68HC11／Bidirectional－Compatible川P Reset Circuit

General Description

The MAX6314 low－power CMOS microprocessor（ $\mu \mathrm{P}$ ） supervisory circuit is designed to monitor power supplies in $\mu \mathrm{P}$ and digital systems．The MAX6314＇s RESET output is bidirectional，allowing it to be directly connected to μ Ps with bidirectional reset inputs，such as the 68 HC 11 ．It provides excellent circuit reliability and low cost by eliminating external components and adjustments．The MAX6314 also provides a debounced manual reset input．
This device performs a single function：it asserts a reset signal whenever the VCC supply voltage falls below a preset threshold or whenever manual reset is asserted． Reset remains asserted for an internally programmed interval（reset timeout period）after $V_{C c}$ has risen above the reset threshold or manual reset is deasserted．
The MAX6314 comes with factory－trimmed reset threshold voltages in 100 mV increments from 2.5 V to 5 V ．Preset timeout periods of $1 \mathrm{~ms}, 20 \mathrm{~ms}, 140 \mathrm{~ms}$ ， and 1120 ms （minimum）are also available．The device comes in a SOT143 package．
For a $\mu \mathrm{P}$ supervisor with an open－drain reset pin，see the MAX6315 data sheet．

Applications
Computers
Controllers
Intelligent Instruments
Critical $\mu \mathrm{P}$ and $\mu \mathrm{C}$ Power Monitoring
Portable／Battery－Powered Equipment
Typical Operating Circuit

＊＊OR OTHER $\mu \mathrm{C} / \mu \mathrm{P}$ WITH BIDIRECTIONAL RESET I／O PIN．

Features
－Small SOT143 Package
－$\overline{\text { RESET Output Simplifies Interface to }}$ Bidirectional Reset I／Os
－Precision Factory－Set Vcc Reset Thresholds： 100 mV Increments from 2.5 V to 5 V
－$\pm 1.8 \%$ Reset Threshold Accuracy at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
－$\pm 2.5 \%$ Reset Threshold Accuracy Over Temp．
－Four Reset Timeout Periods Available：
$1 \mathrm{~ms}, 20 \mathrm{~ms}, 140 \mathrm{~ms}$ ，or 1120 ms （minimum）
－Immune to Short Vcc Transients
－ $5 \mu \mathrm{~A}$ Supply Current
－Pin－Compatible with MAX811
Ordering Information

PART †	NOMINAL $\mathbf{V}_{\mathbf{T H}} \mathbf{(V)}$	MIN trp $\mathbf{(m s)}$	TOP $\mathbf{M A R K}^{\dagger \dagger}$
MAX6314US50D1－T	5.00	1	AA_{--}
MAX6314US49D1－T	4.90	1	AB_{--}
MAX6314US48D1－T	4.80	1	AC_{--}
MAX6314US47D1－T	4.70	1	AD_{--}
MAX6314US46D1－T	4.63	1	AE_{--}
MAX6314US45D1－T	4.50	1	AF_{--}

\dagger The MAX6314 is available in a SOT143 package，$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range．
\dagger †The first two letters in the package top mark identify the part， while the remaining two letters are the lot tracking code．

Devices are available in both leaded and lead－free packaging． Specify lead－free by replacing＂$-T$＂with＂$+T$＂when ordering．

Ordering Information continued at end of data sheet．
Pin Configuration

68HC11／Bidirectional－Compatible μ P Reset Circuit

ABSOLUTE MAXIMUM RATINGS

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ，unless otherwise noted．Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ．$)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Operating Voltage Range	V_{CC}	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ t	$+70^{\circ} \mathrm{C}$	1.0		5.5	V
VCC Supply Current	ICC	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ ，no load			5	12	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$ ，no load			4	10	
Reset Threshold（Note 1）	$V_{\text {TH }}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{V}_{\text {TH }}-1.8 \%$	$\mathrm{V}_{\text {TH }}$	H＋1．8\％	V
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$\mathrm{V}_{\text {TH }}-2.5 \%$		H＋2．5\％	
Reset Threshold Tempco	$\Delta \mathrm{V}_{\mathrm{TH}} /{ }^{\circ} \mathrm{C}$		－		60		$\frac{\mathrm{ppm} /{ }^{\circ} \mathrm{C}}{\mu \mathrm{s}}$
VCC to Reset Delay		V CC $=$ falling at $1 \mathrm{mV} / \mathrm{\mu s}$			35	v	
Reset Timeout Period	tRP	MAX6314US＿＿D1－T		1	1.4	2	ms
		MAX6314US＿＿D2－T		20	28	40	
		MAX6314US＿＿D3－T		140	200	280	
		MAX6314US＿＿D4－T		1120	1570	2240	
MANUAL RESET INPUT							
$\overline{\mathrm{MR}}$ Input Threshold	VIL	$\mathrm{V}_{\text {TH }}>4.0 \mathrm{~V}$		0.8			V
	V_{IH}					2.4	
	VIL	$\mathrm{V}_{\text {TH }}<4.0 \mathrm{~V}$		$0.3 \times \mathrm{VCC}$			
	V_{IH}			$0.7 \times \mathrm{V}_{\text {CC }}$			
$\overline{\mathrm{MR}}$ Minimum Input Pulse				1			$\mu \mathrm{s}$
$\overline{\mathrm{MR}}$ Glitch Rejection				100			ns
$\overline{\mathrm{MR}}$ to Reset Delay				500			ns
$\overline{\mathrm{MR}}$ Pullup Resistance				32	63	100	k Ω
$\overline{\text { RESET Output Voltage }}$	VOL	$\mathrm{V}_{\text {CC }}>4.25 \mathrm{~V}, \mathrm{ISINK}=3.2 \mathrm{~mA}$				0.4	V
		$\mathrm{V}_{\mathrm{CC}}>2.5 \mathrm{~V}, \mathrm{I}_{\text {SINK }}=1.2 \mathrm{~mA}$				0.3	
		$\mathrm{V}_{\text {CC }}>1.2 \mathrm{~V}$, ISINK $=0.5 \mathrm{~mA}$				0.3	
		$\mathrm{V}_{\text {CC }}>1.0 \mathrm{~V}, \mathrm{ISINK}=80 \mu \mathrm{~A}$				0.3	
RESET INTERNAL PULLUP							
Transition Flip－Flop Setup Time（Note 2）	ts			400			ns
Active Pullup Enable Threshold		$V_{C C}=5 \mathrm{~V}$		0.4		0.9	V
$\overline{\text { RESET Active Pullup Current }}$		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		20			mA
$\overline{\text { RESET Pullup Resistance }}$				4.2	4.7	5.2	$\mathrm{k} \Omega$
$\overline{\text { RESET Output Rise Time }}$ （Note 3）	t_{R}	$V_{C C}=3 V$	CLOAD $=120 \mathrm{pF}$			333	ns
			CLOAD $=250 \mathrm{pF}$			666	
		$V_{C C}=5 \mathrm{~V}$	CLOAD $=200 \mathrm{pF}$			333	
			CLOAD $=400 \mathrm{pF}$	－		666	

Note 1：The MAX6314 monitors VCC through an internal，factory－trimmed voltage divider that programs the nominal reset threshold． Factory－trimmed reset thresholds are available in 100 mV increments from 2.5 V to 5 V （see Ordering and Marking Information）．
Note 2：This is the minimum time $\overline{\operatorname{RESET}}$ must be held low by an external pull－down source to set the active pull－up flip－flop．
Note 3：Measured from RESET VOL to $(0.8 \times \mathrm{VCC})$ ，RLOAD $=\infty$ ．

68HC11／Bidirectional－Compatible μ P Reset Circuit

Typical Operating Characteristics
（ $T_{A}=+25^{\circ} \mathrm{C}$ ，unless otherwise noted．）

68HC11／Bidirectional－Compatible μ P Reset Circuit

PIN	NAME	FUNCTION
1	GND	Ground
2	$\overline{\text { RESET }}$	Active－Low Complementary Output．In addition to the normal n－channel pulldown，$\overline{\operatorname{RESET}}$ has a p－channel pullup transistor in parallel with a $4.7 \mathrm{k} \Omega$ resistor to facilitate connection to $\mu \mathrm{Ps}$ with bidirectional resets．See the Reset Output section．
3	$\overline{\mathrm{MR}}$	Manual Reset Input．A logic low on $\overline{\mathrm{MR}}$ asserts reset．Reset remains asserted as long as $\overline{\mathrm{MR}}$ is low，and for the reset timeout period（tRP）after the reset conditions are terminated．Connect to V_{CC} if not used．
4	VCC	Supply Voltage and Reset Threshold Monitor Input

Figure 1．Functional Diagram

68HC11／Bidirectional－Compatible μ P Reset Circuit

Detailed Description

The MAX6314 has a reset output consisting of a $4.7 \mathrm{k} \Omega$ pull－up resistor in parallel with a P－channel transistor and an N －channel pull down（Figure 1），allowing this IC to directly interface with microprocessors（ $\mu \mathrm{Ps}$ ）that have bidirectional reset pins（see the Reset Output section）．

Reset Output

A $\mu \mathrm{P}$＇s reset input starts the $\mu \mathrm{P}$ in a known state．The MAX6314 asserts reset to prevent code－execution errors during power－up，power－down，or brownout conditions．RESET is guaranteed to be a logic low for VCC $>1 \mathrm{~V}$（see the Electrical Characteristics table）． Once VCC exceeds the reset threshold，the internal timer keeps reset asserted for the reset timeout period （tRP）；after this interval RESET goes high．If a brownout condition occurs（monitored voltage dips below its pro－ grammed reset threshold），RESET goes low．Any time VCC dips below the reset threshold，the internal timer resets to zero and RESET goes low．The internal timer starts when VCC returns above the reset threshold，and $\overline{R E S E T}$ remains low for the reset timeout period．
The MAX6314＇s $\overline{\text { RESET output is designed to interface }}$ with μ Ps that have bidirectional reset pins，such as the Motorola 68 HC 11 ．Like an open－drain output，the MAX6314 allows the $\mu \mathrm{P}$ or other devices to pull RESET low and assert a reset condition．However，unlike a standard open－drain output，it includes the commonly specified $4.7 \mathrm{k} \Omega$ pullup resistor with a P－channel active pullup in parallel．
This configuration allows the MAX6314 to solve a prob－ lem associated with μ Ps that have bidirectional reset pins in systems where several devices connect to RESET．These μ Ps can often determine if a reset was asserted by an external device（i．e．，the supervisor IC） or by the $\mu \mathrm{P}$ itself（due to a watchdog fault，clock error， or other source），and then jump to a vector appropriate for the source of the reset．However，if the $\mu \mathrm{P}$ does assert reset，it does not retain the information，but must determine the cause after the reset has occurred．
The following procedure describes how this is done with the Motorola 68HC11．In all cases of reset，the $\mu \mathrm{P}$ pulls RESET low for about four E－clock cycles．It then releases RESET，waits for two E－clock cycles，then checks RESET＇s state．If RESET is still low，the $\mu \mathrm{P}$ con－ cludes that the source of the reset was external and， when RESET eventually reaches the high state，jumps to the normal reset vector．In this case，stored state information is erased and processing begins from
scratch．If，on the other hand，$\overline{\operatorname{RESET}}$ is high after the two E－clock cycle delay，the processor knows that it caused the reset itself and can jump to a different vec－ tor and use stored state information to determine what caused the reset．
The problem occurs with faster $\mu \mathrm{Ps}$ ；two E－clock cycles is only 500 ns at 4 MHz ．When there are several devices on the reset line，the input capacitance and stray capacitance can prevent RESET from reaching the logic－high state（ $0.8 \times \mathrm{VCC}$ ）in the allowed time if only a passive pullup resistor is used．In this case，all resets will be interpreted as external．The $\mu \mathrm{P}$ is guaranteed to sink only 1.6 mA ，so the rise time cannot be much reduced by decreasing the recommended $4.7 \mathrm{k} \Omega$ pullup resistance．
The MAX6314 solves this problem by including a pullup transistor in parallel with the recommended $4.7 \mathrm{k} \Omega$ resis－ tor（Figure 1）．The pullup resistor holds the output high until RESET is forced low by the $\mu \mathrm{P}$ reset I／O，or by the MAX6314 itself．Once RESET goes below 0.5 V ，a com－ parator sets the transition edge flip－flop，indicating that the next transition for RESET will be low to high．As soon as RESET is released，the $4.7 \mathrm{k} \Omega$ resistor pulls RESET up toward $V_{c C}$ ．When RESET rises above 0.5 V ， the active p－channel pullup turns on for the $2 \mu \mathrm{~s}$ duration of the one－shot．The parallel combination of the $4.7 \mathrm{k} \Omega$ pullup and the p－channel transistor on－ resistance quickly charges stray capacitance on the reset line，allowing RESET to transition low to high with－ in the required two E－clock period，even with several devices on the reset line（Figure 2）．Once the one－shot times out，the p－channel transistor turns off．This process occurs regardless of whether the reset was caused by VCc dipping below the reset threshold，MR being asserted，or the $\mu \mathrm{P}$ or other device asserting RESET．Because the MAX6314 includes the standard $4.7 \mathrm{k} \Omega$ pullup resistor，no external pullup resistor is required．To minimize current consumption，the internal pullup resistor is disconnected whenever the MAX6314 asserts RESET．

Manual Reset Input
Many $\mu \mathrm{P}$－based products require manual reset capabil－ ity，allowing the operator，a test technician，or external logic circuitry to initiate a reset．A logic low on $\overline{M R}$ asserts reset．Reset remains asserted while MR is low， and for the reset active timeout period after $\overline{\mathrm{MR}}$ returns high．To minimize current consumption，the internal $4.7 \mathrm{k} \Omega$ pullup resistor on $\overline{\mathrm{RESET}}$ is disconnected whenever RESET is asserted．

68HC11／Bidirectional－Compatible川P Reset Circuit

Figure 2．MAX6314 Supports Additional Devices on the Reset Bus
$\overline{\mathrm{MR}}$ has an internal $63 \mathrm{k} \Omega$ pullup resistor，so it can be left open if not used．Connect a normally open momen－ tary switch from MR to GND to create a manual reset function；external debounce circuitry is not required．If $\overline{\mathrm{MR}}$ is driven from long cables or if the device is used in a noisy environment，connecting a $0.1 \mu \mathrm{~F}$ capacitor from $\overline{\mathrm{MR}}$ to ground provides additional noise immunity．

Applications Information

Negative－Going Vcc Transients

In addition to issuing a reset to the $\mu \mathrm{P}$ during power－up， power－down，and brownout conditions，these devices are relatively immune to short－duration negative－going transients（glitches）．The Typical Operating Character－ istics show the Maximum Transient Duration vs．Reset Threshold Overdrive，for which reset pulses are not generated．The graph was produced using negative－ going pulses，starting at VRST max and ending below the programmed reset threshold by the magnitude indicated（reset threshold overdrive）．The graph shows the maximum pulse width that a negative－going VCC transient may typically have without causing a reset pulse to be issued．As the amplitude of the transient increases（i．e．，goes farther below the reset threshold）， the maximum allowable pulse width decreases．A $0.1 \mu \mathrm{~F}$ bypass capacitor mounted close to VCc provides addi－ tional transient immunity．

勝 特 力材 料 886－3－5753170胜特力电子（上海）86－21－34970699

Ensuring a Valid $\overline{\operatorname{RESET}}$ Output Down to VCC＝OV

 When V_{CC} falls below 1 V ，RESET no longer sinks current－it becomes an open circuit．Therefore，high－ impedance CMOS－logic inputs connected to RESET can drift to undetermined voltages．This presents no problem in most applications，since most $\mu \mathrm{P}$ and other circuitry is inoperative with Vcc below 1V．However，in applications where RESET must be valid down to $\mathrm{V}_{C C}=0 \mathrm{~V}$ ，adding a pull－down resistor to RESET will cause any stray leakage currents to flow to ground， holding RESET low（Figure 3）．R1＇s value is not critical； $100 \mathrm{k} \Omega$ is large enough not to load RESET and small enough to pull $\overline{\text { RESET }}$ to ground．

Figure 3．$\overline{R E S E T}$ Valid to $V_{C C}=$ Ground Circuit

Http：／／www．100y．com．tw

68HC11／Bidirectional－Compatible μ P Reset Circuit

Figure 4．$\overline{R E S E T}$ Timing Diagram

Ordering Information（continued）

PART ${ }^{\dagger}$	NOMINAL $V_{\text {TH }}$（V）	MIN trp （ms）	TOP MARK	PART ${ }^{\dagger}$	$\begin{aligned} & \text { NOMINAL } \\ & \text { V }_{\text {TH }}(\mathrm{V}) \end{aligned}$	MIN trp （ms）	TOP MARK
MAX6314US44D1－T††	4.39	1	AG＿＿	MAX6314US25D1－T	2.50	1	CN
MAX6314US43D1－T	4.30	1	AH_{--}	MAX6314US50D2－T	5.00	20	CO_{-}
MAX6314US42D1－T	4.20	1	$\mathrm{Al}_{\text {＿}}$	MAX6314US49D2－T	4.90	20	$\mathrm{CP}_{\text {＿}}$
MAX6314US41D1－T	4.10	1	AJ＿＿	MAX6314US48D2－T	4.80	20	CQ＿＿
MAX6314US40D1－T	4.00	1	AK＿＿	MAX6314US47D2－T	4.70	20	$\mathrm{CR}_{\text {＿}}$
MAX6314US39D1－T	3.90	1	AL_{-}	MAX6314US46D2－T	4.63	20	CS＿＿
MAX6314US38D1－T	3.80	1	CA	MAX6314US45D2－T	4.50	20	CT＿＿
MAX6314US37D1－T	3.70	1	CB＿－	MAX6314US44D2－T $\dagger \dagger \dagger$	4.39	20	CU＿－
MAX6314US36D1－T	3.60	1	CC＿－	MAX6314US43D2－T	4.30	20	CV＿－
MAX6314US35D1－T	3.50	1	CD_{-}	MAX6314US42D2－T	4.20	20	CW＿－
MAX6314US34D1－T	3.40	1	CE＿－	MAX6314US41D2－T	4.10	20	CX＿－
MAX6314US33D1－T	3.30	1	CF_{-}	MAX6314US40D2－T	4.00	20	CY＿－
MAX6314US32D1－T	3.20	1	CG＿－	MAX6314US39D2－T	3.90	20	CZ＿－
MAX6314US31D1－T	3.08	1	CH_{-}	MAX6314US38D2－T	3.80	20	DA＿＿
MAX6314US30D1－T	3.00	1	$\mathrm{Cl}_{\text {＿}}$	MAX6314US37D2－T	3.70	20	DB＿＿
MAX6314US29D1－T	2.93	1	CJ＿－	MAX6314US36D2－T	3.60	20	DC＿＿
MAX6314US28D1－T	2.80	1	CK＿－	MAX6314US35D2－T	3.50	20	DD＿
MAX6314US27D1－T	2.70	1	CL_{-}	MAX6314US34D2－T	3.40	20	DE＿－
MAX6314US26D1－T $\dagger \dagger$	2.63	1	CM	MAX6314US33D2－T	3.30	20	DJ＿＿

\dagger The MAX6314 is available in a SOT143 package，$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range．
$\dagger \dagger$ The first two letters in the package top mark identify the part，while the remaining two letters are the lot tracking code．
$\dagger \dagger$ Sample stocks generally held on the bolded products；also，the bolded products have 2，500 piece minimum－order quantities． Non－bolded products have 10，000 piece minimum－order quantities．Contact factory for details．
Devices are available in both leaded and lead－free packaging．Specify lead－free by replacing＂$-T$＂with＂$+T$＂when ordering．
Note：All devices available in tape－and－reel only．Contact factory for availability．

Ordering and Marking Information（continued）

PART ${ }^{\dagger}$	NOMINAL $\mathbf{V}_{\text {TH }}(\mathrm{V})$	MIN thp （ms）	TOP MARK
MAX6314US32D2－T	3.20	20	DK＿－
MAX6314US31D2－T	3.08	20	DL＿－
MAX6314US30D2－T	3.00	20	DM
MAX6314US29D2－T	2.93	20	DN＿
MAX6314US28D2－T	2.80	20	DO＿－
MAX6314US27D2－T	2.70	20	DP＿
MAX6314US26D2－T $\dagger \dagger \dagger$	2.63	20	DQ＿－
MAX6314US25D2－T	2.50	20	DR＿－
MAX6314US50D3－T	5.00	140	DS＿－
MAX6314US49D3－T	4.90	140	DT＿－
MAX6314US48D3－T	4.80	140	DU＿－
MAX6314US47D3－T	4.70	140	DV＿－
MAX6314US46D3－T†††	4.63	140	DW＿－
MAX6314US45D3－T	4.50	140	DX－＿
MAX6314US44D3－T $\dagger \dagger \dagger$	4.39	140	DY＿－
MAX6314US43D3－T	4.30	140	DZ＿＿
MAX6314US42D3－T	4.20	140	EA
MAX6314US41D3－T	4.10	140	EB＿＿
MAX6314US40D3－T	4.00	140	EC＿－
MAX6314US39D3－T	3.90	140	EG＿－
MAX6314US38D3－T	3.80	140	EH＿－
MAX6314US37D3－T	3.70	140	El＿＿
MAX6314US36D3－T	3.60	140	EJ＿＿
MAX6314US35D3－T	3.50	140	EK＿－
MAX6314US34D3－T	3.40	140	EL＿－
MAX6314US33D3－T	3.30	140	EM＿＿
MAX6314US32D3－T	3.20	140	EN＿－
MAX6314US31D3－T $\dagger \dagger \dagger$	3.08	140	EO＿＿
MAX6314US30D3－T	3.00	140	$E P_{-}$
MAX6314US29D3－T $\dagger \dagger \dagger$	2.93	140	ES＿＿

PART ${ }^{\dagger}$	NOMINAL $\mathrm{V}_{\mathrm{TH}}(\mathrm{~V})$	MIN trp （ms）	TOP MARK
MAX6314US28D3－T	2.80	140	ET＿＿
MAX6314US27D3－T	2.70	140	EU＿＿
MAX6314US26D3－T†††	2.63	140	EV＿－
MAX6314US25D3－T	2.50	140	EW＿－
MAX6314US50D4－T	5.00	1120	EX＿－
MAX6314US49D4－T	4.90	1120	EY＿－
MAX6314US48D4－T	4.80	1120	EZ＿＿
MAX6314US47D4－T	4.70	1120	FA
MAX6314US46D4－T	4.63	1120	FB＿－
MAX6314US45D4－T	4.50	1120	FC＿＿
MAX6314US44D4－T†††	4.39	1120	FD＿－
MAX6314US43D4－T	4.30	1120	FE＿－
MAX6314US42D4－T	4.20	1120	FF＿－
MAX6314US41D4－T	4.10	1120	FG＿－
MAX6314US40D4－T	4.00	1120	FH_{-}
MAX6314US39D4－T	3.90	1120	FI＿
MAX6314US38D4－T	3.80	1120	FJ＿－
MAX6314US37D4－T	3.70	1120	FK＿－
MAX6314US36D4－T	3.60	1120	FL＿
MAX6314US35D4－T	3.50	1120	FM＿－
MAX6314US34D4－T	3.40	1120	FN_{-}
MAX6314US33D4－T	3.30	1120	FO_{-}
MAX6314US32D4－T	3.20	1120	FP＿－
MAX6314US31D4－T	3.08	1120	FQ
MAX6314US30D4－T	3.00	1120	$\mathrm{FR}_{\text {－＿}}$
MAX6314US29D4－T	2.93	1120	FS＿－
MAX6314US28D4－T	2.80	1120	FT＿－
MAX6314US27D4－T	2.70	1120	FU＿－
MAX6314US26D4－T $\dagger \dagger \dagger$	2.63	1120	FV－＿
MAX6314US25D4－T	2.50	1120	FW＿－

\dagger The MAX6314 is available in a SOT143 package，$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range．
\dagger The first two letters in the package top mark identify the part，while the remaining two letters are the lot tracking code．
$\dagger \dagger$ Sample stocks generally held on the bolded products；also，the bolded products have 2,500 piece minimum－order quantities．
Non－bolded products have 10，000 piece minimum－order quantities．Contact factory for details．
Devices are available in both leaded and lead－free packaging．Specify lead－free by replacing＂$-T$＂with＂$+T$＂when ordering．
Note：All devices available in tape－and－reel only．Contact factory for availability．

Chip Information

TRANSISTOR COUNT： 519

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product．No circuit patent licenses are implied．Maxim reserves the right to change the circuitry and specifications without notice at any time．
© 2005 Maxim Integrated Products
Printed USA
MAXIM
is a registered trademark of Maxim Integrated Products，Inc．

