low voltage, except XTAL1 and RESET pin	$V_{CC} = 1.8V$ to 3.6V	V _{IL}	-0.5		+0.2V _{CC} ⁽¹⁾	V
Input high voltage, except XTAL1 and RESET pins	$V_{\rm CC}$ = 1.8V to 3.6V	V _{IH}	0.7V _{CC} ⁽²⁾		V _{CC} + 0.5	V
Input low voltage, XTAL1 pin	$V_{CC} = 1.8V$ to 3.6V	V _{IL1}	-0.5		+0.2V _{CC} ⁽¹⁾	V
Input high voltage, XTAL1 pin	$V_{CC} = 1.8V$ to 3.6V	V _{IH1}	0.9V _{CC} ⁽²⁾		$V_{CC} + 0.5$	V
Input low voltage, RESET pin	$V_{CC} = 1.8V$ to 3.6V	V _{IL2}	-0.5		+0.2V _{CC} ⁽¹⁾	V
Input high voltage, RESET pin	$V_{CC} = 1.8V$ to 3.6V	V _{IH2}	0.9V _{CC} ⁽²⁾		V _{CC} + 0.5	V
Output low voltage ⁽³⁾ , I/O pin except RESET	$I_{OL} = 2mA, V_{CC} = 1.8V$	V _{OL}			0.2	V
Output high voltage ⁽⁴⁾ , I/O pin except RESET	$I_{OH} = -2mA, V_{CC} = 1.8V$	V _{OH}	1.2			V
Power supply surrent	Active 4MHz, $V_{CC} = 3V$			0.8	2.5	mA
Fower supply current	Idle 4MHz, $V_{CC} = 3V$	Hz, $V_{CC} = 3V$		0.2	0.5	mA
Power-down mode	WDT disabled, $V_{CC} = 3V$ WDT enabled, $V_{CC} = 3V$	-00		0.2 4	24 30	μA
Analog comparator Input offset voltage	$V_{CC} = 2.7V$ $V_{in} = V_{CC}/2$	V _{ACIO}		< 10	40	mV
Analog comparator Input leakage current	$V_{CC} = 2.7V$ $V_{in} = V_{CC}/2$	I _{ACLK}	-50		+50	nA

Notes: 1. "Max" means the highest value where the pin is guaranteed to be read as low

- 2. "Min" means the lowest value where the pin is guaranteed to be read as high
- 3. Although each I/O port can sink more than the test conditions (2mA at $V_{CC} = 1.8V$) under steady state conditions (non-transient), the following must be observed: (1) The sum of all I_{OL} , for all ports, should not exceed 50mA. If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition.
- 4. Although each I/O port can source more than the test conditions (0.5mA at VCC = 1.8V) under steady state conditions (non- transient), the following must be observed: (1) The sum of all I_{OL}, for ports B0 to B5, should not exceed 50mA. If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition.

勝特力電材超市-龍;	山店 886-3-5773766
勝特力電材超市-光谷	度店 886-3-5729570
胜特力电子(上海)	86-21-34970699
胜特力电子(深圳)	86-755-83298787
http://www	v.100y.com.tw

1.3 Maximum Speed versus V_{CC}

Maximum frequency is dependent on V_{CC.} As shown in Figure 1-1, the Maximum Frequency vs. V_{CC} curve is linear between $1.8V < V_{CC} < 3.6V$.

Figure 1-1. Maximum Frequency versus V_{CC}

1.4 Clock Characterizations

Table 1-1. Calibration Accuracy of Internal RC Oscillator

	Frequency	V _{cc}	Temperature	Accuracy
User Calibration	7.3MHz to 8.1MHz	1.8V to 3.6V	–40°C to +85°C	±25%

1.5 System and Reset Characterizations

Table 1-2. BODLEVEL Fuse Coding⁽¹⁾

BODLEVEL	Min V _{BOT}	Тур V _{вот}	Max V _{BOT}	Unit	Note
111		BOD Disa	bled		
110	1.7	1.8	2.0		A
001	1.7	1.9	2.1	-	С
000	1.8	2.0	2.2	V	С
010	2.0	2.2	2.4	v	С
011	2.1	2.3	2.5		С
101	2.5	2.7	2.9		A

*) Type means: A = 100% tested, C = Characterized on samples

Note: 1. V_{BOT} may be below nominal minimum operating voltage for some devices. For devices where this is the case, the device is tested down to $V_{CC} = V_{BOT}$ during the production test. This guarantees that a brown-out reset will occur before V_{CC} drops to a voltage where correct operation of the microcontroller is no longer guaranteed

勝特力電材超市-龍;	山店 886-3-5773766
勝特力電材超市-光得	度店 886-3-5729570
胜特力电子(上海)	86-21-34970699
胜特力电子(深圳)	86-755-83298787
http://www	7.100y.com.tw

1.6 ADC Characteristics

Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Resolution	Single ended conversion			10		Bits
Absolute accuracy (including INL,	$V_{CC} = 1.8V$, $V_{Ref} = 1.8V$, ADC clock = 200kHz			2	4.0	LSB
DNL, quantization error, gain and offset error)	$V_{CC} = 1.8V, V_{Ref} = 1.8V,$ ADC clock = 200kHz Noise Reduction Mode			2	4.0	LSB
Integral non-linearity (INL)	$V_{CC} = 1.8V$, $V_{Ref} = 1.8V$, ADC clock = 200kHz			0.5	1.5	LSB
Differential non-linearity (DNL)	$V_{CC} = 1.8$ V, $V_{Ref} = 1.8$ V, ADC clock = 200kHz			0.2	0.7	LSB
Gain error	$V_{CC} = 1.8V$, $V_{Ref} = 1.8V$, ADC clock = 200kHz		-7.0	-3.0	+5.0	LSB
Offset error	$V_{CC} = 1.8$ V, $V_{Ref} = 1.8$ V, ADC clock = 200kHz		-3.5	+1.5	+3.5	LSB
Reference voltage		V _{REF}	1.8		AV _{CC}	V

 $T_{\rm A}$ = –40°C to +85°C, $V_{\rm CC}$ = 1.8V to 3.6V (unless otherwise noted)

1.7 ADC Characteristics

 T_{A} = $-40^{\circ}C$ to +85°C, V_{CC} = 1.8V to 3.6V (unless otherwise noted)

Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Resolution	Differential conversion, gain = 1x BIPOLAR mode only			8		Bits
Absolute accuracy (Including INL, DNL, quantization error, gain and offset error)	Gain = 1x, V_{CC} = 1.8V, V_{Ref} = 1.3V, ADC clock = 125kHz			1.6	5.0	LSB
Integral non-linearity (INL)	$ Gain = 1x, V_{CC} = 1.8V, \\ V_{Ref} = 1.3V, \\ ADC clock = 125kHz $			0.7	2.5	LSB
Differential non-linearity (DNL)	$ Gain = 1x, V_{CC} = 1.8V, \\ V_{Ref} = 1.3V, \\ ADC clock = 125kHz $			0.3	1.0	LSB
Gain error	$ Gain = 1x, V_{CC} = 1.8V, \\ V_{Ref} = 1.3V, \\ ADC clock = 125kHz $		-7.0	+1.50	+7.0	LSB
Offset error	$\begin{array}{l} \text{Gain} = 1 \text{x}, \text{V}_{\text{CC}} = 1.8 \text{V}.\\ \text{V}_{\text{Ref}} = 1.3 \text{V},\\ \text{ADC clock} = 125 \text{kHz} \end{array}$		-4.0	0.0	+4.0	LSB
Reference voltage		V _{REF}	1.30		AVCC – 0.5	V

勝特力電材超市-龍;	山店 886-3-5773766
勝特力電材超市-光谷	复店 886-3-5729570
胜特力电子(上海)	86-21-34970699
胜特力电子(深圳)	86-755-83298787
http://www	.100y.com.tw

2. Ordering Information

Power Supply	Speed (MHz)	ISP Flash	Ordering Code	Package	Operation Range
1.8V to 3.6V	4-8	2KB	Atmel ATtiny24V-15SST	TU	Automotive (-40°C to +85°C)
1.8V to 3.6V	4-8	2KB	Atmel ATtiny24V-15MT	PC	Automotive (-40°C to +85°C)
1.8V to 3.6V	4-8	4KB	Atmel ATtiny44V-15SST	TU	Automotive (-40°C to +85°C)
1.8V to 3.6V	4-8	4KB	Atmel ATtiny44V-15MT	PC	Automotive (-40°C to +85°C)
1.8V to 3.6V	4-8	8KB	Atmel ATtiny84V-15MT	PC	Automotive (-40°C to +85°C)

3. Package Information

Table 3-1. Package Types

Package Type	Description
TU	14-Lead, 0.150" body width Plastic gull wing small outline package (SOIC)
PC	20-lead, 4.0×4.0 mm body, 0.50mm pitch Quad flat no-lead package (QFN)

勝特力電材超市-龍1	山店 886-3-5773766
勝特力電材超市-光復店 886-3-5729570	
胜特力电子(上海)	86-21-34970699
胜特力电子(深圳)	86-755-83298787
http://www.100y.com.tw	

Figure 3-1. TU

勝特力電材超市-龍山店 886-3-5773766

86-21-34970699

86-755-83298787

勝特力電材超市-龍山店 886-3-5773766 勝特力電材超市-光復店 886-3-5729570 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 http://www.100y.com.tw