Serial Access Real－Time Clock

FEATURES SUMMARY

－2．0 TO 5．5V CLOCK OPERATING VOLTAGE
－COUNTERS FOR SECONDS，MINUTES， HOURS，DAY，DATE，MONTH，YEAR，AND CENTURY
－SOFTWARE CLOCK CALIBRATION
－AUTOMATIC SWITCH－OVER AND DESELECT CIRCUITRY（FIXED REFERENCE）
－$V_{C C}=2.7$ to 5.5 V
$2.5 \mathrm{~V} \leq \mathrm{V}_{\text {PFD }} \leq 2.7 \mathrm{~V}$
－SERIAL INTERFACE SUPPORTS I ${ }^{2} \mathrm{C}$ BUS （ 400 kHz PROTOCOL）
－LOW OPERATING CURRENT OF $300 \mu \mathrm{~A}$
－OSCILLATOR STOP DETECTION
－BATTERY OR SUPER－CAP BACK－UP
－OPERATING TEMPERATURE OF－ 40 TO $85^{\circ} \mathrm{C}$
－ULTRA－LOW BATTERY SUPPLY CURRENT OF $1 \mu \mathrm{~A}$

Figure 1．Packages

M41T00S

TABLE OF CONTENTS

FEATURES SUMMARY . 1
Figure 1. Packages .1
SUMMARY DESCRIPTION 4
Figure 2. Logic Diagram 4
Table 1. Signal Names 4
Figure 3. 8-pin SOIC (M) Connections 4
Figure 4. Block Diagram 5
OPERATION 6
2-Wire Bus Characteristics 6
Figure 5. Serial Bus Data Transfer Sequence 7
Figure 6. Acknowledgement Sequence 7
READ Mode 8
Figure 7. Slave Address Location 8
Figure 8. READ Mode Sequence 9
Figure 9. Alternative READ Mode Sequence 9
WRITE Mode. 10
Data Retention Mode 10
Figure 10.WRITE Mode Sequence 10
CLOCK OPERATION 11
Clock Registers 11
Table 2. TIMEKEEPER® Register Map 11
Calibrating the Clock 12
Figure 11.Crystal Accuracy Across Temperature 13
Figure 12.Clock Calibration 13
Century Bit 14
Oscillator Fail Detection 14
Output Driver Pin 14
Preferred Initial Power-on Default 14
Table 3. Preferred Default Values 14
MAXIMUM RATING 15
Table 4. Absolute Maximum Ratings 15
DC AND AC PARAMETERS 16
Table 5. Operating and AC Measurement Conditions 16
Figure 13.AC Measurement I/O Waveform 16
Table 6. Capacitance 16
Table 7. DC Characteristics 17
Table 8. Crystal Electrical Characteristics 17
Figure 14.Power Down/Up Mode AC Waveforms 18
Table 9．Power Down／Up AC Characteristics 18
Table 10．Power Down／Up Trip Points DC Characteristics 18
Figure 15．Bus Timing Requirements Sequence 19
Table 11．AC Characteristics 19
PACKAGE MECHANICAL INFORMATION 20
Figure 16．SO8－8－lead Plastic Small Package Outline 20
Table 12．SO8－8－lead Plastic Small Outline（150 mils body width），Package Mech．Data 20
PART NUMBERING 21
Table 13．Ordering Information Scheme 21
REVISION HISTORY 22
Table 14．Document Revision History 22

勝 特 力 材 料 886－3－5753170
胜特力电子（上海）86－21－34970699

胜特力电子（深圳）86－755－83298787

Http：／／www．100y．com．tw

SUMMARY DESCRIPTION

The M41T00S Serial Access TIMEKEEPER ${ }^{\circledR}$ SRAM is a low power Serial RTC with a built－in 32.768 kHz oscillator（external crystal controlled）． Eight bytes of the SRAM（see Table 2．，page 11） are used for the clock／calendar function and are configured in binary coded decimal（BCD）format． Addresses and data are transferred serially via a two line，bi－directional $I^{2} \mathrm{C}$ interface．The built－in address register is incremented automatically af－ ter each WRITE or READ data byte．
The M41T00S has a built－in power sense circuit which detects power failures and automatically

Figure 2．Logic Diagram

Note：1．For SO8 package only．

勝 特 力 材 料 886－3－5753170
胜特力电子（上海）86－21－34970699
胜特力电子（深圳）86－755－83298787
Http：／／www．100y．com．tw
switches to the battery supply when a power fail－ ure occurs．The energy needed to sustain the clock operations can be supplied by a small lithium button supply when a power failure occurs．The eight clock address locations contain the century， year，month，date，day，hour，minute，and second in 24 hour BCD format．Corrections for 28， 29 （leap year－valid until year 2100）， 30 and 31 day months are made automatically．
The M41T00S is supplied in an 8－pin SOIC．

Table 1．Signal Names

$\mathrm{XI}^{(1)}$	Oscillator Input
$\mathrm{XO}^{(1)}$	Oscillator Output
FT／OUT	Frequency Test／Output Driver （Open Drain）
SDA	Serial Data Input／Output
SCL	Serial Clock Input
$\mathrm{V}_{\text {BAT }}$	Battery Supply Voltage
$\mathrm{V}_{\text {CC }}$	Supply Voltage
$\mathrm{V}_{\text {SS }}$	Ground

Note：1．For SO8 package only．

Figure 3．8－pin SOIC（M）Connections

Note：1．Open Drain Output

Figure 4．Block Diagram

Note：1．Open Drain Output

勝 特 力 材 料 886－3－5753170
胜特力 电子（上海）86－21－34970699
胜特力 电子（深圳）86－755－83298787
Http：／／www．100y．com．tw

OPERATION

The M41T00S clock operates as a slave device on the serial bus．Access is obtained by implementing a start condition followed by the correct slave ad－ dress（DOh）．The 8 bytes contained in the device can then be accessed sequentially in the following order：
1．Seconds Register
2．Minutes Register
3．Century／Hours Register
4．Day Register
5．Date Register
6．Month Register
7．Year Register
8．Calibration Register
The M41T00S clock continually monitors V_{CC} for an out－of－tolerance condition．Should V_{Cc} fall be－ low VPFD，the device terminates an access in progress and resets the device address counter． Inputs to the device will not be recognized at this time to prevent erroneous data from being written to the device from a an out－of－tolerance system． Once VCC falls below the switchover voltage （ $\mathrm{V}_{\text {SO }}$ ），the device automatically switches over to the battery and powers down into an ultra－low cur－ rent mode of operation to preserve battery life．If $V_{\text {BAT }}$ is less than VPFD，the device power is switched from $V_{\text {Cc }}$ to $V_{B A T}$ when $V_{C C}$ drops below $V_{B A T}$ ．If $V_{B A T}$ is greater than $V_{P F D}$ ，the device power is switched from V_{CC} to $\mathrm{V}_{\text {BAT }}$ when V_{CC} drops below VPFD．Upon power－up，the device switches from battery to V_{Cc} at $\mathrm{V}_{\text {so }}$ ．When V_{Cc} rises above $V_{\text {PFD }}$ ，it will recognize the inputs．
For more information on Battery Storage Life refer to Application Note AN1012．

2－Wire Bus Characteristics

The bus is intended for communication between different ICs．It consists of two lines：a bi－direction－ al data signal（SDA）and a clock signal（SCL）． Both the SDA and SCL lines must be connected to a positive supply voltage via a pull－up resistor．
The following protocol has been defined：
－Data transfer may be initiated only when the bus is not busy．
－During data transfer，the data line must remain stable whenever the clock line is High．
－Changes in the data line，while the clock line is High，will be interpreted as control signals．

Accordingly，the following bus conditions have been defined：

Bus not busy．Both data and clock lines remain High．
Start data transfer．A change in the state of the data line，from high to Low，while the clock is High， defines the START condition．
Stop data transfer．A change in the state of the data line，from Low to High，while the clock is High， defines the STOP condition．
Data Valid．The state of the data line represents valid data when after a start condition，the data line is stable for the duration of the high period of the clock signal．The data on the line may be changed during the Low period of the clock signal．There is one clock pulse per bit of data．
Each data transfer is initiated with a start condition and terminated with a stop condition．The number of data bytes transferred between the start and stop conditions is not limited．The information is transmitted byte－wide and each receiver acknowl－ edges with a ninth bit．
By definition a device that gives out a message is called＂transmitter，＂the receiving device that gets the message is called＂receiver．＂The device that controls the message is called＂master．＂The de－ vices that are controlled by the master are called ＂slaves．＂
Acknowledge．Each byte of eight bits is followed by one Acknowledge Bit．This Acknowledge Bit is a low level put on the bus by the receiver whereas the master generates an extra acknowledge relat－ ed clock pulse．A slave receiver which is ad－ dressed is obliged to generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter．
The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is a stable Low dur－ ing the High period of the acknowledge related clock pulse．Of course，setup and hold times must be taken into account．A master receiver must sig－ nal an end of data to the slave transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave．In this case the transmitter must leave the data line High to enable the master to generate the STOP condition．

```
勝 特 力材 料 886-3-5753170
胜特力电子(上海) 86-21-34970699
胜特力电子(深圳) 86-755-83298787
Http：／／www．100y．com．tw
```

Figure 5．Serial Bus Data Transfer Sequence

AI00587

Figure 6．Acknowledgement Sequence
SCL FROM
MASTER
DATA OUTPUT
BY TRANSMITTER
DACKNOWLA OUTPUT
BY RECEIVER

[^0]
READ Mode

In this mode the master reads the M41T00S slave after setting the slave address（see Figure 8．，page 9）．Following the WRITE Mode Control Bit $(R / W=0)$ and the Acknowledge Bit，the word address＇An＇is written to the on－chip address pointer．Next the START condition and slave ad－ dress are repeated followed by the READ Mode Control Bit（ $\mathrm{R} / \mathrm{W}=1$ ）．At this point the master trans－ mitter becomes the master receiver．The data byte which was addressed will be transmitted and the master receiver will send an Acknowledge Bit to the slave transmitter．The address pointer is only incremented on reception of an Acknowledge Clock．The M41TO0S slave transmitter will now place the data byte at address $\mathrm{A}+1$ on the bus， the master receiver reads and acknowledges the new byte and the address pointer is incremented to＂An＋2．＂

This cycle of reading consecutive addresses will continue until the master receiver sends a STOP condition to the slave transmitter．
The system－to－user transfer of clock data will be halted whenever the address being read is a clock address（ 00 h to 06 h ）．The update will resume due to a Stop Condition or when the pointer increments to any non－clock address（07h）．
Note：This is true both in READ Mode and WRITE Mode．
An alternate READ Mode may also be implement－ ed whereby the master reads the M41T00S slave without first writing to the（volatile）address point－ er．The first address that is read is the last one stored in the pointer（see Figure 9．，page 9）．

Figure 7．Slave Address Location

勝 特 力材 料 886－3－5753170胜特力电子（土海）86－21－34970699胜特力电子（深圳）86－755－83298787

Http：／／www．100y．com．tw

Figure 8．READ Mode Sequence

Figure 9．Alternative READ Mode Sequence

WRITE Mode

In this mode the master transmitter transmits to the M41T00S slave receiver．Bus protocol is shown in Figure 10．Following the START condi－ tion and slave address，a logic＇ 0 ＇$(R / \bar{W}=0)$ is placed on the bus and indicates to the addressed device that word address＂An＂will follow and is to be written to the on－chip address pointer．The data word to be written to the memory is strobed in next and the internal address pointer is incremented to the next address location on the reception of an acknowledge clock．The M41T00S slave receiver will send an acknowledge clock to the master transmitter after it has received the slave address see Figure 7．，page 8 and again after it has re－ ceived the word address and each data byte．

Data Retention Mode

With valid $V_{\text {Cc }}$ applied，the M41T00S can be ac－ cessed as described above with READ or WRITE Cycles．Should the supply voltage decay，the pow－ er input will be switched from the V_{Cc} pin to the battery when $V_{C C}$ falls below the Battery Back－up Switchover Voltage（ V_{SO} ）．At this time the clock registers will be maintained by the attached bat－ tery supply．On power－up，when V_{Cc} returns to a nominal value，write protection continues for trec． For a further，more detailed review of lifetime cal－ culations，please see Application Note AN1012．

Figure 10．WRITE Mode Sequence

BUS ACTIVITY： MASTER

SDA LINE

BUS ACTIVITY：

> 勝 特 力 材 料 $886-3-5753170$胜特力电子(上海) $86-\mathbf{2 1 - 3 4 9 7 0 6 9 9}$胜特力电子(深圳) $86-755-83298787$

Http：／／www． 100 y ．com．tw

CLOCK OPERATION

The 8－byte Register Map（see Table 2）is used to both set the clock and to read the date and time from the clock，in a binary coded decimal format． Seconds，Minutes，and Hours are contained within the first three registers．
Bits D6 and D7 of Clock Register 02h（Century／ Hours Register）contain the CENTURY ENABLE Bit（CEB）and the CENTURY Bit（CB）．Setting CEB to a＇ 1 ＇will cause $C B$ to toggle，either from＇ 0 ＇ to＇1＇or from＇1＇to＇0＇at the turn of the century（de－ pending upon its initial state）．If CEB is set to a＇ 0 ，＇ CB will not toggle．Bits D0 through D2 of Register 03h contain the Day（day of week）．Registers 04h， 05 h ，and 06 h contain the Date（day of month）， Month and Years．The eighth clock register is the Calibration Register（this is described in the Clock Calibration section）．Bit D7 of Register 00h con－ tains the STOP Bit（ST）．Setting this bit to a＇1＇will cause the oscillator to stop．If the device is expect－ ed to spend a significant amount of time on the shelf，the oscillator may be stopped to reduce cur－ rent drain．When reset to a＇ 0 ＇the oscillator restarts within one second．
The seven Clock Registers may be read one byte at a time，or in a sequential block．The Calibration Register（Address location 07h）may be accessed
independently．Provision has been made to as－ sure that a clock update does not occur while any of the seven clock addresses are being read．If a clock address is being read，an update of the clock registers will be halted．This will prevent a transi－ tion of data during the READ．

Clock Registers

The M41T00S offers 8 internal registers which contain Clock and Calibration data．These regis－ ters are memory locations which contain external （user accessible）and internal copies of the data （usually referred to as BiPORT TIMEKEEPER cells）．The external copies are independent of in－ ternal functions except that they are updated peri－ odically by the simultaneous transfer of the incremented internal copy．The internal divider（or clock）chain will be reset upon the completion of a WRITE to any clock address．
The system－to－user transfer of clock data will be halted whenever the address being read is a clock address（ 00 h to 06 h ）．The update will resume ei－ ther due to a Stop Condition or when the pointer increments to any non－clock address（07h）．
Clock Registers store data in BCD．The Calibra－ tion Register stores data in Binary Format．

Table 2．TIMEKEEPER ${ }^{\circledR}$ Register Map

Addr									Function／Range BCD Format	
	D7	D6	D5	D4	D3	D2	D1	D0		
00h	ST	10 Seconds			Seconds				Seconds	00－59
01h	OF	10 Minutes			Minutes				Minutes	00－59
02h	CEB	CB	10 Hours		Hours（24 Hour Format）				Century／ Hours	0－1／00－23
03h	0	0	0	0	0	Day of Week			Day	01－7
04h	0	0	10 Date		Date：Day of Month				Date	01－31
05h	0	0	0	10M	Month				Month	01－12
06h	10 Years				Year				Year	00－99
07h	OUT	FT	S		Calibration				Calibration	

Keys： $0=$ Must be set to＇0＇
OF＝Oscillator Fail Bit
$C B=$ Century Bit
OUT＝Output level
CEB＝Century Enable Bit
S＝Sign Bit
FT＝Frequency Test Bit
ST＝Stop Bit

> 勝特力 材 料 886-3-5753170胜特力电子(上䊗 86-21-34970699胜特力电子(深圳 $86-755-83298787$
> Http://www. 100y. com. tw

Calibrating the Clock

The M41T00S is driven by a quartz－controlled os－ cillator with a nominal frequency of $32,768 \mathrm{~Hz}$ ．The devices are tested not exceed $\pm 35 \mathrm{ppm}$（parts per million）oscillator frequency error at $25^{\circ} \mathrm{C}$ ，which equates to about ± 1.53 minutes per month（see Figure 11．，page 13）．When the Calibration circuit is properly employed，accuracy improves to better than $\pm 2 \mathrm{ppm}$ at $25^{\circ} \mathrm{C}$ ．
The oscillation rate of crystals changes with tem－ perature．The M41T00S design employs periodic counter correction．The calibration circuit adds or subtracts counts from the oscillator divider circuit at the divide by 256 stage，as shown in Figure 12．，page 13．The number of times pulses which are blanked（subtracted，negative calibration）or split（added，positive calibration）depends upon the value loaded into the five Calibration Bits found in the Calibration Register．Adding counts speeds the clock up，subtracting counts slows the clock down．
The Calibration Bits occupy the five lower order bits（D4－D0）in the Calibration Register 07h．These bits can be set to represent any value between 0 and 31 in binary form．Bit D5 is a Sign Bit；＇1＇indi－ cates positive calibration，＇ 0 ＇indicates negative calibration．Calibration occurs within a 64 minute cycle．The first 62 minutes in the cycle may，once per minute，have one second either shortened by 128 or lengthened by 256 oscillator cycles．If a bi－ nary＇ 1 ＇is loaded into the register，only the first 2 minutes in the 64 minute cycle will be modified；if a binary 6 is loaded，the first 12 will be affected， and so on
Therefore，each calibration step has the effect of adding 512 or subtracting 256 oscillator cycles for every $125,829,120$ actual oscillator cycles，that is ＋4．068 or -2.034 ppm of adjustment per calibra－ tion step in the calibration register（see Figure 12．，page 13）．Assuming that the oscillator is run－
ning at exactly $32,768 \mathrm{~Hz}$ ，each of the 31 incre－ ments in the Calibration byte would represent +10.7 or -5.35 seconds per month which corre－ sponds to a total range of +5.5 or -2.75 minutes per month．
Two methods are available for ascertaining how much calibration a given M41T00S may require．
The first involves setting the clock，letting it run for a month and comparing it to a known accurate ref－ erence and recording deviation over a fixed period of time．Calibration values，including the number of seconds lost or gained in a given period，can be found in Application Note AN934，＂TIMEKEEP－ $E R{ }^{\circledR}$ CALIBRATION．＂This allows the designer to give the end user the ability to calibrate the clock as the environment requires，even if the final prod－ uct is packaged in a non－user serviceable enclo－ sure．The designer could provide a simple utility that accesses the Calibration byte．
The second approach is better suited to a manu－ facturing environment，and involves the use of the FT／OUT pin．The pin will toggle at 512 Hz ，when the Stop Bit（ST，D7 of 00h）is＇ 0 ，＇and the Frequen－ cy Test Bit（FT，D6 of 07h）is＇1．＇
Any deviation from 512 Hz indicates the degree and direction of oscillator frequency shift at the test temperature．For example，a reading of 512.010124 Hz would indicate a +20 ppm oscilla－ tor frequency error，requiring a－10（XX001010）to be loaded into the Calibration Byte for correction． Note that setting or changing the Calibration Byte does not affect the Frequency Test output fre－ quency．
The FT／OUT pin is an open drain output which re－ quires a pull－up resistor to V_{CC} for proper opera－ tion．A 500－10k resistor is recommended in order to control the rise time．The FT Bit is cleared on power－down．

> 勝 特 力 材 料 886-3-5753170胜特力电子(上海) $86-21-34970699$胜特力电子(深圳) $86-755-83298787$
> Http: //www. $100 \mathrm{y} . \mathrm{com} . \mathrm{tw}$

Figure 11．Crystal Accuracy Across Temperature

AI07888

Figure 12．Clock Calibration

NORMAL

POSITIVE CALIBRATION

NEGATIVE CALIBRATION

M41T00S

Century Bit

Bits D7 and D6 of Clock Register 02h contain the CENTURY ENABLE Bit（CEB）and the CENTURY Bit（CB）．Setting CEB to a＇ 1 ＇will cause CB to tog－ gle，either from a＇ 0 ＇to＇ 1 ＇or from＇ 1 ＇to＇ 0 ＇at the turn of the century（depending upon its initial state）．If CEB is set to a＇ 0, ＇CB will not toggle．

Oscillator Fail Detection

If the Oscillator Fail Bit（OF）is internally set to＇1，＇ this indicates that the oscillator has either stopped， or was stopped for some period of time and can be used to judge the validity of the clock and date da－ ta．
In the event the OF Bit is found to be set to＇ 1 ＇at any time other than the initial power－up，the STOP Bit（ST）should be written to a＇1，＇then immediately reset to＇ 0 ．＇This will restart the oscillator．
The following conditions can cause the OF Bit to be set：
－The first time power is applied（defaults to a＇1＇ on power－up）．
－The voltage present on V_{CC} is insufficient to support oscillation．
－The ST Bit is set to＇1．＇
－External interference of the crystal．

The OF Bit will remain set to＇ 1 ＇until written to logic ＇0．＇The oscillator must start and have run for at least 4 seconds before attempting to reset the OF Bit to＇0．＇

Output Driver Pin

When the FT Bit is not set，the FT／OUT pin be－ comes an output driver that reflects the contents of D7 of the Calibration Register．In other words， when D7（OUT Bit）and D6（FT Bit）of address lo－ cation 07 h are a＇ 0 ，＇then the FT／OUT pin will be driven low．
Note：The FT／OUT pin is an open drain which re－ quires an external pull－up resistor．

Preferred Initial Power－on Default

Upon initial application of power to the device，the ST and FT bits are set to a＇0＇state，and the OF and OUT Bits will be set to a＇1．＇All other Register bits will initially power－on in a random state（see Table 3）．

Table 3．Preferred Default Values

Condition	ST	Out	FT	OF
Initial Power－up ${ }^{(1)}$	0	1	0	1
Subsequent Power－up（with battery back－up）${ }^{(2)}$	UC	UC	0	UC

Note：1．State of other control bits undefined．
2．$U C=$ Unchanged

> 勝 特 力 材 料 886-3-5753170胜特力电子(上海) $86-21-34970699$胜特力电子(深圳) $86-755-83298787$
> Http: $/ / /$ www. 100 y. com. tw

MAXIMUM RATING

Stressing the device above the rating listed in the ＂Absolute Maximum Ratings＂table may cause permanent damage to the device．These are stress ratings only and operation of the device at these or any other conditions above those indicat－ ed in the Operating sections of this specification is
not implied．Exposure to Absolute Maximum Rat－ ing conditions for extended periods may affect de－ vice reliability．Refer also to the STMicroelectronics SURE Program and other rel－ evant quality documents．

Table 4．Absolute Maximum Ratings

Sym	Parameter		Value	Unit
TStG	Storage Temperature（VCC Off，Oscillator Off）	SOIC	－55 to 125	${ }^{\circ} \mathrm{C}$
VCC	Supply Voltage		［．-0.3 to 7	V
TSLD	Lead Solder Temperature for 10 Seconds	Lead－free lead finish ${ }^{(1)}$	－ 260	${ }^{\circ} \mathrm{C}$
		Standard (SnPb) $\text { lead finish }{ }^{(2,3)}$	1）． 240	${ }^{\circ} \mathrm{C}$
VIO	Input or Output Voltages		－0．3 to Vcc +0.3	V
Io	Output Current		10 20	mA
PD	Power Dissipation		1001	W

Note：1．For SO8 package，Lead－free（Pb－free）lead finish：Reflow at peak temperature of $260^{\circ} \mathrm{C}$（total thermal budget not to exceed $245^{\circ} \mathrm{C}$ for greater than 30 seconds）．
2．For SO8 package，standard（ SnPb ）lead finish：Reflow at peak temperature of $240^{\circ} \mathrm{C}$（total thermal budget not to exceed $180^{\circ} \mathrm{C}$ for between 90 to 150 seconds）．
3．The SOX18 package has Lead－free（Pb－free）lead finish，but cannot be exposed to peak reflow temperature in excess of $240^{\circ} \mathrm{C}$ （use same reflow profile as standard（SnPb）lead finish）．

CAUTION：Negative undershoots below -0.3 volts are not allowed on any pin while in the Battery Back－up Mode

```
勝 特 力 材 料 886－3－5753170胜特力电子（上海）86－21－34970699胜特力 电子（深圳）86－755－83298787
Http：／／www． 100 y．com．tw
```


M41T00S

DC AND AC PARAMETERS

This section summarizes the operating and mea－ surement conditions，as well as the DC and AC characteristics of the device．The parameters in the following DC and AC Characteristic tables are derived from tests performed under the Measure－
ment Conditions listed in the relevant tables．De－ signers should check that the operating conditions in their projects match the measurement condi－ tions when using the quoted parameters．

Table 5．Operating and AC Measurement Conditions

Parameter	M41T00S
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	2.7 to 5.5 V
Ambient Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	-40 to $85^{\circ} \mathrm{C}$
Load Capacitance $\left(\mathrm{C}_{\mathrm{L}}\right)$	100 pF
Input Rise and Fall Times	$\leq 50 \mathrm{~ns}$
Input Pulse Voltages	$0.2 \mathrm{~V}_{\mathrm{CC}}$ to $0.8 \mathrm{~V}_{\mathrm{CC}}$
Input and Output Timing Ref．Voltages	$0.3 \mathrm{~V}_{\mathrm{CC}}$ to $0.7 \mathrm{~V}_{\mathrm{CC}}$

Note：Output $\mathrm{Hi}-\mathrm{Z}$ is defined as the point where data is no longer driven．

Figure 13．AC Measurement I／O Waveform


```
勝 特 力 材 料 886－3－5753170胜特力电子（上海）86－21－34970699胜特力 电子（深圳）86－755－83298787
```

Http：／／www．100y．com．tw

Table 6．Capacitance

Symbol	Parameter $^{(1,2)}$	Min	Max	Unit
C_{IN}	Input Capacitance		7	pF
Cout $^{(3)}$	Output Capacitance		10	pF
t_{LP}	Low－pass filter input time constant（SDA and SCL）		50	ns

Note：1．Effective capacitance measured with power supply at 5 V ；sampled only，not 100% tested．
2．At $25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$ ．
3．Outputs deselected

Table 7．DC Characteristics

Sym	Parameter	Test Condition ${ }^{(1)}$	Min	Typ	Max	Unit
ILI	Input Leakage Current	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$			± 1	$\mu \mathrm{A}$
ILO	Output Leakage Current	OV $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$			± 1	$\mu \mathrm{A}$
ICC1	Supply Current	Switch Freq $=400 \mathrm{kHz}$			300	$\mu \mathrm{A}$
IcC2	Supply Current（standby）${ }^{\text {a }}$	$\mathrm{SCL}=0 \mathrm{~Hz}$ All Inputs $\begin{aligned} & \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \leq \mathrm{V}_{\mathrm{SS}}+0.2 \mathrm{~V} \end{aligned}$			70	$\mu \mathrm{A}$
VIL	Input Low Voltage		－0．3		0.3 V cc	V
V_{H}	Input High Voltage		$0.7 \mathrm{~V}_{\mathrm{CC}}$		$V_{C C}+0.3$	V
Vol	Output Low Voltage	IOL $=3.0 \mathrm{~mA}$			0.4	V
	Output Low Voltage（Open Drain）${ }^{(2)}$	loL $=10 \mathrm{~mA}$			0.4	V
	Pull－up Supply Voltage（Open Drain）	FT／OUT			5.5	V
$V_{B A T}{ }^{(3)}$	Back－up Supply Voltage		2.0		$3.5{ }^{(4)}$	V
$\mathrm{I}_{\text {bat }}$	Battery Supply Current	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \\ \text { Oscillator } \mathrm{ON}, \mathrm{~V}_{\mathrm{BAT}}=3 \mathrm{~V} \end{gathered}$		0.6	1	$\mu \mathrm{A}$

Note：1．Valid for Ambient Operating Temperature： $\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=2.7$ to 5.5 V （except where noted）．
2．For FT／OUT pin（Open Drain）
3．STMicroelectronics recommends the RAYOVAC BR1225 or BR1632（or equivalent）as the battery supply．
4．For rechargeable back－up， $\mathrm{V}_{\mathrm{BAT}}$（max）may be considered to be V_{CC} ．

Table 8．Crystal Electrical Characteristics

Sym	Parameter ${ }^{(1,2)}$	Min	Typ	Max	Units
$\mathrm{fo}^{\prime \prime}$	Resonant Frequency		32.768		kHz
RS_{S}	Series Resistance			$60^{(3)}$	$\mathrm{k} \Omega$
C_{L}	Load Capacitance		12.5		pF

Note：1．Externally supplied if using the SO8 package．STMicroelectronics recommends the KDS DT－38：1TA／1TC252E127，Tuning Fork Type（thru－hole）or the DMX－26S：1TJS125FH2A212，（SMD）quartz crystal for industrial temperature operations．KDS can be con－ tacted at kouhou＠kdsj．co．jp or http：／／www．kdsj．co．jp for further information on this crystal type．
2．Load capacitors are integrated within the M41T00S．Circuit board layout considerations for the 32.768 kHz crystal of minimum trace lengths and isolation from RF generating signals should be taken into account．
3 ．For applications requiring back－up supply operation below 2.5 V ， R_{S}（max）should be considered $40 \mathrm{k} \Omega$ ．

```
勝 特 力 材 料 886-3-5753170
```

胜特力电子(上海) 86-21-34970699
胜特力 电子(深圳) 86-755-83298787

Http：／／www． 100 y ．com．tw

M41T00S

Figure 14．Power Down／Up Mode AC Waveforms

AI00596

Table 9．Power Down／Up AC Characteristics

Symbol	Parameter ${ }^{(1,2)}$	Min	Typ	Max	Unit
tPD	SCL and SDA at V_{IH} before Power Down	0			nS
trec	SCL and SDA at V_{IH} after Power Up	10			$\mu \mathrm{~S}$

Note：1． V_{CC} fall time should not exceed $5 \mathrm{mV} / \mathrm{\mu s}$ ．
2．Valid for Ambient Operating Temperature： $\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=2.7$ to 5.5 V （except where noted）．

Table 10．Power Down／Up Trip Points DC Characteristics

Sym	Parameter ${ }^{(1,2)}$		Min	Typ	Max	Unit
VPFD	Power－fail Deselect		2.5	2.6	2.7	V
	Hysteresis			25		mV
Vso	Battery Back－up Switchover Voltage （ $\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{BAT}} ; \mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{PFD}}$ ）	$\mathrm{V}_{\text {BAT }}<\mathrm{V}_{\text {PFD }}$		$\mathrm{V}_{\text {BAT }}$		V
		$\mathrm{V}_{\text {BAT }}>\mathrm{V}_{\text {PFD }}$		VPFD		V
	Hysteresis			40		mV

Note：1．All voltages referenced to V_{ss} ．
2．Valid for Ambient Operating Temperature： $\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=2.7$ to 5.5 V （except where noted）．

```
勝 特 力 材 料 886－3－5753170胜特力电子（上海）86－21－34970699胜特力 电子（深圳）86－755－83298787
Http：／／www． \(100 y\) ．com．tw
```

Figure 15．Bus Timing Requirements Sequence

Table 11．AC Characteristics

Sym	Parameter ${ }^{(1)}$	Min	Typ	Max	Units
$\mathrm{f}_{\text {SCL }}$	SCL Clock Frequency	0		400	kHz
tLow	Clock Low Period	1.3			$\mu \mathrm{s}$
tHIGH	Clock High Period	600			ns
t_{R}	SDA and SCL Rise Time			300	ns
t_{F}	SDA and SCL Fall Time			300	ns
${ }_{\text {thD }}$ STA	START Condition Hold Time （after this period the first clock pulse is generated）	600			ns
tsu：STA	START Condition Setup Time （only relevant for a repeated start condition）	600			ns
tSu：DAT ${ }^{(2)}$	Data Setup Time	1． 100		1.	ns
thd：DAT	Data Hold Time	0			$\mu \mathrm{s}$
tsu：STo	STOP Condition Setup Time	600			ns
tBuF	Time the bus must be free before a new transmission can start	1.3			$\mu \mathrm{s}$

Note：1．Valid for Ambient Operating Temperature： $\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=2.7$ to 5.5 V （except where noted）．
2．Transmitter must internally provide a hold time to bridge the undefined region（300ns max）of the falling edge of SCL．

```
勝 特 力 材 料886－3－5753170
胜特力电子（上海）86－21－34970699
胜特力电子（深圳）86－755－83298787
```

Http：／／www．100y．com．tw

PACKAGE MECHANICAL INFORMATION

Figure 16．SO8－8－lead Plastic Small Package Outline

Note：Drawing is not to scale．

Table 12．SO8－8－lead Plastic Small Outline（ 150 mils body width），Package Mech．Data

Symb	$\mathbf{m m}$			inches		
	Typ	Min	Max	Typ	Min	Max
A		1.35	1.75		0.053	0.069
A1		0.10	0.25		0.004	0.010
A2		1.10	1.65		0.043	0.065
B		0.33	0.51		0.013	0.020
C		0.19	0.25		0.007	0.010
D		4.80	5.00		0.189	0.197
E		3.80	4.00		0.150	0.157
e	1.27	-	-	0.050	-	-
H		5.80	6.20		0.228	0.244
h		0.25	0.50		0.010	0.020
L		0.40	0.90		0.016	0.035
α	0°	$8 \circ$		0°	8°	
N		8			8	
ddd			0.10			0.004

PART NUMBERING

Table 13．Ordering Information Scheme

Example：
Device Type
M 41 T
Supply Voltage and Write Protect Voltage
$00 \mathrm{~S}=\mathrm{V}_{\mathrm{CC}}=2.7$ to 5.5 V
Package
$\mathrm{M}=\mathrm{SO8}$
Temperature Range
$6=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Shipping Method

For SO8：
$\mathrm{E}=$ Lead－free Package（ECO ${ }^{-1}$ PACK $\left.^{\circledR}\right)$ ，Tubes
$\mathrm{F}=$ Lead－free Package（ECO ${ }^{3} \mathrm{PACK}^{\circledR}$ ），Tape \＆Reel

For other options，or for more information on any aspect of this device，please contact the ST Sales Office nearest you．

勝 特 力 材 料 886－3－5753170胜特力电子（上海）86－21－34970699胜特力 电子（深圳）86－755－83298787

Http：／／www．100y．com．tw

M41T00S

REVISION HISTORY

Table 14．Document Revision History

Date	Version	Revision Details
February 10，2004	0.1	First Draft
20－Feb－04	0.2	Update characteristics（Table 9，10，5，7，13）
14－Apr－04	1.0	Product promoted；reformatted；update characteristics，including Lead－free package information（Figure 4．11；Table 4．11，13）
05－May－04	1.1	Update DC Characteristics（Table 7）
16－Jun－04	1.2	Added package shipping（Table 13）
13－Sep－04	2.0	Update Maximum ratings（Table 4）
26－Nov－04	3.0	Promote document；update characteristics；remove references to SOX18 package （Figure 1，5；Table 14）

```
勝 特 力 材 料 886-3-5753170
胜特力电子(上海) 86-21-34970699
胜特力电子(深圳) 86-755-83298787
    Http://www. 100y. com. tw
```

Information furnished is believed to be accurate and reliable．However，STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use．No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics．Specifications mentioned in this publication are subject to change without notice．This publication supersedes and replaces all information previously supplied．STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics．

The ST logo is a registered trademark of STMicroelectronics．
All other names are the property of their respective owners
© 2004 STMicroelectronics－All rights reserved
STMicroelectronics group of companies
Australia－Belgium－Brazil－Canada－China－Czech Republic－Finland－France－Germany－Hong Kong－India－Israel－Italy－Japan－ Malaysia－Malta－Morocco－Singapore－Spain－Sweden－Switzerland－United Kingdom－United States of America
www．st．com

[^0]: 勝 特 力 材 料 886－3－5753170
 胜特力 电子（上海）86－21－34970699
 胜特力电子（深圳）86－755－83298787
 Http：／／www． $100 y$ ．com．tw

