TMS320F2810, TMS320F2811, TMS320F2812 TMS320C2810, TMS320C2811, TMS320C2812 Digital Signal Processors

Data Manual

Literature Number: SPRS174P April 2001 - Revised December 2009

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM.TW 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw

COM.TW

WWW.100

WWW.100

WWW.100Y.COM

TW.100Y.COM.TW

.com.TW

ox.com.TW

WWW.100Y.COM.TW

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

REVISION HISTORY

This data sheet revision history highlights the technical changes made to the SPRS174O device-specific data sheet to make it an SPRS174P revision.

Scope: Changed MIN N_f value [Flash endurance for the array (Write/erase cycles)] from 100 cycles to 20000 cycles. See Table 6-57.

Changed TYP N_f value [Flash endurance for the array (Write/erase cycles)] from 1000 cycles

to 50000 cycles. See Table 6-57.

See table below.

PAGE NO.	ADDITIONS/CHANGES/DELETIONS
Global	Updated titles of reference documents
13 .C	Section 1: - Changed title from "Features" to "TMS320F281x, TMS320C281x DSPs" - Added Section 1.1, Features
100 V	Section 1.1, Features: - External Interface (2812): - Changed "Up to 1M Total Memory" to "Over 1M x 16 Total Memory" - Temperature Options: - Appended "[Q100 Qualification]" to Q temperature range
14	Added Section 1.2, Getting Started
16	Table 2-1, Hardware Features: - Added TYPE column and associated footnote
20	Table 2-2, Signal Descriptions: - Changed column header from "179-PIN GHH" to "179-BALL GHH/ZHH" - Grouped GPIOF4 - SCITXDA and GPIOF5 - SCIRXDA under "GPIOF or SCI-A SIGNALS" group - Removed "GPIOD OR EVA SIGNALS" group title - "GPIOF OR McBSP SIGNALS" group: Added "McBSP" to DESCRIPTION of all the signals in this group
74	Table 4-5, 3.3-V eCAN Transceivers for the TMS320F281x and TMS320C281x DSPs: - Added ISO1050 part number
91	Updated Figure 5-1, TMS320x28x Device Nomenclature
91	Updated Section 5.2, Documentation Support
97	Section 6.4, Current Consumption by Power-Supply Pins Over Recommended Operating Conditions During Low-Power Modes at 150-MHz SYSCLKOUT (TMS320F281x): - Updated "MAX numbers are at 125°C" footnote
97	Section 6.5, Current Consumption by Power-Supply Pins Over Recommended Operating Conditions During Low-Power Modes at 150-MHz SYSCLKOUT (TMS320C281x): - Updated "MAX numbers are at 125°C" footnote
113	Figure 6-16, STANDBY Entry and Exit Timing: - Updated XCLKOUT waveform - Updated footnotes
114	Figure 6-17, HALT Wakeup Using XNMI: - Updated XCLKOUT waveform
159	Changed "Section 6.33.1 Recommended Operating Conditions" to "Table 6-57, Flash Endurance for A and S Temperature Material"

WWW.100Y.C

WWW.100Y.COM.TW

PAGE NO.	ADDITIONS/CHANGES/DELETIONS
159	Table 6-57, Flash Endurance for A and S Temperature Material: - N _f [Flash endurance for the array (Write/erase cycles)]: - Changed MIN value from 100 cycles to 20000 cycles - Changed TYP value from 1000 cycles to 50000 cycles - Added footnote
159	Added Table 6-58, Flash Endurance for Q Temperature Material
159	Table 6-59, Flash Parameters at 150-MHz SYSCLKOUT: - Updated "Typical parameters as seen at room temperature" footnote

T.MO.

WW.100Y.COM.TW

100Y.COM.T

WWW.100Y.COM.TW

特力材料886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw

WWW.100X

WWW.100Y.COM.TW

100Y.COM.TW

WWW.100Y.COM.TW

100Y.COM.TW

Http://www.100y.com.tw

Contents

Se	ection			Page
1	TMS	320F281x, T	MS320C281x DSPs	13
	4.1N	Features		13
	1.2		tarted	14
2	Intro	duction	MANN TOOK CON TAN MANN TOOK CON TAN	15
001.	2.1		n wattoo and wattoo	15
	2.2		ımmary	16
	2.3		nments	17
		2.3.1	Terminal Assignments for the GHH Package	17
		2.3.2	Pin Assignments for the PGF Package	18
		2.3.3	Pin Assignments for the PBK Package	19
	2.4	Signal De	scriptions	20
		OWITH	W. 100 r. COM. I. T. W. W. 100 COM.	
// ·	100 X.	anatin	view	
3				30
	3.1	- / '	Лар	31
	3.2		criptions	36
		3.2.1	C28x CPU	36
		3.2.2	Memory Bus (Harvard Bus Architecture)	37
		3.2.3	Peripheral Bus	37
		3.2.4	Real-Time JTAG and Analysis	37
		3.2.5	External Interface (XINTF) (2812 Only)	37
		3.2.6	Flash (F281x Only)	38
		3.2.7	ROM (C281x Only)	38
		3.2.8	M0, M1 SARAMs	38
		3.2.9	L0, L1, H0 SARAMs	38
		3.2.10	Boot ROM	38
		3.2.11	Security	39
		3.2.12	Peripheral Interrupt Expansion (PIE) Block	40
		3.2.13	External Interrupts (XINT1, XINT2, XINT13, XNMI)	40 40
		3.2.14		
		3.2.15	Watchdog	40
		3.2.16 3.2.17	Peripheral Clocking	41
		3.2.17	Peripheral Frames 0, 1, 2 (PFn)	41
		3.2.19	General-Purpose Input/Output (GPIO) Multiplexer	41
		3.2.20	32-Bit CPU-Timers (0, 1, 2)	42
		3.2.21	Control Peripherals	42
		3.2.22	Serial Port Peripherals	42
	3.3	Register N		43
	3.4	•	nulation Registers	45
	3.5		nterface, XINTF (2812 Only)	46
	0.5	3.5.1	Timing Registers	47
		3.5.2	XREVISION Register	47
	3.6		And violon negister	48
	0.0	3.6.1	External Interrupts	51
		0.0.1		01

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787

Se	ection	Http://www.100y.com.tw	Page
	3.7	System Control	52
	3.8	OSC and PLL Block	
	0.0	3.8.1 Loss of Input Clock	
	3.9	PLL-Based Clock Module	
	3.10	External Reference Oscillator Clock Option	
	3.11	Watchdog Block	
	3.12	Low-Power Modes Block	
	0.12	Low-i owel wodes block	
4	Periph	pherals	59
	4.1	32-Bit CPU-Timers 0/1/2	
	4.2	Event Manager Modules (EVA, EVB)	
	700	4.2.1 General-Purpose (GP) Timers	√ 65
		4.2.2 Full-Compare Units	
		4.2.3 Programmable Deadband Generator	
		4.2.4 PWM Waveform Generation	
		4.2.5 Double Update PWM Mode	
		4.2.6 PWM Characteristics	
		4.2.7 Capture Unit	
		4.2.8 Quadrature-Encoder Pulse (QEP) Circuit	
		4.2.9 External ADC Start-of-Conversion	
	4.0		
	4.3	Enhanced Analog-to-Digital Converter (ADC) Module	
	4.4	Enhanced Controller Area Network (eCAN) Module	
	4.5	Multichannel Buffered Serial Port (McBSP) Module	
	4.6	Serial Communications Interface (SCI) Module	
	4.7	Serial Peripheral Interface (SPI) Module	
	4.8	GPIO MUX	87
_	D	elopment Support	OOX
5			
	5.1	Device and Development Support Tool Nomenclature	
	5.2	Documentation Support	91
_		WW.1003.COM.17	W. Too Y.C.
6		trical Specifications	
	6.1	Absolute Maximum Ratings	
	6.2	Recommended Operating Conditions	
	6.3	Electrical Characteristics Over Recommended Operating Conditions	
	6.4	Current Consumption by Power-Supply Pins Over Recommended Operating Conditions During Low-Power Modes at 150-MHz SYSCLKOUT (TMS320F281x)	97
	6.5	Current Consumption by Power-Supply Pins Over Recommended Operating Conditions During Low-Power Modes at 150-MHz SYSCLKOUT (TMS320C281x)	s 97
	6.6	Current Consumption Graphs	98
	6.7	Reducing Current Consumption	100
	6.8	Emulator Connection Without Signal Buffering for the DSP	100
	6.9	Power Sequencing Requirements	101
	6.10	Signal Transition Levels	103
	6.11	Timing Parameter Symbology	
	6.12	General Notes on Timing Parameters	

Page			Contents
Device Clock Table	on		Page
Device Clock Table	.13 ·	rest Load Circuit	104
6.15.1 Input Clock Requirements	5.14	Device Clock Table	105
6.15.2 Output Clock Characteristics 107 Reset Timing 107 Reset Timing 107 Reset Timing 107 Low-Power Mode Wakeup Timing 111 Event Manager Interface 115 6.18.1 PWM Timing 116 6.18.2 Interrupt Timing 116 6.18.2 Interrupt Timing 117 General-Purpose Input/Output (GPIO) - Output Timing 117 General-Purpose Input/Output (GPIO) - Input Timing 117 SPI Sater Mode Timing 117 SPI Master Mode Timing 117 SPI Master Mode Timing 117 SPI Slave Mode Timing 117 SPI Slave Mode Timing 117 SPI Sternal Interface (XINTF) Timing 117 SExternal Interface (XINTF) Timing 117 SExternal Interface Read Timing 117 SExternal Interface Read Timing 118 SExternal Interface Ready-on-Read Timing With One External Wait State 118 SExternal Interface Ready-on-Write Timing With One External Wait State 118 SExternal Interface Ready-on-Write Timing With One External Wait State 118 SEXTERNAL TIME AND ADSOLUTE Assimption 118 SEXTERNAL ADC DECERTION 118 SEXTERNAL ADC Electrical Characteristics Over Recommended Operating Conditions 118 SEXTERNAL ADC Electrical Characteristics Over Recommended Operating Conditions 118 SEXTERNAL ADC Power-Up Control Bit Timing 118 SEXTERNAL ADC Power-Up Control Bit Timi	6.15		106
107 107	- 1	3.15.1 Input Clock Requirements	106
11	TW	3.15.2 Output Clock Characteristics	107
8 Event Manager Interface	.16	Reset Timing	107
6.18.1 PWM Timing	17 l	_ow-Power Mode Wakeup Timing	111
6.18.2 Interrupt Timing 117 General-Purpose Input/Output (GPIO) - Output Timing 118 General-Purpose Input/Output (GPIO) - Input Timing 119 SPI Master Mode Timing 122 SPI Slave Mode Timing 122 SExternal Interface Ready-on-Read Timing With One External Wait State 133 SExternal Interface Ready-on-Write Timing With One External Wait State 133 SExternal Interface Ready-on-Write Timing With One External Wait State 133 SEXTENDED AND TIMING 144 On-Chip Analog-to-Digital Converter 144 SI ADC DASolute Maximum Ratings 144 SI ADC Absolute Maximum Ratings 144 SI ADC Absolute Maximum Ratings 144 SI ADC Power-Up Control Bit Timing 144 SI ADC Power-Up Control Bit Timing 144 SI Sequential Sampling Mode (Single-Channel) (SMODE = 0) 144 SI Sequential Sampling Mode (Dual-Channel) (SMODE = 0) 144 SI Sequential Sampling Mode (Dual-Channel) (SMODE = 1) 150 SI SI McBSP Transmit and Receive Timing 152 SI SI McBSP Transmit and Receive Timing 153 SI SI McBSP Transmit and Receive Timing 154 SI SI McBSP Transmit and Receive Timing 155 SI SI SI McBSP Transmit and Receive Timing 155 SI SI	18	Event Manager Interface	115
General-Purpose Input/Output (GPIO) - Output Timing 115	TI	3.18.1 PWM Timing	115
General-Purpose Input/Output (GPIO) - Output Timing 115)Mr.	3.18.2 Interrupt Timing	117
1 SPI Master Mode Timing 122 SPI Slave Mode Timing 122 Sexternal Interface (XINTF) Timing 123 XINTF Signal Alignment to XCLKOUT 133 External Interface Read Timing 133 External Interface Ready-on-Read Timing With One External Wait State 134 External Interface Ready-on-Write Timing With One External Wait State 135 External Interface Ready-on-Write Timing With One External Wait State 136 XHOLD And XHOLDA 144 XHOLD/XHOLDA Timing 144 XHOLD/XHOLDA Timing 144 XHOLD/XHOLDA Timing 144 STATE ADC Absolute Maximum Ratings 144 G.31.2 ADC Electrical Characteristics Over Recommended Operating Conditions 145 G.31.3 Current Consumption for Different ADC Configurations (at 25-MHz ADCCLK) 146 G.31.4 ADC Power-Up Control Bit Timing 147 G.31.5 Detailed Description 146 G.31.6 Sequential Sampling Mode (Single-Channel) (SMODE = 0) 146 G.31.7 Simultaneous Sampling Mode (Dual-Channel) (SMODE = 0) 146 G.31.8 Definitions of Specifications and Terminology 156 G.32.1 McBSP Transmit and Receive Timing 152 G.32.1 McBSP Transmit and Receive Timing 153 G.32.2 McBSP as SPI Master or Slave Timing 155 Migrating From F281x Devices to C281x Devices 162 Cchanical Data 165 Migrating From F281x Devices to C281x Devices 165 Cchanical Data 165 Migrating From F281x Devices to C281x Devices 165 Cchanical Data 165 Migrating From F281x Devices to C281x Devices 165 Migrating From F281x Devices 165	19		119
1 SPI Master Mode Timing 122 SPI Slave Mode Timing 122 Sexternal Interface (XINTF) Timing 123 XINTF Signal Alignment to XCLKOUT 133 External Interface Read Timing 133 External Interface Ready-on-Read Timing With One External Wait State 134 External Interface Ready-on-Write Timing With One External Wait State 135 External Interface Ready-on-Write Timing With One External Wait State 136 XHOLD And XHOLDA 144 XHOLD/XHOLDA Timing 144 XHOLD/XHOLDA Timing 144 XHOLD/XHOLDA Timing 144 STATE ADC Absolute Maximum Ratings 144 G.31.2 ADC Electrical Characteristics Over Recommended Operating Conditions 145 G.31.3 Current Consumption for Different ADC Configurations (at 25-MHz ADCCLK) 146 G.31.4 ADC Power-Up Control Bit Timing 147 G.31.5 Detailed Description 146 G.31.6 Sequential Sampling Mode (Single-Channel) (SMODE = 0) 146 G.31.7 Simultaneous Sampling Mode (Dual-Channel) (SMODE = 0) 146 G.31.8 Definitions of Specifications and Terminology 156 G.32.1 McBSP Transmit and Receive Timing 152 G.32.1 McBSP Transmit and Receive Timing 153 G.32.2 McBSP as SPI Master or Slave Timing 155 Migrating From F281x Devices to C281x Devices 162 Cchanical Data 165 Migrating From F281x Devices to C281x Devices 165 Cchanical Data 165 Migrating From F281x Devices to C281x Devices 165 Cchanical Data 165 Migrating From F281x Devices to C281x Devices 165 Migrating From F281x Devices 165	20	General-Purpose Input/Output (GPIO) - Input Timing	120
2 SPI Slave Mode Timing			121
External Interface (XINTF) Timing			125
XINTF Signal Alignment to XCLKOUT			129
External Interface Read Timing			132
External Interface Write Timing			
External Interface Ready-on-Read Timing With One External Wait State External Interface Ready-on-Write Timing With One External Wait State XHOLD and XHOLDA XHOLD/XHOLDA Timing 144 On-Chip Analog-to-Digital Converter 6.31.1 ADC Absolute Maximum Ratings 6.31.2 ADC Electrical Characteristics Over Recommended Operating Conditions 6.31.3 Current Consumption for Different ADC Configurations (at 25-MHz ADCCLK) 6.31.4 ADC Power-Up Control Bit Timing 6.31.5 Detailed Description 6.31.6 Sequential Sampling Mode (Single-Channel) (SMODE = 0) 6.31.7 Simultaneous Sampling Mode (Dual-Channel) (SMODE = 1) 6.31.8 Definitions of Specifications and Terminology Multichannel Buffered Serial Port (McBSP) Timing 6.32.1 McBSP Transmit and Receive Timing 6.32.2 McBSP as SPI Master or Slave Timing Flash Timing (F281x Only) ROM Timing (C281x only) Migrating From F281x Devices to C281x Devices 163 Chanical Data 185 Chanical Data 186 The XHOLD Avaitable State 187 The XHOLD Avaitable State 188 The Art Art See Serial Serial State 189 The Art Art Serial Seri			
External Interface Ready-on-Write Timing With One External Wait State XHOLD and XHOLDA			
9 XHOLD and XHOLDA 144 145 145 145 145 145 145 145 145 145			
142 1 On-Chip Analog-to-Digital Converter			
14 On-Chip Analog-to-Digital Converter			
6.31.1 ADC Absolute Maximum Ratings 6.31.2 ADC Electrical Characteristics Over Recommended Operating Conditions 6.31.3 Current Consumption for Different ADC Configurations (at 25-MHz ADCCLK) 6.31.4 ADC Power-Up Control Bit Timing 6.31.5 Detailed Description 6.31.6 Sequential Sampling Mode (Single-Channel) (SMODE = 0) 6.31.7 Simultaneous Sampling Mode (Dual-Channel) (SMODE = 1) 6.31.8 Definitions of Specifications and Terminology 156 157 158 159 159 150 150 150 151 151 152 153 154 155 155 155 155 155 155 155 155 155			
6.31.2 ADC Electrical Characteristics Over Recommended Operating Conditions 145 6.31.3 Current Consumption for Different ADC Configurations (at 25-MHz ADCCLK) 146 6.31.4 ADC Power-Up Control Bit Timing 147 6.31.5 Detailed Description 148 6.31.6 Sequential Sampling Mode (Single-Channel) (SMODE = 0) 149 6.31.7 Simultaneous Sampling Mode (Dual-Channel) (SMODE = 1) 150 6.31.8 Definitions of Specifications and Terminology 151 Multichannel Buffered Serial Port (McBSP) Timing 152 6.32.1 McBSP Transmit and Receive Timing 152 6.32.2 McBSP as SPI Master or Slave Timing 153 Flash Timing (F281x Only) 154 ROM Timing (C281x only) 155 Migrating From F281x Devices to C281x Devices 162 Chanical Data 163 Mr # 886-3-5753170			
6.31.3 Current Consumption for Different ADC Configurations (at 25-MHz ADCCLK) 146 6.31.4 ADC Power-Up Control Bit Timing 147 6.31.5 Detailed Description 148 6.31.6 Sequential Sampling Mode (Single-Channel) (SMODE = 0) 149 6.31.7 Simultaneous Sampling Mode (Dual-Channel) (SMODE = 1) 150 6.31.8 Definitions of Specifications and Terminology 151 6.31.8 Definitions of Specifications and Terminology 152 Multichannel Buffered Serial Port (McBSP) Timing 152 6.32.1 McBSP Transmit and Receive Timing 152 6.32.2 McBSP as SPI Master or Slave Timing 152 G.32.2 McBSP as SPI Master or Slave Timing 153 Flash Timing (F281x Only) 154 ROM Timing (C281x only) 155 Migrating From F281x Devices to C281x Devices 162 Chanical Data 163 Mt # 886-3-5753170 Mt # 886-3-5753170 Mt # 886-21-34970699 Mt # 1486-21-34970699 Mt # 1486-21-34970699 Mt # 1486-21-34970699			
6.31.4 ADC Power-Up Control Bit Timing 147 6.31.5 Detailed Description 148 6.31.6 Sequential Sampling Mode (Single-Channel) (SMODE = 0) 149 6.31.7 Simultaneous Sampling Mode (Dual-Channel) (SMODE = 1) 150 6.31.8 Definitions of Specifications and Terminology 151 2 Multichannel Buffered Serial Port (McBSP) Timing 152 6.32.1 McBSP Transmit and Receive Timing 152 6.32.2 McBSP as SPI Master or Slave Timing 153 7 Flash Timing (F281x Only) 153 7 ROM Timing (C281x only) 164 7 ROM Timing (C281x only) 165 7 Migrating From F281x Devices to C281x Devices 162 7 Chanical Data 163			
6.31.5 Detailed Description			
6.31.6 Sequential Sampling Mode (Single-Channel) (SMODE = 0) 149 6.31.7 Simultaneous Sampling Mode (Dual-Channel) (SMODE = 1) 150 6.31.8 Definitions of Specifications and Terminology 151 2 Multichannel Buffered Serial Port (McBSP) Timing 152 6.32.1 McBSP Transmit and Receive Timing 152 6.32.2 McBSP as SPI Master or Slave Timing 153 3 Flash Timing (F281x Only) 153 4 ROM Timing (C281x only) 161 5 Migrating From F281x Devices to C281x Devices 162 Chanical Data 163			
6.31.7 Simultaneous Sampling Mode (Dual-Channel) (SMODE = 1) 150 6.31.8 Definitions of Specifications and Terminology 151 2 Multichannel Buffered Serial Port (McBSP) Timing 152 6.32.1 McBSP Transmit and Receive Timing 152 6.32.2 McBSP as SPI Master or Slave Timing 153 Flash Timing (F281x Only) 154 ROM Timing (C281x only) 155 Migrating From F281x Devices to C281x Devices 162 chanical Data 163 B			
6.31.8 Definitions of Specifications and Terminology 151 2 Multichannel Buffered Serial Port (McBSP) Timing 152 6.32.1 McBSP Transmit and Receive Timing 152 6.32.2 McBSP as SPI Master or Slave Timing 153 3 Flash Timing (F281x Only) 154 4 ROM Timing (C281x only) 165 5 Migrating From F281x Devices to C281x Devices 162 chanical Data 163			
2 Multichannel Buffered Serial Port (McBSP) Timing			
6.32.1 McBSP Transmit and Receive Timing			
6.32.2 McBSP as SPI Master or Slave Timing			
3 Flash Timing (F281x Only)			
4 ROM Timing (C281x only)			
5 Migrating From F281x Devices to C281x Devices			
chanical Data			
勝 特 刀 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787	30	vilgrating From F281x Devices to C281x Devices	07,102
勝 特 刀 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787	echan	ical Data	00Y.V
胜特力由子 (牽删 86-755-83298787		勝 特 力 材 料 886-3-5753170	1007
胜特力由子 (牽删 86-755-83298787		胜特力电子(上海) 86-21-34970699	
Http://www.100y.com.tw		胜特力由子(深圳) 86-755-83298787	
MAN MAN M. W. M.		Http://www.100v.com.tw	
		WWW. CO. TW WIN	

LIOOX.COM.TW

List of Figures

Figure		Page	
2-1	TMS320F2812 and TMS320C2812 179-Ball GHH MicroStar BGA (Bottom View)	17	
2-2	TMS320F2812 and TMS320C2812 176-Pin PGF LQFP (Top View)	18	
2-3	TMS320F2810, TMS320F2811, TMS320C2810, and TMS320C2811		
	128-Pin PBK LQFP (Top View)	19	
	勝 特 力 材 料 886-3-5753170		
3-1	Functional Block Diagram	30	
3-2	F2812/C2812 Memory Map	31	
3-3	F2811/C2811 Memory Map	32	
3-4	F2810/C2810 Memory Map	33	
3-5	External Interface Block Diagram	46	
3-6	Interrupt Sources		
3-7	Multiplexing of Interrupts Using the PIE Block	49	
3-8	Clock and Reset Domains	52	
3-9	OSC and PLL Block	54	
3-10	Recommended Crystal/Clock Connection	56	
3-11	Watchdog Module	57	
4-1	CPU-Timers	59	
4-2	CPU-Timer Interrupts Signals and Output Signal		
4-3	Event Manager A Functional Block Diagram		
4-4	Block Diagram of the F281x and C281x ADC Module		
4-5	ADC Pin Connections With Internal Reference		
4-6	ADC Pin Connections With External Reference	CO ^M 70	
4-7	eCAN Block Diagram and Interface Circuit	73	
4-8	eCAN Memory Map		
4-9	McBSP Module With FIFO		
4-10	Serial Communications Interface (SCI) Module Block Diagram	83	
4-11	Serial Peripheral Interface Module Block Diagram (Slave Mode)		
4-12	GPIO/Peripheral Pin Multiplexing	89	
5-1	TMS320x28x Device Nomenclature	91 ON	
•	MMAN CONTON TAN MAN TOOK OF TAN MAN	1007.00	
6-1	F2812/F2811/F2810 Typical Current Consumption Over Frequency	98	
6-2	F2812/F2811/F2810 Typical Power Consumption Over Frequency	98	
6-3	C2812/C2811/C2810 Typical Fower Consumption Over Frequency		
6-4	C2812/C2811/C2810 Typical Current Consumption Over Frequency		
6-5	Emulator Connection Without Signal Buffering for the DSP		
6-6	F2812/F2811/F2810 Typical Power-Up and Power-Down Sequence - Option 2		
6-7	Output Levels	102	
6-8	Input Levels	103	
U-U	mpat Lovois	100	

		WW.100Y.COM.TW
Figure	3.3-V Test Load Circuit	WWW.100Y.COM.TW
6-9	3.3-V Test Load Circuit	
6-10	Clock Timing	
6-11	Power-on Reset in Microcomputer Mode (XI	MP/ MC = 0)
6-12		MP/ MC = 1)
6-13		WWWox.Com
6-14		WWW.To. COM.
6-15	IDLE Entry and Exit Timing	
6-16	STANDBY Entry and Exit Timing	勝 村 刀 村 村 880-3-3/33170 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
6-17	HALT Wakeup Using XNMI	胜特力电子(深圳) 86-755-83298787
6-18	PWM Output Timing	Http://www.100y.com.tw
6-19		A. A
6-20		THE THE TANK THE TANK TO THE TANK THE T
6-21		Marian Marian Committee
6-22	1.0	M^{1}
6-23		OWEN CONTRACTOR
6-24		QUALPRD = 1
6-25		COLUM AMAZINON CONTA
6-26		nase = 0)
6-27		1) COMMAN TO THE TOTAL THE TOTAL TO THE TOTAL THE TOTAL TO THE TOTAL TH
6-28	- 111112	ise = 0)
6-29		se = 1)
6-30		KOUT
6-31		110 × 110 ×
6-32		1007.CO
6-33		Access
6-34		Y Access
6-35		$M_{M_{20}} = 0$
6-36		781 W. 100
6-37		
6-38		CLKOUT = 1/2 XTIMCLK)
6-39		21.00 4 1/2 X 100 21 y
6-40		WW CONTRACTOR WWW.
6-41) Timing
6-42		WWW.
6-43		
6-44		W 100 200 M.TV
6-45		(STP = 10b, CLKXP = 0
6-46		(STP = 10b, CLKXP = 0(STP = 11b, CLKXP = 0
6-47	McRCD Liming as CDI Master or Claver CL	(STP = 10b, CLKXP = 1

List of Tables

Table			Page	
2-1	Hardware Features	滕 特 力 材 料 886-3-5753170	16	
2-2	Signal Descriptions	胜特力电子(F海) 86-21-34970699	20	
	TW WWW. CONT. TW WY	胜特力电子(深圳) 86-755-83298787		
3-100	Addresses of Flash Sectors in F2812 and F2811		34	
3-2	Addresses of Flash Sectors in F2810		34	
3-3	Wait States		36	
3-4	Boot Mode Selection		39	
3-5	Impact of Using the Code Security Module		39	
3-6	Peripheral Frame 0 Registers		43	
3-7	Peripheral Frame 1 Registers		43	
3-8	Peripheral Frame 2 Registers		44	
3-9	Device Emulation Registers		45	
3-10	XINTF Configuration and Control Register Mappings		47	
3-11	XREVISION Register Bit Definitions		47	
3-12	PIE Peripheral Interrupts		49	
3-13	PIE Configuration and Control Registers			
3-14	External Interrupts Registers		51	
3-15	PLL, Clocking, Watchdog, and Low-Power Mode Registers		53	
3-16	PLLCR Register Bit Definitions		√√ 54	
3-17	Possible PLL Configuration Modes		56	
3-18	F281x and C281x Low-Power Modes		58	
	AMMA OOX COM TAN MANA TOOK CO.	TW WWW. 100X.CO	NT.N	
4-1	CPU-Timers 0, 1, 2 Configuration and Control Registers .	WWW. TODY.CO.	61	
4-2	Module and Signal Names for EVA and EVB	M	62	
4-3	EVA Registers		63	
4-4	ADC Registers		71	
4-5	3.3-V eCAN Transceivers for the TMS320F281x and TMS3		74	
4-6	CAN Registers Map	COMMAN	76	
4-7	McBSP Register Summary		79	
4-8	SCI-A Registers		82	
4-9	SCI-B Registers		82	
4-10	SPI Registers		85	
4-11	GPIO Mux Registers		87	
4-12	GPIO Data Registers		88	
			100X	
5-1	TMS320x281x Peripheral Selection Guide	VIIION COMPANIAN IN	91	
	MANAGE CONTRA	W.Ing. COM.	W.700	
6-1	Typical Current Consumption by Various Peripherals (at 15	0 MHz)	100	
6-2	Recommended "Low-Dropout Regulators"		101	
6-3	TMS320F281x and TMS320C281x Clock Table and Nomer		105	
6-4	Input Clock Frequency		106	
6-5	XCLKIN Timing Requirements - PLL Bypassed or Enabled		106	
6-6	XCLKIN Timing Requirements - PLL Disabled		106	
6-7	Possible PLL Configuration Modes		106	
	2 11 M			

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw

Table	WW.1003 COM.TW	Page
6-8	XCLKOUT Switching Characteristics (PLL Bypassed or Enabled)	107
6-9	Reset (XRS) Timing Requirements	107
6-10	IDLE Mode Timing Requirements	111
6-11	IDLE Mode Switching Characteristics	111
6-12	STANDBY Mode Timing Requirements	112
6-13	STANDBY Mode Switching Characteristics	112
6-14	HALT Mode Timing Requirements	114
6-15	HALT Mode Switching Characteristics	114
6-16	PWM Switching Characteristics	115
6-17	Timer and Capture Unit Timing Requirements	115
6-18	External ADC Start-of-Conversion – EVA – Switching Characteristics	116
6-19	External ADC Start-of-Conversion – EVB – Switching Characteristics	116
6-20	Interrupt Switching Characteristics	117
6-21	Interrupt Timing Requirements	117
6-22	General-Purpose Output Switching Characteristics	119
6-23	General-Purpose Input Timing Requirements	120
6-24	SPI Master Mode External Timing (Clock Phase = 0)	121
6-25	SPI Master Mode External Timing (Clock Phase = 1)	123
6-26	SPI Slave Mode External Timing (Clock Phase = 0)	125
6-27	SPI Slave Mode External Timing (Clock Phase = 1)	127
6-28	Relationship Between Parameters Configured in XTIMING and Duration of Pulse	129
6-29	XINTF Clock Configurations	131
6-30	External Memory Interface Read Switching Characteristics	133
6-31	External Memory Interface Read Timing Requirements	133
6-32	External Memory Interface Write Switching Characteristics	134
6-33	External Memory Interface Read Switching Characteristics (Ready-on-Read, 1 Wait State)	135
6-34	External Memory Interface Read Timing Requirements (Ready-on-Read, 1 Wait State)	135
6-35 🦪	Synchronous XREADY Timing Requirements (Ready-on-Read, 1 Wait State)	135
6-36	Asynchronous XREADY Timing Requirements (Ready-on-Read, 1 Wait State)	135
6-37	External Memory Interface Write Switching Characteristics (Ready-on-Write, 1 Wait State)	138
6-38	Synchronous XREADY Timing Requirements (Ready-on-Write, 1 Wait State)	138
6-39	Asynchronous XREADY Timing Requirements (Ready-on-Write, 1 Wait State)	138
6-40	XHOLD/XHOLDA Timing Requirements (XCLKOUT = XTIMCLK)	142
6-41	XHOLD/XHOLDA Timing Requirements (XCLKOUT = 1/2 XTIMCLK)	143
6-42	DC Specifications	145
6-43	AC Specifications	146
6-44	ADC Power-Up Delays	147
6-45	Sequential Sampling Mode Timing	149
6-46	Simultaneous Sampling Mode Timing	150
6-47	McBSP Timing Requirements	152
6-48	McBSP Switching Characteristics	153
6-49	McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 0)	155
6-50	McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 0)	155
6-51	McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 0)	156
6-52	McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 0)	156
6-53	McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 1)	157
6-54	McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 1)	157

Tables

Table		Page
6-55	McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 1)	158
6-56	McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 1)	158
6-57	Flash Endurance for A and S Temperature Material	159
6-58	Flash Endurance for Q Temperature Material	159
6-59	Flash Parameters at 150-MHz SYSCLKOUT	159
6-60	Flash/OTP Access Timing	159
6-61	Minimum Required Flash Wait-States at Different Frequencies (F281x devices)	160
6-62	ROM Access Timing	161
6-63	Minimum Required ROM Wait-States at Different Frequencies (C281x devices)	161
7-1	Thermal Resistance Characteristics for 179-Ball GHH	163
7-2	Thermal Resistance Characteristics for 179-Ball ZHH	163
7-3	Thermal Resistance Characteristics for 176-Pin PGF	163
7-4	Thermal Resistance Characteristics for 128-Pin PBK	163
	ON COM TW WWW. LOOK COM TW WWW. LOOK COM TW	
	勝 特 力 材 料 886-3-5753170	
	胜特力电子(上海) 86-21-34970699	

COM.TW

EWW.100Y.COM.TW

E.COM.TW

料 886-3-5753170 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.CO

WWW.100Y.COM.TW

100Y.COM.TW

WWW.100Y.COM.TW

100Y.COM.TW

1 TMS320F281x, TMS320C281x DSPs

1.1 Features

- High-Performance Static CMOS Technology
 - 150 MHz (6.67-ns Cycle Time)
 - Low-Power (1.8-V Core @135 MHz, 1.9-V Core @150 MHz, 3.3-V I/O) Design
- JTAG Boundary Scan Support[†]
- High-Performance 32-Bit CPU (TMS320C28x)
 - 16 x 16 and 32 x 32 MAC Operations
 - 16 x 16 Dual MAC
 - Harvard Bus Architecture
 - Atomic Operations
 - Fast Interrupt Response and Processing
 - Unified Memory Programming Model
 - 4M Linear Program/Data Address Reach
 - Code-Efficient (in C/C++ and Assembly)
 - TMS320F24x/LF240x Processor Source Code Compatible
- On-Chip Memory
 - Flash Devices: Up to 128K x 16 Flash (Four 8K x 16 and Six 16K x 16 Sectors)
 - ROM Devices: Up to 128K x 16 ROM
 - 1K x 16 OTP ROM
 - L0 and L1: 2 Blocks of 4K x 16 Each Single-Access RAM (SARAM)
 - H0: 1 Block of 8K x 16 SARAM
 - M0 and M1: 2 Blocks of 1K x 16 Each SARAM
- Boot ROM (4K x 16)
 - With Software Boot Modes
 - Standard Math Tables
- External Interface (2812)
 - Over 1M x 16 Total Memory
 - Programmable Wait States
 - Programmable Read/Write Strobe Timing
 - Three Individual Chip Selects
- Clock and System Control
 - Dynamic PLL Ratio Changes Supported
 - On-Chip Oscillator
 - Watchdog Timer Module
- Three External Interrupts
- Peripheral Interrupt Expansion (PIE) Block That Supports 45 Peripheral Interrupts
- Three 32-Bit CPU-Timers

- 128-Bit Security Key/Lock
 - Protects Flash/ROM/OTP and L0/L1 SARAM
 - Prevents Firmware Reverse Engineering
- Motor Control Peripherals
 - Two Event Managers (EVA, EVB)
 - Compatible to 240xA Devices
- Serial Port Peripherals
 - Serial Peripheral Interface (SPI)
 - Two Serial Communications Interfaces (SCIs), Standard UART
 - Enhanced Controller Area Network (eCAN)
 - Multichannel Buffered Serial Port (McBSP)
- 12-Bit ADC, 16 Channels
 - 2 x 8 Channel Input Multiplexer
 - Two Sample-and-Hold
 - Single/Simultaneous Conversions
 - Fast Conversion Rate: 80 ns/12.5 MSPS
- Up to 56 General Purpose I/O (GPIO) Pins
- Advanced Emulation Features
 - Analysis and Breakpoint Functions
 - Real-Time Debug via Hardware
- Development Tools Include
 - ANSI C/C++ Compiler/Assembler/Linker
 - Code Composer Studio™ IDE
 - DSP/BIOS™
 - JTAG Scan Controllers[†]
- Low-Power Modes and Power Savings
 - IDLE, STANDBY, HALT Modes Supported
 - Disable Individual Peripheral Clocks
- Package Options
 - 179-Ball MicroStar BGA™ With External Memory Interface (GHH), (ZHH) (2812)
 - 176-Pin Low-Profile Quad Flatpack (LQFP) With External Memory Interface (PGF) (2812)
 - 128-Pin LQFP Without External Memory Interface (PBK) (2810, 2811)
- Temperature Options:
 - A: -40°C to 85°C (GHH, ZHH, PGF, PBK)
 - S: -40°C to 125°C (GHH, ZHH, PGF, PBK)
 - Q: -40°C to 125°C (PGF, PBK) [Q100 Qualification]

TMS320C24x, TMS320C28x, Code Composer Studio, DSP/BIOS, and MicroStar BGA are trademarks of Texas Instruments. All trademarks are the property of their respective owners.

† IEEE Standard 1149.1-1990, IEEE Standard Test-Access Port

1.2 **Getting Started**

This section gives a brief overview of the steps to take when first developing for a C28x device. For more detail on each of these steps, see the following:

WW.100Y.COM.TW

- Getting Started With TMS320C28x Digital Signal Controllers (literature number SPRAAM0).
- C2000 Getting Started Website (http://www.ti.com/c2000getstarted)
- TMS320F28x DSC Development and Experimenter's Kits (http://www.ti.com/f28xkits) WWW.100Y.CO

特力材料886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM.

WWW.100Y.COM.TW

100Y.COM.TW

WWW.100Y.COM.TW

100Y.COM.TW

2 Introduction

This section provides a summary of each device's features, lists the pin assignments, and describes the function of each pin. This document also provides detailed descriptions of peripherals, electrical specifications, parameter measurement information, and mechanical data about the available packaging.

2.1 Description

The TMS320F2810, TMS320F2811, TMS320F2812, TMS320C2810, TMS320C2811, and TMS320C2812 devices, members of the TMS320C28x™ DSP generation, are highly integrated, high-performance solutions for demanding control applications. The functional blocks and the memory maps are described in Section 3, Functional Overview.

Throughout this document, TMS320F2810, TMS320F2811, and TMS320F2812 are abbreviated as F2810, F2811, and F2812, respectively. F281x denotes all three Flash devices. TMS320C2810, TMS320C2811, and TMS320C2812 are abbreviated as C2810, C2811, and C2812, respectively. C281x denotes all three ROM devices. 2810 denotes both F2810 and C2810 devices; 2811 denotes both F2811 and C2811 devices; and 2812 denotes both F2812 and C2812 devices.

> 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw

WWW.100Y.COM.T

100Y.COM.TW

WW.100Y.COM.TW

WWW.100Y.COM.TW

2.2 Device Summary

Http://www.100y.com.tw

Table 2-1 provides a summary of each device's features.

Table 2-1. Hardware Features[†]

) FE	ATURE	TYPE [‡]	F2810	F2811	F2812	C2810	C2811	C2812
Instruction Cycle	(at 150 MHz)	700	6.67 ns	6.67 ns	6.67 ns	6.67 ns	6.67 ns	6.67 ns
Single-Access RA (16-bit word)	AM (SARAM)	W.10	18K	18K	18K	18K	18K	18K
3.3-V On-Chip Fla	ash (16-bit word)	1	64K	128K	128K	1007.	M.TW	_
On-Chip ROM (16	6-bit word)	$M_{\overline{M}_{1}}$	W. COL	T V	#W	64K	128K	128K
Code Security for On-Chip Flash/SA		WWW.	Yes	Yes	Yes	Yes	Yes	Yes
Boot ROM		MAN	Yes	Yes	Yes	Yes	Yes	Yes
OTP ROM (1K X	16)	TW.	Yes	Yes	Yes	Yes§	Yes§	√ Yes§
External Memory	Interface	1	W.100	-0M·1	Yes	IN A TOO	< C⊕Mr.,	Yes
Event Managers / (EVA and EVB)	A and B		EVA, EVB	EVA, EVB	EVA, EVB	EVA, EVB	EVA, EVB	EVA, EVB
General-Pur	pose (GP) Timers		4	4	4	4	400	4
Compare (C)	MP)/PWM	0	16	16	16	16	16 🔘	16
Capture (CA)	P)/QEP Channels	0	6/2	6/2	6/2	6/2	6/2	6/2
Watchdog Timer	ON COM	_	Yes	Yes	Yes	Yes	Yes	Yes
12-Bit ADC	Ing. COM.	NI -	Yes	Yes	Yes	Yes	Yes	Yes
Channels	1700 J. COM'.	2	16	16	16	16	16	16
32-Bit CPU Timer	's	W_	3	3	3	3	3	3
SPI	M. COm	0	Yes	Yes	Yes	Yes	Yes	Yes
SCIA, SCIB	M.In. COM	0	SCIA, SCIB	SCIA, SCIB	SCIA, SCIB	SCIA, SCIB	SCIA, SCIB	SCIA, SCIB
CAN	W.100 1 CON	0	Yes	Yes	Yes	Yes	Yes	Yes
McBSP	111001	0	Yes	Yes	Yes	Yes	Yes	Yes
Digital I/O Pins (S	Shared)	- TV	56	56	56	56	56	56
External Interrupt	s C	DNE	3	3	3	3	3	3
Supply Voltage		OM.	· · · · · · · · · · · · · · · · · · ·	1.8-V Core, ((135 MHz) 1.9-\	V Core (150 MI	Hz), 3.3-V I/O	ov C
Packaging		r.c <u>o</u> M.	128-pin PBK	128-pin PBK	179-ball GHH and ZHH; 176-pin PGF	128-pin PBK	128-pin PBK	179-ball GHH and ZHH; 176-pin PGF
_	A: -40°C to 85°C	<u> </u>	Yes	Yes	Yes	Yes	Yes	Yes
Temperature Options	S: -40°C to 125°C	W.F.C.	Yes	Yes	Yes	Yes	Yes	Yes
	Q: -40°C to 125°C	C.C.C	Yes	Yes	PGF only	Yes	Yes	PGF only
Product Status [¶]	-111	100 -	TMS	TMS	TMS	TMS	TMS	TMS

[†] The *TMS320F2810, TMS320F2811, TMS320F2812, TMS320C2810, TMS320C2811, TMS320C2812 DSP Silicon Errata* (literature number SPRZ193) has been posted on the Texas Instruments (TI) website. It will be updated as needed.

[¶] See Section 5.1, Device and Development Support Nomenclature for descriptions of device stages.

[‡] A type change represents a major functional feature difference in a peripheral module. Within a peripheral type, there may be minor differences between devices that do not affect the basic functionality of the module. These device-specific differences are listed in the *TMS320x28xx*, *28xxx DSP Peripheral Reference Guide* (literature number SPRU566) and in the peripheral reference guides.

[§] On C281x devices, OTP is replaced by a 1K X 16 block of ROM.

Http://www. 100y. com. tw

2.3 Pin Assignments

Figure 2-1 illustrates the ball locations for the 179-ball GHH and ZHH ball grid array (BGA) package. Figure 2-2 shows the pin assignments for the 176-pin PGF low-profile quad flatpack (LQFP) and Figure 2-3 shows the pin assignments for the 128-pin PBK LQFP. Table 2-2 describes the function(s) of each pin.

2.3.1 Terminal Assignments for the GHH Package

See Table 2-2 for a description of each terminal's function(s).

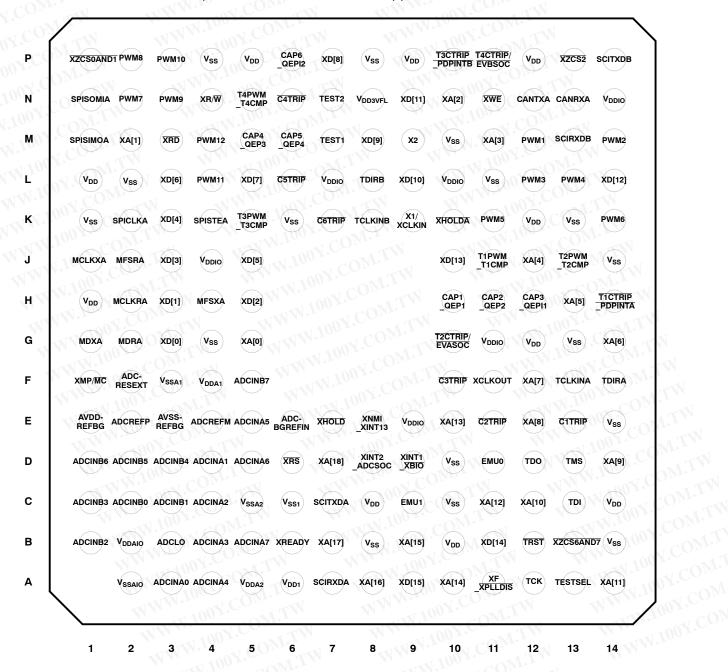


Figure 2-1. TMS320F2812 and TMS320C2812 179-Ball GHH MicroStar BGA™ (Bottom View)

2.3.2 Pin Assignments for the PGF Package

The TMS320F2812 and TMS320C2812 176-pin PGF low-profile quad flatpack (LQFP) pin assignments are shown in Figure 2-2. See Table 2-2 for a description of each pin's function(s).

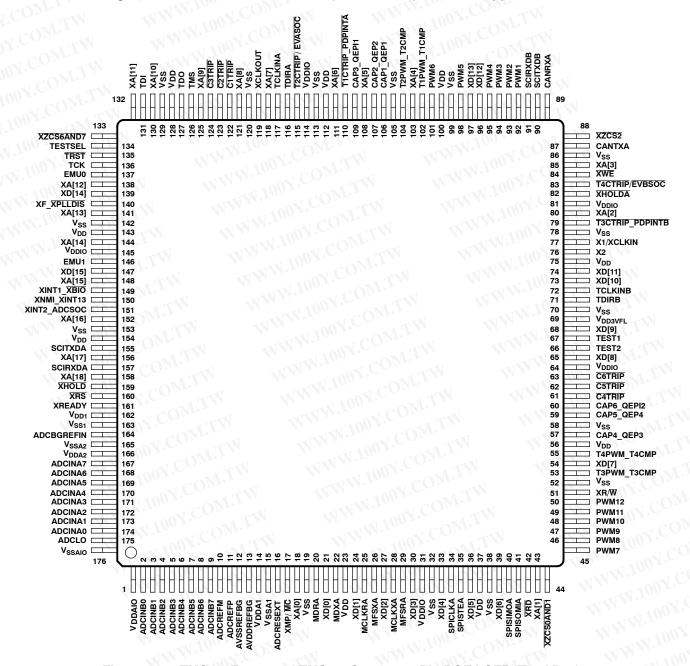


Figure 2-2. TMS320F2812 and TMS320C2812 176-Pin PGF LQFP (Top View)

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

2.3.3 Pin Assignments for the PBK Package

The TMS320F2810, TMS320F2811, TMS320C2810, and TMS320C2811 128-pin PBK low-profile quad flatpack (LQFP) pin assignments are shown in Figure 2-3. See Table 2-2 for a description of each pin's function(s).

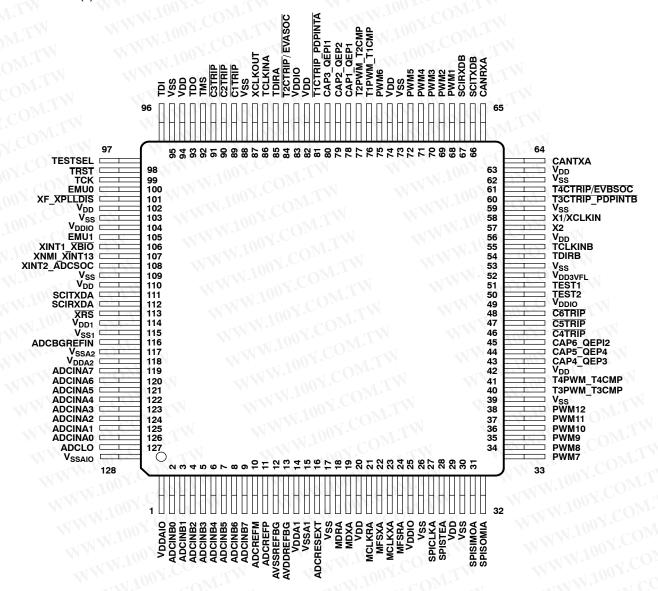


Figure 2-3. TMS320F2810, TMS320F2811, TMS320C2810, and TMS320C2811 128-Pin PBK LQFP (Top View)

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

2.4 Signal Descriptions

Table 2–2 specifies the signals on the F281x and C281x devices. All digital inputs are TTL-compatible. All outputs are 3.3 V with CMOS levels. Inputs are not 5-V tolerant. A $100-\mu A$ (or $20-\mu A$) pullup/pulldown is used.

Table 2-2. Signal Descriptions[†]

I.Com	MM	PIN NO.	WTIE		MAN.	1100Y.
NAME	179-BALL GHH/ZHH	176-PIN PGF	128-PIN PBK	I/O/Z‡	PU/PD§	DESCRIPTION
OY.CO. ITW	MM.	T 100Y.	XINTF SIGN	NALS (281	12 ONLY)	77 100 Y. COM.TV
XA[18]	D7	158	Cor	O/Z	- 1	N TOOK OF TAN
XA[17]	В7	156	1 CO $_{Mr}$	O/Z		WW.TO. COM. TW
XA[16]	A8	152	405	O/Z	-	WW.100 COM.1
XA[15]	B9	148	01.5	O/Z	-	WW. 100X. CONITW
XA[14]	A10	144	ony-Co	O/Z	-	WWW.100Y.CO. TW
XA[13]	E10	141	₹ C	O/Z	ovi -	WWW.IO.OV.COMI.
XA[12]	C11	138	100.	O/Z	-	WW.100 COM.1
XA[11]	A14	132	1007	O/Z		WW. 1007.
XA[10]	C12	130	You.	O/Z	TV	WWW. TOOX.CO. TW
XA[9]	D14	125	W.Fa.	O/Z	- TN	19-bit XINTF Address Bus
XA[8]	E12	121	TN 400	O/Z	1.7.	M. TOO T. COM.
XA[7]	F12	118	- 10°	O/Z	MIN	WW. TOOK. OM.TW
XA[6]	G14	111	$M_{A_1^{-1}}$	O/Z	-TV	WWW. TOOX.CO. TW
XA[5]	H13	108	W.7.1.7.	O/Z	OMF.	M MMM.IOOV.COM.
XA[4]	J12	103	-3 XV	O/Z	-OM.1	WW.100 COM.
XA[3]	M11	85	Min	O/Z	-M.	M. M. 100x. OW. I.A.
XA[2]	N10	80	WINN	O/Z	Co	TW WWW.100Y.CO. IT
XA[1]	M2	43		O/Z	a COM	NWW.10 COM.
XA[0]	G5	18	4	O/Z	COL	LILY WINNIE COM.
XD[15]	A9	147	7///	I/O/Z	PU	W.14, M., 1005.
XD[14]	B11	139	- 11	I/O/Z	PU	TW WWW.100Y.Co
XD[13]	J10	97		I/O/Z	PU	DM. TANNA CO
XD[12]	L14	96	-	I/O/Z	PU	OM:1
XD[11]	N9	74	-	I/O/Z	PU	-OW.TW W. 100 Y.
XD[10]	L9	73	-	I/O/Z	PU	CONTEN WWW. 100X.C
XD[9]	M8	68	αI -	I/O/Z	PU	A COM.
XD[8]	P7	65	-	I/O/Z	PU	L'COMPTE L'AVAINATION L'AVAINAT
XD[7]	L5	54	CM-	I/O/Z	PU	16-bit XINTF Data Bus
XD[6]	L3	39		I/O/Z	PU	MY.CO. ITW WWW.100
XD[5]	J5	36	- TN	I/O/Z	PU	ON COM.
XD[4]	КЗ	33	17.3.	I/O/Z	PU	100X.COM.TW WWW.10
XD[3]	J3	30	MILL	I/O/Z	PU	100X.COM.TW WWW.
XD[2]	H5	27	-TV	I/O/Z	PU	TOOY.CO TITY WY
XD[1]	НЗ	24	ONT.	I/O/Z	PU	N.T. COM. TW
XD[0]	G3	21	2011.1	I/O/Z	PU	W. In COW.

[†] Typical drive strength of the output buffer for all pins is 4 mA except for TDO, XCLKOUT, XF, XINTF, EMU0, and EMU1 pins, which are 8 mA.

[§] PU = pin has internal pullup; PD = pin has internal pulldown. Pullup/pulldown strength is given in Section 6.3. The pullups/pulldowns are enabled in boundary scan mode.

[‡] I = Input, O = Output, Z = High impedance

Table 2-2. Signal Descriptions† (Continued)

	W.100	PIN NO.				COM.	
NAME	179-BALL GHH/ZHH	176-PIN PGF	128-PIN PBK	I/O/Z‡	PU/PD§	DESCRIPTION	
Wil	M.100	XINTF	SIGNALS (2	812 ONL	() (CONTIN	IUED)	
XMP/MC	WWW.100 WWW.101 WWW.	17.COM 17.COM 100 Y.COM	LTW M.TW M.TW OM.TV		PD	Microprocessor/Microcomputer Mode Select. Switches between microprocessor and microcomputer mode. When high, Zone 7 is enabled on the external interface. When low, Zone 7 is disabled from the external interface, and on-chip boot ROM may be accessed instead. This signal is latched into the XINTCNF2 register on a reset and the user can modify this bit in software. The state of the XMP/MC pin is ignored after reset.	
XHOLD	E7	159	A'COM	T.T.A.	PU	External Hold Request. XHOLD, when active (low), requests the XINTF to release the external bus and place all buses and strobes into a high-impedance state. The XINTF will release the bus when any current access is complete and there are no pending accesses on the XINTF.	
XHOLDA	K10	82	N.100X; 100X;CC 100X;CC	O/Z	LM M -	External Hold Acknowledge. XHOLDA is driven active (low) when the XINTF has granted a XHOLD request. All XINTF buses and strobe signals will be in a high-impedance state. XHOLDA is released when the XHOLD signal is released. External devices should only drive the external bus when XHOLDA is active (low).	
XZCS0AND1	P1	44	M.100	O/Z	M.FW	XINTF Zone 0 and Zone 1 Chip Select. XZCS0AND1 is active (low) when an access to the XINTF Zone 0 or Zone 1 is performed.	
XZCS2	P13	88	WW.I	O/Z	M.I.	XINTF Zone 2 Chip Select. XZCS2 is active (low) when an access to the XINTF Zone 2 is performed.	
XZCS6AND7	B13	133	NAM	O/Z	CO-M.	XINTF Zone 6 and Zone 7 Chip Select. XZCS6AND7 is active (low) when an access to the XINTF Zone 6 or Zone 7 is performed.	
XWE	N11	84	MM	O/Z	N.CON	Write Enable. Active-low write strobe. The write strobe waveform is specified, per zone basis, by the Lead, Active, and Trail periods in the XTIMINGx registers.	
XRD	Мз	42	- 4	O/Z	'100X'C	Read Enable. Active-low read strobe. The read strobe waveform is specified, per zone basis, by the Lead, Active, and Trail periods in the XTIMINGx registers. NOTE: The XRD and XWE signals are mutually exclusive.	
XR/W	N4	51	N -	O/Z	M.1003	Read Not Write Strobe. Normally held high. When low, XR/W indicates write cycle is active; when high, XR/W indicates read cycle is active.	
XREADY	B6	161	TW.	11/1	PU	Ready Signal. Indicates peripheral is ready to complete the access when asserted to 1. XREADY can be configured to be a synchronous or an asynchronous input. See the timing diagrams for more details.	

[†] Typical drive strength of the output buffer for all pins is 4 mA except for TDO, XCLKOUT, XF, XINTF, EMU0, and EMU1 pins, which are 8 mA.

[‡] I = Input, O = Output, Z = High impedance

[§] PU = pin has internal pullup; PD = pin has internal pulldown. Pullup/pulldown strength is given in Section 6.3. The pullups/pulldowns are enabled in boundary scan mode.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

Table 2-2. Signal Descriptions[†] (Continued)

OW.I	W.100	PIN NO.			MIN.I	COM
NAME	179-BALL GHH/ZHH			I/O/Z‡	PU/PD§	DESCRIPTION
COM.TW	I.W.I	JTAG	AND MISC	ELLANE	OUS SIGNA	ALS
X1/XCLKIN	K9	100 x C (100 x C (100 x C (100 x C (100 x C) (100 x C) (58	N EW EW EW EW	M. M	Oscillator Input – input to the internal oscillator. This pin is also used to feed an external clock. The 28x can be operated with an external clock source, provided that the proper voltage levels be driven on the X1/XCLKIN pin. It should be noted that the X1/XCLKIN pin is referenced to the 1.8-V (or 1.9-V) core digital power supply (V _{DD}), rather than the 3.3-V I/O supply (V _{DDIO}). A clamping diode may be used to clamp a buffered clock signal to ensure that the logic-high level does not exceed V _{DD} (1.8 V or 1.9 V) or a 1.8-V oscillator may be used.
X2	M9	76	57	0	N	Oscillator Output
XCLKOUT	TW VETV OM TW OM TW	119	87		W TW LT ^W M.TW OM.TV	Output clock derived from SYSCLKOUT to be used for external wait-state generation and as a general-purpose clock source. XCLKOUT is either the same frequency, 1/2 the frequency, or 1/4 the frequency of SYSCLKOUT. At reset, XCLKOUT = SYSCLKOUT/4. The XCLKOUT signal can be turned off by setting bit 3 (CLKOFF) of the XINTCNF2 register to 1. Unlike other GPIO pins, the XCLKOUT pin is not placed in a high impedance state during reset.
TESTSEL	A13	134	97	1007	PD	Test Pin. Reserved for TI. Must be connected to ground.
XRS	D6	N 160 M.T.W	113	I/O	PU	Device Reset (in) and Watchdog Reset (out). Device reset. XRS causes the device to terminate execution. The PC will point to the address contained at the location 0x3FFFC0. When XRS is brought to a high level, execution begins at the location pointed to by the PC. This pin is driven low by the DSP when a watchdog reset occurs. During watchdog reset, the XRS pin will be driven low for the watchdog reset duration of 512 XCLKIN cycles. The output buffer of this pin is an open-drain with an internal pullup (100 μA, typical). It is recommended that this pin be driven by an open-drain device.
TEST1	M7	67	51	I/O	W-1.10	Test Pin. Reserved for TI. On F281x devices, TEST1 must be left unconnected. On C281x devices, this pin is a "no connect (NC)" (i.e., this pin is not connected to any circuitry internal to the device).
TEST2	N7	66	50	I/O	MAN	Test Pin. Reserved for TI. On F281x devices, TEST2 must be left unconnected. On C281x devices, this pin is a "no connect (NC)" (i.e., this pin is not connected to any circuitry internal to the device).

[†] Typical drive strength of the output buffer for all pins is 4 mA except for TDO, XCLKOUT, XF, XINTF, EMU0, and EMU1 pins, which are 8 mA.

[‡] I = Input, O = Output, Z = High impedance

[§] PU = pin has internal pullup; PD = pin has internal pulldown. Pullup/pulldown strength is given in Section 6.3. The pullups/pulldowns are enabled in boundary scan mode.

Introduction

Table 2-2. Signal Descriptions[†] (Continued)

1777	11003	PIN NO.				CO_{M} .	
NAME	179-BALL GHH/ZHH			I/O/Z‡ PU/P		DESCRIPTION	
Mil	M. Joo.	COM.	-XXI	JTAG	MM·In	ON COMP.	
OM.TW COM.TW COM.TW	NMM'II NMM'IO NMM'IOO	100X.COM	LTW M.TW DM.TW	7	MMM; MMM; MM;	JTAG test reset with internal pulldown. TRST, when driven high, gives the scan system control of the operations of the device. If this signal is not connected or driven low, the device operates in its functional mode, and the test reset signals are ignored.	
TRST COM. TW. 100Y. COM. TW.	B12	135	98	N INI ITW MITY OMIT	PD	NOTE: Do not use pullup resistors on \overline{TRST} ; it has an internal pulldown device. \overline{TRST} is an active high test pin and must be maintained low at all times during normal device operation. In a low-noise environment, \overline{TRST} may be left floating. In other instances, an external pulldown resistor is highly recommended. The value of this resistor should be based on drive strength of the debugger pods applicable to the design. A 2.2-k Ω resistor generally offers adequate protection. Since this is application-specific, it is recommended that each target board be validated for proper operation of the debugger and the application.	
TCK	A12	136	99	Mo	PU	JTAG test clock with internal pullup	
TMS	D13	126	92	N.GO	PU	JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK.	
TDI WWW.1007.C	C13	131	96	1001.C	PU	JTAG test data input (TDI) with internal pullup. TDI is clocked into the selected register (instruction or data) on a rising edge of TCK.	
TDO WWW.1007	D12	127	93	O/Z	CO_{M}	JTAG scan out, test data output (TDO). The contents of the selected register (instruction or data) is shifted out of TDO on the falling edge of TCK.	
EMUO	D11 C	TW ITW M.TW M.TW 137 COM.T. V.COM.T. V.COM.	100	I/O/Z	PU Y 100 W 1	Emulator pin 0. When TRST is driven high, this pin is used as an interrupt to or from the emulator system and is defined as input/output through the JTAG scan. This pin is also used to put the device into boundary-scan mode. With the EMU0 pin at a logic-high state and the EMU1 pin at a logic-low state, a rising edge on the TRST pin would latch the device into boundary-scan mode. NOTE: An external pullup resistor is recommended on this pin. The value of this resistor should be based on the drive strength of the debugger pods applicable to the design. A 2.2-k Ω to 4.7-k Ω resistor is generally adequate. Since this is application-specific, it is recommended that each target board be validated for proper operation of the debugger and the application.	

[†] Typical drive strength of the output buffer for all pins is 4 mA except for TDO, XCLKOUT, XF, XINTF, EMU0, and EMU1 pins, which are 8 mA.

[‡] I = Input, O = Output, Z = High impedance

[§] PU = pin has internal pullup; PD = pin has internal pulldown. Pullup/pulldown strength is given in Section 6.3. The pullups/pulldowns are enabled in boundary scan mode.

Table 2-2. Signal Descriptions[†] (Continued)

	VIV.100	PIN NO.				CONF
NAME	INSTRUCTION IN		176-PIN 128-PIN PGF PBK		PU/PD§	DESCRIPTION
COM.	TWW.I	-1 C.C	JTAG	CONTINU	JED)	V. To. COM.
EMU1 COM.TW	C9	146	105	I/O/Z	PU	Emulator pin 1. When \overline{TRST} is driven high, this pin is used as an interrupt to or from the emulator system and is defined as input/output through the JTAG scan. This pin is also used to put the device into boundary-scan mode. With the EMU0 pin at a logic-high state and the EMU1 pin at a logic-low state, a rising edge on the \overline{TRST} pin would latch the device into boundary-scan mode. NOTE: An external pullup resistor is recommended on this pin. The value of this resistor should be based on the drive strength of the debugger pods applicable to the design. A 2.2-k\Omega to 4.7-k\Omega resistor is generally adequate. Since this is application-specific, it is recommended that each target board be validated for proper operation of the debugger and the application.
1 n out 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			DC ANALO		SIGNALS	COM.
ADCINA7	B5	167	119	1.4	MITH	M. 1001. CONT.
ADCINA6	D5	168	120	OVICE	TITY	WWW. 100Y. COM.TW
ADCINA5 ADCINA4	E5 A4	169 170	121 122	Jan J.C	Diago	8-Channel analog inputs for Sample-and-Hold A.
ADCINA4 ADCINA3	B4	170	122	100F	·0 _M ·,	The ADC pins should not be driven before V _{DDA1} ,
ADCINA2	C4	171	123	1007.	COM	V_{DDA2} , and V_{DDAIO} pins have been fully powered up.
ADCINA1	D4	172	125	1,100	-01/	IN WY 100X. OM.T.
ADCINA0	A3	174	126	100	4.CU	TIW WW TIOOY.CO
ADCINB7	F5	9	9	111	N.CO	TH WWW.
ADCINB6	D1	8	8	Williams	×1 C.C	W. TOWN COM
ADCINB5	D2	7	7	TIN 3	00	WILL ALMINOS
ADCINB4	D3	6	6	L	1001.	8-Channel Analog Inputs for Sample-and-Hold B. The ADC pins should not be driven before the
ADCINB3	C1	5	5	WW	Anny.	V _{DDA1} , V _{DDA2} , and V _{DDAIO} pins have been fully
ADCINB2	B1	0 4	1 4	TATE OF THE PARTY		powered up.
ADCINB1	C3	3	3	1	W.Ion,	COW.1
ADCINB0	C2	2	2	W	-x1 10U	W.TW W. 1001.

[†] Typical drive strength of the output buffer for all pins is 4 mA except for TDO, XCLKOUT, XF, XINTF, EMU0, and EMU1 pins, which are 8 mA.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

[‡] I = Input, O = Output, Z = High impedance

[§] PU = pin has internal pullup; PD = pin has internal pulldown. Pullup/pulldown strength is given in Section 6.3. The pullups/pulldowns are enabled in boundary scan mode.

Table 2-2. Signal Descriptions[†] (Continued)

1.14	11.100	PIN NO.			N.Ing.	CONT
NAME	179-BALL GHH/ZHH	176-PIN PGF	128-PIN PBK	I/O/Z‡	PU/PD§	DESCRIPTION
M.I.	MM.100	ADC AN	ALOG INPL	JT SIGNA	LS (CONTI	NUED)
ADCREFP	E2	N.COM OY.CO	IT IT! VIIV	I/O	MMM; MMM; MM;	ADC Voltage Reference Output (2 V). Requires a low ESR (50 m Ω – 1.5 Ω) ceramic bypass capacitor of 10 μ F to analog ground. (Can accept external reference input (2 V) if the software bit is enabled for this mode. 1–10 μ F low ESR capacitor can be used in the external reference mode.)
ADCREFM	E4	10	ON TV	I/O	MA MA	ADC Voltage Reference Output (1 V). Requires a low ESR (50 m Ω – 1.5 Ω) ceramic bypass capacitor of 10 μ F to analog ground. (Can accept external reference input (1 V) if the software bit is enabled for this mode. 1–10 μ F low ESR capacitor can be used in the external reference mode.)
ADCRESEXT	F2	16	16	0		ADC External Current Bias Resistor Use 24.9 k Ω ±5% for ADC clock range 1 - 18.75 MHz 20 k Ω ±5% for ADC clock range 18.75 MHz - 25 MHz
ADCBGREFIN	E6	164	116	Mr.	-61	Test Pin. Reserved for TI. Must be left unconnected.
AVSSREFBG	E3	12	12	$\omega_{M,T}$		ADC Analog GND
AVDDREFBG	E1	13	13			ADC Analog Power (3.3-V)
ADCLO	B3	175	127	COM	TW	Common Low Side Analog Input. Connect to analog ground.
V _{SSA1}	F3	15	15		TW	ADC Analog GND
V _{SSA2}	C5	165	117	Y.Co.	WTI	ADC Analog GND
V _{DDA1}	F4	14	14	V.CO		ADC Analog 3.3-V Supply
V _{DDA2}	A5	166	118	-7 C	$0_{M^{*}}$	ADC Analog 3.3-V Supply
V _{SS1}	C6	163	115	20 7.	OMIT	ADC Digital GND
V _{DD1}	A6	162	114	1007.	-11.7	ADC Digital 1.8-V (or 1.9-V) Supply
V _{DDAIO}	B2	N 1		You	Con	3.3-V Analog I/O Power Pin
V _{SSAIO}	A2	176	128	1.700	COM	Analog I/O Ground Pin

[†] Typical drive strength of the output buffer for all pins is 4 mA except for TDO, XCLKOUT, XF, XINTF, EMU0, and EMU1 pins, which are 8 mA.

特力材料886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw

WWW.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100Y.COM.TW

100Y.COM.TW

[‡] I = Input, O = Output, Z = High impedance

PU = pin has internal pullup; PD = pin has internal pulldown. Pullup/pulldown strength is given in Section 6.3. The pullups/pulldowns are enabled in boundary scan mode.

Table 2-2. Signal Descriptions[†] (Continued)

	V VW.100	PIN NO.			WW.1	COM	
NAME	179-BALL GHH/ZHH	176-PIN PGF	128-PIN PBK	I/O/Z‡	PU/PD§	DESCRIPTION	
COM.	T.WW.	-1 CC	POW	ER SIGNA	LS	V.10- COM.	
V_{DD}	H1	23	20		- XT	1.100 x COM.1	
V_{DD}	Li	37	29		Al A.	J 100 Y. COM.TW	
V _{DD} CO	P5	56	42	W	WV	W. 100X.CO.	
V_{DD}	P9	75	56	-XXI	***	M. Inc. COM.	
V_{DD}	P12	-XV.300	63			1.8-V or 1.9-V Core Digital Power Pins. See	
V_{DD}	K12	100	74	TW		Section 6.2, Recommended Operating Conditions, for voltage requirements.	
V_{DD}	G12	112	82	W		WWW. 100X.CO. TEW	
V_{DD}	C14	128	94	WI		M.M. In COM.	
V _{DD}	B10	143	102	Mil	- 4	M. TOO T. COM: I	
V_{DD}	C8	154	110	TIME	N	WW. TIOOX. COM.TW	
V _{SS}	G4	19	17	OF C	W	WWW.	
V _{SS}	K1	32	26	COM.	-XX	MMM.Ig. COM. TM	
V _{SS}	L2	38	30	MOD	F	W.100 COM.1	
V _{SS}	P4	52	39		TIM	WW 100Y. COM.TW	
V _{SS}	K6	58	144.	M.Co.	WT	MANA 100X CO. TAM	
V _{SS}	P8	70	53	- ×7 CC	Mr	WWW.IO. COM.	
V _{SS}	M10	78	59	(O) }.	Mir	WWW.100 F. COM. I	
V _{SS}	L11	86	62	1001.	TIME	N WWW. 100X. OW. IN	
V _{SS}	K13	99	73	MAN.		Core and Digital I/O Ground Pins	
V _{SS}	J14	105	- T-WW	To-	CO_{Mr}	THE THINK IN THE COMME	
V _{SS}	G13	113	- 41	N.100	CON	111 M. 100 2 CON'II.	
V _{SS}	E14	120	88	100	Y.	勝 特 力 材 料 886-3-5753170	
V _{SS}	B14	129	95	Mar.	M.Co.	胜特力电子(上海) 86-21-34970699	
V _{SS}	D10	142	- 31	MINIT	~ CC	胜特力电子(深圳) 86-755-83298787	
V _{SS}	C10	1.1.	103	TIN.	00 -	Http://www.100y.com.tw	
V _{SS}	B8	153	109	1	100 X		
V _{DDIO}	J4	31	25	MAN	ACON!	The Man 100 Year	
V _{DDIO}	L7	64	49	-11111	1.10	COM. WWW.ICOV.CO	
V_{DDIO}	L10	81	-	- X	W. 700.	COMPANY TO STANK TO STANK	
V _{DDIO}	N14	LIVE	W -	MA	100	3.3-V I/O Digital Power Pins	
V _{DDIO}	G11	114	83	W	NA.	DY.COM TW WWW. 100Y.	
V _{DDIO}	E9	145	104		MM·	LAY COM.	
V _{DD3VFL}	N8	69	52	1	WWW.	3.3-V Flash Core Power Pin. This pin should be connected to 3.3 V at all times after power-up sequence requirements have been met. This pin is used as VDDIO in ROM parts and must be connected to 3.3 V in ROM parts as well.	

[†] Typical drive strength of the output buffer for all pins is 4 mA except for TDO, XCLKOUT, XF, XINTF, EMU0, and EMU1 pins, which are 8 mA.

[‡] I = Input, O = Output, Z = High impedance

[§] PU = pin has internal pullup; PD = pin has internal pulldown. Pullup/pulldown strength is given in Section 6.3. The pullups/pulldowns are enabled in boundary scan mode.

Table 2-2. Signal Descriptions[†] (Continued)

T. V.	PIN NO.			TAX Y	N.Too	COMP
NAME	179-BALL GHH/ZHH	176-PIN PGF	128-PIN PBK	I/O/Z‡	PU/PD§	DESCRIPTION
W. I	M.100	GONG	PIO OR PE	RIPHERAI	SIGNALS	A COM.
M.TW W.	-W 100	Mon	GPIOA O	R EVA SI	GNALS	on a COM.
GPIOA0 - PWM1 (O)	M12	92	68	I/O	PU	GPIO or PWM Output Pin #1
GPIOA1 - PWM2 (O)	M14	93	69	I/O	PU	GPIO or PWM Output Pin #2
GPIOA2 - PWM3 (O)	L12	94	70	I/O	PU	GPIO or PWM Output Pin #3
GPIOA3 - PWM4 (O)	L13	95	71	I/O	PU	GPIO or PWM Output Pin #4
GPIOA4 - PWM5 (O)	K11	98	72	I/O	PU	GPIO or PWM Output Pin #5
GPIOA5 - PWM6 (O)	K14	101	75	I/O	PU	GPIO or PWM Output Pin #6
GPIOA6 - T1PWM_T1CMP (I)	J11	102	76	I/O	PU	GPIO or Timer 1 Output
GPIOA7 - T2PWM_T2CMP (I)	J13	104	77	I/O	PU	GPIO or Timer 2 Output
GPIOA8 - CAP1_QEP1 (I)	H10	106	78	I/O	PU	GPIO or Capture Input #1
GPIOA9 - CAP2_QEP2 (I)	H11 🔨	107	79	I/O	PU	GPIO or Capture Input #2
GPIOA10 - CAP3_QEPI1 (I)	H12	109	80	I/O	PU	GPIO or Capture Input #3
GPIOA11 - TDIRA (I)	F14	116	85	I/O	PU	GPIO or Timer Direction
GPIOA12 - TCLKINA (I)	F13	117	86	I/O	PU	GPIO or Timer Clock Input
GPIOA13 - C1TRIP (I)	E13	122	89	I/O	PU	GPIO or Compare 1 Output Trip
GPIOA14 - C2TRIP (I)	E11	123	90	I/O	PU	GPIO or Compare 2 Output Trip
GPIOA15 - C3TRIP (I)	F10	124	91	I/O	PU	GPIO or Compare 3 Output Trip

[†] Typical drive strength of the output buffer for all pins is 4 mA except for TDO, XCLKOUT, XF, XINTF, EMU0, and EMU1 pins, which are 8 mA.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

100Y.COM.TW

[‡] I = Input, O = Output, Z = High impedance

[§] PU = pin has internal pullup; PD = pin has internal pulldown. Pullup/pulldown strength is given in Section 6.3. The pullups/pulldowns are enabled in boundary scan mode.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw

Table 2-2. Signal Descriptions[†] (Continued)

	PIN NO.				W.1	COM.
NAME	179-BALL GHH/ZHH	176-PIN PGF	128-PIN PBK	I/O/Z‡	PU/PD§	DESCRIPTION
COMIT	I.WIX	00 -1 00	GPIOB O	R EVB SI	GNALS	LIA COM
GPIOB0 - PWM7 (O)	N2	45	33	I/O	PU	GPIO or PWM Output Pin #7
GPIOB1 - PWM8 (O)	P2	46	34	I/O	PU	GPIO or PWM Output Pin #8
GPIOB2 - PWM9 (O)	N3	47	35	I/O	PU	GPIO or PWM Output Pin #9
GPIOB3 - PWM10 (O)	P3	48	36	I/O	PU	GPIO or PWM Output Pin #10
GPIOB4 - PWM11 (O)	L4	49	37	I/O	PU	GPIO or PWM Output Pin #11
GPIOB5 - PWM12 (O)	M4	50	38	I/O	PU	GPIO or PWM Output Pin #12
GPIOB6 - T3PWM_T3CMP (I)	K5	53	40	I/O	PU	GPIO or Timer 3 Output
GPIOB7 - T4PWM_T4CMP (I)	N5	55	41	I/O	PU	GPIO or Timer 4 Output
GPIOB8 - CAP4_QEP3 (I)	M5	57	43	I/O	PU	GPIO or Capture Input #4
GPIOB9 - CAP5_QEP4 (I)	M6	59	44	1/0	PU	GPIO or Capture Input #5
GPIOB10 - CAP6_QEPI2 (I)	P6	60	45	1/0	PU	GPIO or Capture Input #6
GPIOB11 - TDIRB (I)	L8	71	54	I/O	PU	GPIO or Timer Direction
GPIOB12 - TCLKINB (I)	K8	72	55	I/O	PU	GPIO or Timer Clock Input
GPIOB13 - C4TRIP (I)	N6	61	46	I/O	PU	GPIO or Compare 4 Output Trip
GPIOB14 - C5TRIP (I)	L6	62	47	I/O	PU	GPIO or Compare 5 Output Trip
GPIOB15 - C6TRIP (I)	K7	63	48	I/O	PU	GPIO or Compare 6 Output Trip
4/4, 1001.	OM.TV		GPIOD O	R EVA SI	GNALS	The CONTRACTOR
GPIODO - T1CTRIP_PDPINTA (I)	H14	110	81	I/O	PU	GPIO or Timer 1 Compare Output Trip
GPIOD1 - T2CTRIP/EVASOC (I)	G10	115	84	I/O	PU	GPIO or Timer 2 Compare Output Trip or External ADC Start-of-Conversion EV-A
TWW.In	COM	-XX	GPIOD O	R EVB SI	GNALS	MAN MAN CONTROL
GPIOD5 - T3CTRIP_PDPINTB (I)	P10	79	60	I/O	PU C	GPIO or Timer 3 Compare Output Trip
GPIOD6 - T4CTRIP/EVBSOC (I)	P11	83	61	I/O	PU	GPIO or Timer 4 Compare Output Trip or External ADC Start-of-Conversion EV-B
M. M	-100Y.C	G	PIOE OR IN	TERRUP	T SIGNALS	. W. IV. 1003.
GPIOE0 - XINT1_XBIO (I)	D9	149	106	I/O/Z	-100	GPIO or XINT1 or XBIO input
GPIOE1 - XINT2_ADCSOC (I)	D8	151	108	I/O/Z	W.10	GPIO or XINT2 or ADC start of conversion
GPIOE2 - XNMI_XINT13 (I)	E8	150	107	I/O	PU	GPIO or XNMI or XINT13
4	TXV.10	W - 0	GPIOF O	R SPI SIC	NALS	Jan COM:
GPIOF0 - SPISIMOA (O)	M1	40	31	I/O/Z	M.T.	GPIO or SPI slave in, master out
GPIOF1 - SPISOMIA (I)	N1	41	32	I/O/Z	MIN	GPIO or SPI slave out, master in
GPIOF2 -SPICLKA (I/O)	K2	34	27	I/O/Z	TIV.	GPIO or SPI clock
GPIOF3 - SPISTEA (I/O)	K4	35	28	I/O/Z	-	GPIO or SPI slave transmit enable

[†] Typical drive strength of the output buffer for all pins is 4 mA except for TDO, XCLKOUT, XF, XINTF, EMU0, and EMU1 pins, which are 8 mA.

[§] PU = pin has internal pullup; PD = pin has internal pulldown. Pullup/pulldown strength is given in Section 6.3. The pullups/pulldowns are enabled in boundary scan mode.

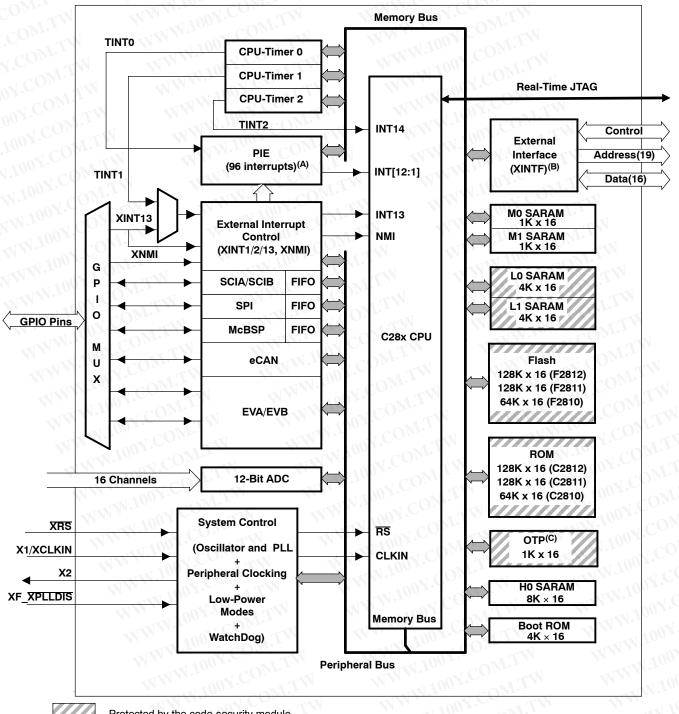
[‡] I = Input, O = Output, Z = High impedance

Table 2-2. Signal Descriptions[†] (Continued)

The state of the s	N.100	PIN NO.	* 1		N.Ing.	CO_{M}	
NAME	179-BALL GHH/ZHH	176-PIN PGF	128-PIN PBK	I/O/Z‡	PU/PD§	DESCRIPTION	
With	M.100	COM	GPIOF OF	SCI-A S	GNALS	COMP.	
GPIOF4 - SCITXDA (O)	C7	155	111	I/O	PU	GPIO or SCI asynchronous serial port TX data	
GPIOF5 - SCIRXDA (I)	A7	157	112	I/O	PU	GPIO or SCI asynchronous serial port RX data	
COMP	MMM.	W.Co.	GPIOF O	R CAN SI	GNALS	100Y.CO	
GPIOF6 - CANTXA (O)	N12	87	64	I/O	PU	GPIO or eCAN transmit data	
GPIOF7 - CANRXA (I)	N13	89	65	I/O	PU	GPIO or eCAN receive data	
Y.Co. TW	MM.	100 Y.	GPIOF OR	McBSP S	IGNALS	W.1001.	
GPIOF8 - MCLKXA (I/O)	J1	28	23	I/O	PU	GPIO or McBSP transmit clock	
GPIOF9 - MCLKRA (I/O)	H2	25	21	I/O	PU	GPIO or McBSP receive clock	
GPIOF10 - MFSXA (I/O)	H4	26	22	I/O	PU	GPIO or McBSP transmit frame synch	
GPIOF11 - MFSRA (I/O)	J2	29	24	I/O	PU	GPIO or McBSP receive frame synch	
GPIOF12 - MDXA (O)	G1	22	19	I/O		GPIO or McBSP transmitted serial data	
GPIOF13 - MDRA (I)	G2	20	18	I/O	PU	GPIO or McBSP received serial data	
W.100 COM.1		GPI	OF OR XF	CPU OUT	PUT SIGNA	AL COM.	
GPIOF14 - XF_XPLLDIS (O)	A11	140	101	I/O	PU	 This pin has three functions: XF - General-purpose output pin. XPLLDIS - This pin is sampled during reset to check whether the PLL must be disabled. The PLL will be disabled if this pin is sensed low. HALT and STANDBY modes cannot be used when the PLL is disabled. GPIO - GPIO function 	
MAMA. CO	WT	V	GPIOG OF	R SCI-B S	IGNALS	MM. 100X.CO.T.TW	
GPIOG4 - SCITXDB (O)	P14	90	66	I/O/Z	Diar.	GPIO or SCI asynchronous serial port transmit data	
GPIOG5 - SCIRXDB (I)	M13	91	67	I/O/Z	$0M_{1}$	GPIO or SCI asynchronous serial port receive data	

[†] Typical drive strength of the output buffer for all pins is 4 mA except for TDO, XCLKOUT, XF, XINTF, EMU0, and EMU1 pins, which are 8 mA.

NOTE:


Other than the power supply pins, no pin should be driven before the 3.3-V rail has reached recommended operating conditions. However, it is acceptable for an I/O pin to ramp along with the 3.3-V supply.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

[‡] I = Input, O = Output, Z = High impedance

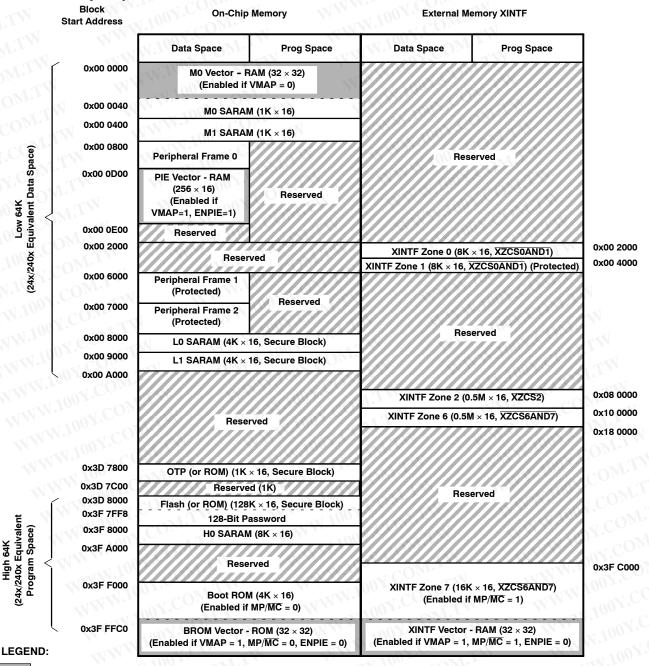
[§] PU = pin has internal pullup; PD = pin has internal pulldown. Pullup/pulldown strength is given in Section 6.3. The pullups/pulldowns are enabled in boundary scan mode.

3 **Functional Overview**

Protected by the code-security module.

NOTES: A. 45 of the possible 96 interrupts are used on the devices.

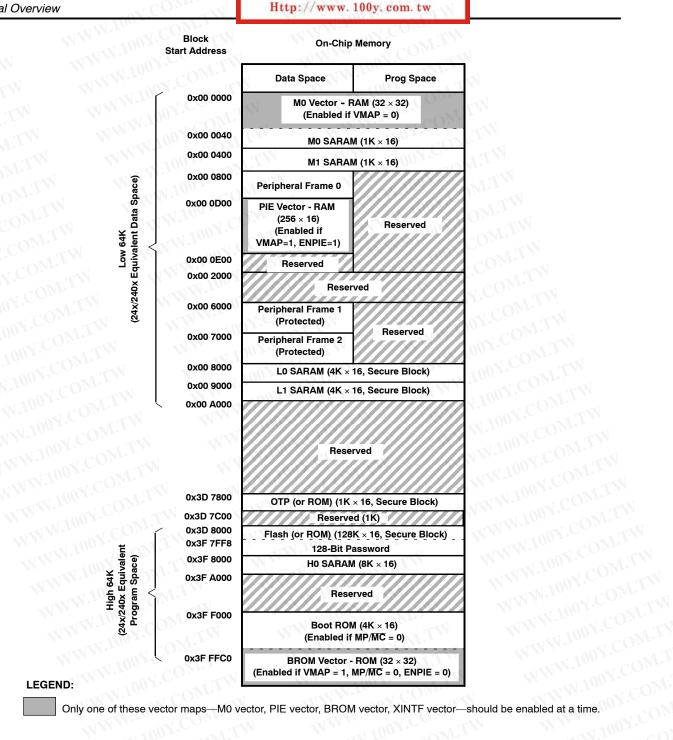
- B. XINTF is available on the F2812 and C2812 devices only.
- C. On C281x devices, the OTP is replaced with a 1K X 16 block of ROM


Figure 3-1. Functional Block Diagram

特力材料886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

3.1 Memory Map

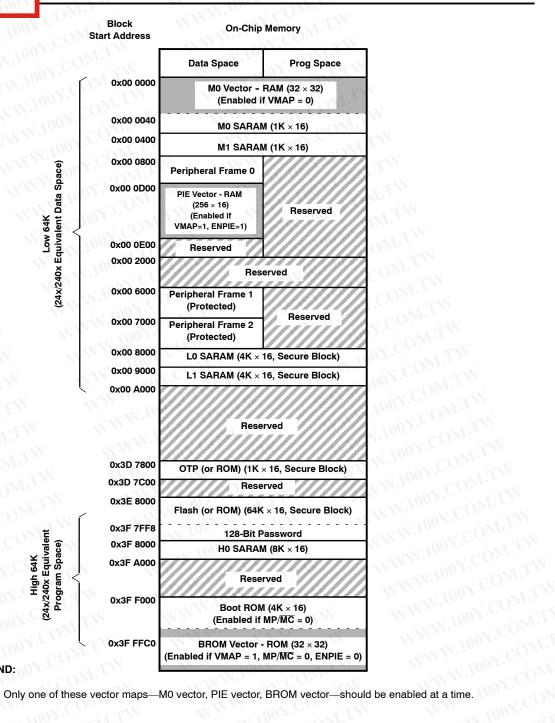


Only one of these vector maps—M0 vector, PIE vector, BROM vector, XINTF vector—should be enabled at a time.

NOTES: A. Memory blocks are not to scale.

- B. Reserved locations are reserved for future expansion. Application should not access these areas.
- C. Boot ROM and Zone 7 memory maps are active either in on-chip or XINTF zone depending on MP/ $\overline{\text{MC}}$, not in both.
- D. Peripheral Frame 0, Peripheral Frame 1, and Peripheral Frame 2 memory maps are restricted to data memory only. User program cannot access these memory maps in program space.
- E. "Protected" means the order of Write followed by Read operations is preserved rather than the pipeline order.
- F. Certain memory ranges are EALLOW protected against spurious writes after configuration.
- G. Zones 0 and 1 and Zones 6 and 7 share the same chip select; hence, these memory blocks have mirrored locations.

Figure 3-2. F2812/C2812 Memory Map



LEGEND:

- NOTES: A. Memory blocks are not to scale. B. Reserved locations are reserved for future expansion. Application should not access these areas.
 - C. Peripheral Frame 0, Peripheral Frame 1, and Peripheral Frame 2 memory maps are restricted to data memory only. User program cannot access these memory maps in program access these memory maps in program access. cannot access these memory maps in program space.
 - "Protected" means the order of Write followed by Read operations is preserved rather than the pipeline order.
 - E. Certain memory ranges are EALLOW protected against spurious writes after configuration.

Figure 3-3. F2811/C2811 Memory Map

NOTES: A. Memory blocks are not to scale.

LEGEND:

- B. Reserved locations are reserved for future expansion. Application should not access these areas.
- C. Peripheral Frame 0, Peripheral Frame 1, and Peripheral Frame 2 memory maps are restricted to data memory only. User program cannot access these memory maps in program space.
- D. "Protected" means the order of Write followed by Read operations is preserved rather than the pipeline order.
- E. Certain memory ranges are EALLOW protected against spurious writes after configuration.

Figure 3-4. F2810/C2810 Memory Map

Table 3-1. Addresses of Flash Sectors in F2812 and F2811

W.100Y.COM.TW

ADDRESS RANGE	PROGRAM AND DATA SPACE		
0x3D 8000 0x3D 9FFF	Sector J, 8K x 16		
0x3D A000 0x3D BFFF	Sector I, 8K x 16		
0x3D C000 0x3D FFFF	Sector H, 16K x 16		
0x3E 0000 0x3E 3FFF	Sector G, 16K x 16		
0x3E 4000 0x3E 7FFF	Sector F, 16K x 16		
0x3E 8000 0x3E BFFF	Sector E, 16K x 16 Sector D, 16K x 16		
0x3E C000 0x3E FFFF			
0x3F 0000 0x3F 3FFF	Sector C, 16K x 16		
0x3F 4000 0x3F 5FFF	Sector B, 8K x 16		
0x3F 6000	Sector A, 8K x 16		
0x3F 7F80 0x3F 7FF5	Program to 0x0000 when using the Code Security Module		
0x3F 7FF6 0x3F 7FF7	Boot-to-Flash (or ROM) Entry Poin (program branch instruction here)		
0x3F 7FF8 0x3F 7FFF	Security Password (128-Bit) (Do not program to all zeros)		

Table 3-2. Addresses of Flash Sectors in F2810

ADDRESS RANGE	PROGRAM AND DATA SPACE
0x3E 8000 0x3E BFFF	Sector E, 16K x 16
0x3E C000 0x3E FFFF	Sector D, 16K x 16
0x3F 0000 0x3F 3FFF	Sector C, 16K x 16
0x3F 4000 0x3F 5FFF	Sector B, 8K x 16
0x3F 6000	Sector A, 8K x 16
0x3F 7F80 0x3F 7FF5	Program to 0x0000 when using the Code Security Module
0x3F 7FF6 0x3F 7FF7	Boot-to-Flash (or ROM) Entry Point (program branch instruction here)
0x3F 7FF8 0x3F 7FFF	Security Password (128-Bit) (Do not program to all zeros)

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

100Y.COM.TW

The "Low 64K" of the memory address range maps into the data space of the 240x. The "High 64K" of the memory address range maps into the program space of the 24x/240x. 24x/240x-compatible code will execute only from the "High 64K" memory area. Hence, the top 32K of Flash/ROM and H0 SARAM block can be used to run 24x/240x-compatible code (if MP/MC mode is low) or, on the 2812, code can be executed from XINTF Zone 7 (if MP/MC mode is high).

The XINTF consists of five independent zones. One zone has its own chip select and the remaining four zones share two chip selects. Each zone can be programmed with its own timing (wait states) and to either sample or ignore external ready signal. This makes interfacing to external peripherals easy and glueless.

NOTE:

The chip selects of XINTF Zone 0 and Zone 1 are merged into a single chip select (XZCSOAND1); and the chip selects of XINTF Zone 6 and Zone 7 are merged into a single chip select (XZCS6AND7). See Section 3.5, "External Interface, XINTF (2812 only)", for details.

Peripheral Frame 1, Peripheral Frame 2, and XINTF Zone 1 are grouped together to enable these blocks to be "write/read peripheral block protected". The "protected" mode ensures that all accesses to these blocks happen as written. Because of the C28x pipeline, a write immediately followed by a read, to different memory locations, will appear in reverse order on the memory bus of the CPU. This can cause problems in certain peripheral applications where the user expected the write to occur first (as written). The C28x CPU supports a block protection mode where a region of memory can be protected to make sure that operations occur as written (the penalty is extra cycles that are added to align the operations). This mode is programmable and, by default, it will protect the selected zones.

On the 2812, at reset, XINTF Zone 7 is accessed if the XMP/MC pin is pulled high. This signal selects microprocessor or microcomputer mode of operation. In microprocessor mode, Zone 7 is mapped to high memory such that the vector table is fetched externally. The Boot ROM is disabled in this mode. In microcomputer mode, Zone 7 is disabled such that the vectors are fetched from Boot ROM. This allows the user to either boot from on-chip memory or from off-chip memory. The state of the XMP/MC signal on reset is stored in an MP/MC mode bit in the XINTCNF2 register. The user can change this mode in software and hence control the mapping of Boot ROM and XINTF Zone 7. No other memory blocks are affected by XMP/MC.

I/O space is not supported on the 2812 XINTF.

The wait states for the various spaces in the memory map area are listed in Table 3-3.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Table 3-3. Wait States

AREA	WAIT-STATES	COMMENTS				
M0 and M1 SARAMs	0-wait	Fixed				
Peripheral Frame 0	0-wait	Fixed				
Peripheral Frame 1	0-wait (writes) 2-wait (reads)	Fixed WWW.COM.TW				
Peripheral Frame 2	0-wait (writes) 2-wait (reads)	Fixed				
L0 & L1 SARAMs	0-wait	Fixed				
OTP (or ROM)	Programmable, 1-wait minimum	Programmed via the Flash registers. 1-wait-state operation is possible at reduced CPU frequency. See Section 3.2.6, Flash (F281x Only), for mor information.				
Flash (or ROM)	Programmable, 0-wait minimum	Programmed via the Flash registers. 0-wait-state operation is possible at reduced CPU frequency. The CSM password locations are hardwired for 16 wait-states. See Section 3.2.6, Flash (F281x Only), for more information.				
H0 SARAM	0-wait	Fixed				
Boot-ROM	1-wait	Fixed				
XINTE	Programmable, 1-wait minimum	Programmed via the XINTF registers. Cycles can be extended by external memory or peripheral. 0-wait operation is not possible.				

3.2 Brief Descriptions

3.2.1 C28x CPU

The C28x™ DSP generation is the newest member of the TMS320C2000™ DSP platform. The C28x is source code compatible to the 24x/240x DSP devices, hence existing 240x users can leverage their significant software investment. Additionally, the C28x is a very efficient C/C++ engine, enabling users to develop not only their system control software in a high-level language, but also enables math algorithms to be developed using C/C++. The C28x is as efficient in DSP math tasks as it is in system control tasks that typically are handled by microcontroller devices. This efficiency removes the need for a second processor in many systems. The 32 x 32-bit MAC capabilities of the C28x and its 64-bit processing capabilities, enable the C28x to efficiently handle higher numerical resolution problems that would otherwise demand a more expensive floating-point processor solution. Add to this the fast interrupt response with automatic context save of critical registers, resulting in a device that is capable of servicing many asynchronous events with minimal latency. The C28x has an 8-level-deep protected pipeline with pipelined memory accesses. This pipelining enables the C28x to execute at high speeds without resorting to expensive high-speed memories. Special branch-look-ahead hardware minimizes the latency for conditional discontinuities. Special store conditional operations further improve performance.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

C28x and TMS320C2000 are trademarks of Texas Instruments.

3.2.2 Memory Bus (Harvard Bus Architecture)

As with many DSP type devices, multiple busses are used to move data between the memories and peripherals and the CPU. The C28x memory bus architecture contains a program read bus, data read bus and data write bus. The program read bus consists of 22 address lines and 32 data lines. The data read and write busses consist of 32 address lines and 32 data lines each. The 32-bit-wide data busses enable single cycle 32-bit operations. The multiple bus architecture, commonly termed "Harvard Bus", enables the C28x to fetch an instruction, read a data value and write a data value in a single cycle. All peripherals and memories attached to the memory bus will prioritize memory accesses. Generally, the priority of Memory Bus accesses can be summarized as follows:

Highest: Data Writes (Simultaneous data and program writes cannot occur on the memory bus.)

Program Writes (Simultaneous data and program writes cannot occur on the memory bus.)

Data Reads

Program Reads (Simultaneous program reads and fetches cannot occur on the memory

bus.)

Lowest: Fetches (Simultaneous program reads and fetches cannot occur on the memory bus.)

3.2.3 Peripheral Bus

To enable migration of peripherals between various Texas Instruments (TI) DSP family of devices, the F281x and C281x adopt a peripheral bus standard for peripheral interconnect. The peripheral bus bridge multiplexes the various busses that make up the processor "Memory Bus" into a single bus consisting of 16 address lines and 16 or 32 data lines and associated control signals. Two versions of the peripheral bus are supported on the F281x and C281x. One version only supports 16-bit accesses (called peripheral frame 2) and this retains compatibility with C240x-compatible peripherals. The other version supports both 16- and 32-bit accesses (called peripheral frame 1).

3.2.4 Real-Time JTAG and Analysis

The F281x and C281x implement the standard IEEE 1149.1 JTAG interface. Additionally, the F281x and C281x support real-time mode of operation whereby the contents of memory, peripheral, and register locations can be modified while the processor is running and executing code and servicing interrupts. The user can also single step through non-time critical code while enabling time-critical interrupts to be serviced without interference. The F281x and C281x implement the real-time mode in hardware within the CPU. This is a unique feature to the F281x and C281x, no software monitor is required. Additionally, special analysis hardware is provided that allows the user to set hardware breakpoint or data/address watch-points and generate various user selectable break events when a match occurs.

3.2.5 External Interface (XINTF) (2812 Only)

This asynchronous interface consists of 19 address lines, 16 data lines, and three chip-select lines. The chip-select lines are mapped to five external zones, Zones 0, 1, 2, 6, and 7. Zones 0 and 1 share a single chip-select; Zones 6 and 7 also share a single chip-select. Each of the five zones can be programmed with a different number of wait states, strobe signal setup and hold timing and each zone can be programmed for extending wait states externally or not. The programmable wait-state, chip-select and programmable strobe timing enables glueless interface to external memories and peripherals.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

3.2.6 Flash (F281x Only)

The F2812 and F2811 contain 128K x 16 of embedded flash memory, segregated into four 8K X 16 sectors, and six 16K X 16 sectors. The F2810 has 64K X 16 of embedded flash, segregated into two 8K X 16 sectors, and three 16K X 16 sectors. All three devices also contain a single 1K x 16 of OTP memory at address range 0x3D 7800 – 0x3D 7BFF. The user can individually erase, program, and validate a flash sector while leaving other sectors untouched. However, it is not possible to use one sector of the flash or the OTP to execute flash algorithms that erase/program other sectors. Special memory pipelining is provided to enable the flash module to achieve higher performance. The flash/OTP is mapped to both program and data space; therefore, it can be used to execute code or store data information.

NOTE

The F2810/F2811/F2812 Flash and OTP wait states can be configured by the application. This allows applications running at slower frequencies to configure the flash to use fewer wait states.

Flash effective performance can be improved by enabling the flash pipeline mode in the Flash options register. With this mode enabled, effective performance of linear code execution will be much faster than the raw performance indicated by the wait state configuration alone. The exact performance gain when using the Flash pipeline mode is application-dependent.

For more information on the Flash options, Flash wait-state, and OTP wait-state registers, see the *TMS320x281x DSP System Control and Interrupts Reference Guide* (literature number SPRU078).

3.2.7 ROM (C281x Only)

The C2812 and C2811 contain 128K x 16 of ROM. The C2810 has 64K x 16 of ROM. In addition to this, there is a 1K X 16 ROM block that replaces the OTP memory available in flash devices. For information on how to submit ROM codes to TI, see the *TMS320C28x CPU and Instruction Set Reference Guide* (literature number SPRU430).

3.2.8 MO, M1 SARAMS

All C28x devices contain these two blocks of single access memory, each 1K x 16 in size. The stack pointer points to the beginning of block M1 on reset. The M0 block overlaps the 240x device B0, B1, B2 RAM blocks and hence the mapping of data variables on the 240x devices can remain at the same physical address on C28x devices. The M0 and M1 blocks, like all other memory blocks on C28x devices, are mapped to both program and data space. Hence, the user can use M0 and M1 to execute code or for data variables. The partitioning is performed within the linker. The C28x device presents a unified memory map to the programmer. This makes for easier programming in high-level languages.

3.2.9 L0, L1, H0 SARAMs

The F281x and C281x contain an additional 16K x 16 of single-access RAM, divided into 3 blocks (4K + 4K + 8K). Each block can be independently accessed hence minimizing pipeline stalls. Each block is mapped to both program and data space.

3.2.10 Boot ROM

The Boot ROM is factory-programmed with boot-loading software. The Boot ROM program executes after device reset and checks several GPIO pins to determine which boot mode to enter. For example, the user can select to execute code already present in the internal Flash or download new software to internal RAM through one of several serial ports. Other boot modes exist as well. The Boot ROM also contains standard tables, such as SIN/COS waveforms, for use in math-related algorithms. Table 3–4 shows the details of how various boot modes may be invoked. See the *TMS320x281x DSP Boot ROM Reference Guide* (literature number SPRU095), for more information.

Functional Overview

Table 3-4. Boot Mode Selection

BOOT MODE SELECTED	GPIOF4 (SCITXDA)	GPIOF12 (MDXA)	GPIOF3 (SPISTEA)	GPIOF2 (SPICLK)
GPIO PU status [†]	PU	No PU	No PU	No PU
Jump to Flash/ROM address 0x3F 7FF6 A branch instruction must have been programmed here prior to reset to re-direct code execution as desired.	MAM	100,×	.TW x	х
Call SPI_Boot to load from an external serial SPI EEPROM	0	W.107	X	х
Call SCI_Boot to load from SCI-A	0	100	OM:TY	1
Jump to H0 SARAM address 0x3F 8000	0	0007	COM.TW	0
Jump to OTP address 0x3D 7800	0	0.1003	010	1
Call Parallel_Boot to load from GPIO Port B	0	0,100	0.	0

[†] PU = pin has an internal pullup No PU = pin does not have an internal pullup

3.2.11 Security

The F281x and C281x support high levels of security to protect the user firmware from being reverse-engineered. The security features a 128-bit password (hardcoded for 16 wait states), which the user programs into the flash. One code security module (CSM) is used to protect the flash/ROM/OTP and the L0/L1 SARAM blocks. The security feature prevents unauthorized users from examining the memory contents via the JTAG port, executing code from external memory or trying to boot-load some undesirable software that would export the secure memory contents. To enable access to the secure blocks, the user must write the correct 128-bit "KEY" value, which matches the value stored in the password locations within the Flash/ROM.

NOTE:

- When the code-security passwords are programmed, all addresses between 0x3F7F80 and 0x3F7FF5 cannot be used as program code or data. These locations must be programmed to 0x0000.
- If the code security feature is not used, addresses 0x3F7F80 through 0x3F7FEF may be used for code or data.
- On ROM devices, addresses 0x3F7FF2 0x3F7FF5 and 0x3D7BFC 0x3D7BFF are reserved for TI, irrespective of whether code security has been used or not. User application should not use these locations in any way.
- The 128-bit password (at 0x3F 7FF8 0x3F 7FFF) must not be programmed to zeros. Doing so would permanently lock the device.

Table 3-5. Impact of Using the Code Security Module

ADDRESS	CODE SECURITY STATUS			
WWW.1007.0	Code security enabled	Code security disabled		
0x3F7F80 - 0x3F7FEF	Fill	·CO MIN TO THE TOTAL TO THE TOTAL TO		
0x3F7FF0 - 0x3F7FF5	Fill with 0x0000	Application code and data [†]		
0x3D7BFC - 0x3D7BFF	Application c	ode and data		

[†] See the TMS320F2810, TMS320F2811, TMS320F2812, TMS320C2810, TMS320C2811, TMS320C2812 DSP Silicon Errata (literature number SPRZ193) for some restrictions.

[‡] Extra care must be taken due to any effect toggling SPICLK to select a boot mode may have on external logic.

[§] If the boot mode selected is Flash, H0, or OTP, then no external code is loaded by the bootloader.

特力材料886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Code Security Module Disclaimer

The Code Security Module ("CSM") included on this device was designed to password protect the data stored in the associated memory (either ROM or Flash) and is warranted by Texas Instruments (TI), in accordance with its standard terms and conditions, to conform to TI's published specifications for the warranty period applicable for this device.

TI DOES NOT, HOWEVER, WARRANT OR REPRESENT THAT THE CSM CANNOT BE COMPROMISED OR BREACHED OR THAT THE DATA STORED IN THE ASSOCIATED MEMORY CANNOT BE ACCESSED THROUGH OTHER MEANS. MOREOVER, EXCEPT AS SET FORTH ABOVE, TI MAKES NO WARRANTIES OR REPRESENTATIONS CONCERNING THE CSM OR OPERATION OF THIS DEVICE, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL TI BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL, INDIRECT, INCIDENTAL, OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING IN ANY WAY OUT OF YOUR USE OF THE CSM OR THIS DEVICE, WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO LOSS OF DATA, LOSS OF GOODWILL, LOSS OF USE OR INTERRUPTION OF BUSINESS OR OTHER ECONOMIC LOSS.

3.2.12 Peripheral Interrupt Expansion (PIE) Block

The PIE block serves to multiplex numerous interrupt sources into a smaller set of interrupt inputs. The PIE block can support up to 96 peripheral interrupts. On the F281x and C281x, 45 of the possible 96 interrupts are used by peripherals. The 96 interrupts are grouped into blocks of 8 and each group is fed into 1 of 12 CPU interrupt lines (INT1 to INT12). Each of the 96 interrupts is supported by its own vector stored in a dedicated RAM block that can be overwritten by the user. The vector is automatically fetched by the CPU on servicing the interrupt. It takes 8 CPU clock cycles to fetch the vector and save critical CPU registers. Hence the CPU can quickly respond to interrupt events. Prioritization of interrupts is controlled in hardware and software. Each individual interrupt can be enabled/disabled within the PIE block.

3.2.13 External Interrupts (XINT1, XINT2, XINT13, XNMI)

The F281x and C281x support three masked external interrupts (XINT1, 2, 13). XINT13 is combined with one non-masked external interrupt (XNMI). The combined signal name is XNMI XINT13. Each of the interrupts can be selected for negative or positive edge triggering and can also be enabled/disabled (including the XNMI). The masked interrupts also contain a 16-bit free running up counter, which is reset to zero when a valid interrupt edge is detected. This counter can be used to accurately time stamp the interrupt.

3.2.14 Oscillator and PLL

The F281x and C281x can be clocked by an external oscillator or by a crystal attached to the on-chip oscillator circuit. A PLL is provided supporting up to 10-input clock-scaling ratios. The PLL ratios can be changed on-the-fly in software, enabling the user to scale back on operating frequency if lower power operation is desired. Refer to the Electrical Specification section for timing details. The PLL block can be set in bypass mode.

3.2.15 Watchdog

The F281x and C281x support a watchdog timer. The user software must regularly reset the watchdog counter within a certain time frame; otherwise, the watchdog will generate a reset to the processor. The watchdog can be disabled if necessary.

3.2.16 Peripheral Clocking

The clocks to each individual peripheral can be enabled/disabled to reduce power consumption when a peripheral is not in use. Additionally, the system clock to the serial ports (except eCAN) and the event managers, CAP and QEP blocks can be scaled relative to the CPU clock. This enables the timing of peripherals to be decoupled from increasing CPU clock speeds.

3.2.17 Low-Power Modes

The F281x and C281x devices are fully static CMOS devices. Three low-power modes are provided:

IDLE: Place CPU in low-power mode. Peripheral clocks may be turned off selectively and only

those peripherals that must function during IDLE are left operating. An enabled interrupt

from an active peripheral will wake the processor from IDLE mode.

STANDBY: Turns off clock to CPU and peripherals. This mode leaves the oscillator and PLL functional.

An external interrupt event will wake the processor and the peripherals. Execution begins

on the next valid cycle after detection of the interrupt event.

HALT: Turns off the internal oscillator. This mode basically shuts down the device and places it in

the lowest possible power consumption mode. Only a reset or XNMI can wake the device

from this mode.

3.2.18 Peripheral Frames 0, 1, 2 (PFn)

The F281x and C281x segregate peripherals into three sections. The mapping of peripherals is as follows:

PF0: XINTF: External Interface Configuration Registers (2812 only)

PIE: PIE Interrupt Enable and Control Registers Plus PIE Vector Table

Flash: Flash Control, Programming, Erase, Verify Registers

Timers: CPU-Timers 0, 1, 2 Registers

CSM: Code Security Module KEY Registers

PF1: eCAN Mailbox and Control Registers

PF2: SYS: System Control Registers

GPIO: GPIO Mux Configuration and Control Registers
EV: Event Manager (EVA/EVB) Control Registers

McBSP: McBSP Control and TX/RX Registers

SCI: Serial Communications Interface (SCI) Control and RX/TX Registers

SPI: Serial Peripheral Interface (SPI) Control and RX/TX Registers

ADC: 12-Bit ADC Registers

3.2.19 General-Purpose Input/Output (GPIO) Multiplexer

Most of the peripheral signals are multiplexed with general-purpose I/O (GPIO) signals. This multiplexing enables use of a pin as GPIO if the peripheral signal or function is not used. On reset, all GPIO pins are configured as inputs. The user can then individually program each pin for GPIO mode or peripheral signal mode. For specific inputs, the user can also select the number of input qualification cycles to filter unwanted noise glitches.

3.2.20 32-Bit CPU-Timers (0, 1, 2)

CPU-Timers 0, 1, and 2 are identical 32-bit timers with presettable periods and with 16-bit clock prescaling. The timers have a 32-bit count down register, which generates an interrupt when the counter reaches zero. The counter is decremented at the CPU clock speed divided by the prescale value setting. When the counter reaches zero, it is automatically reloaded with a 32-bit period value. CPU-Timer 2 is reserved for the DSP/BIOS Real-Time OS, and is connected to INT14 of the CPU, If DSP/BIOS is not being used, CPU-Timer 2 is available for general use. CPU-Timer 1 is for general use and can be connected to INT13 of the CPU. CPU-Timer 0 is also for general use and is connected to the PIE block.

3.2.21 Control Peripherals

The F281x and C281x support the following peripherals that are used for embedded control and communication:

The event manager module includes general-purpose timers, full-compare/PWM units,

capture inputs (CAP) and quadrature-encoder pulse (QEP) circuits. Two such event managers are provided which enable two three-phase motors to be driven or four two-phase motors. The event managers on the F281x and C281x are compatible to the

event managers on the 240x devices (with some minor enhancements).

The ADC block is a 12-bit converter, single ended, 16-channels. It contains two

sample-and-hold units for simultaneous sampling.

Serial Port Peripherals

The F281x and C281x support the following serial communication peripherals:

eCAN: This is the enhanced version of the CAN peripheral. It supports 32 mailboxes, time stamping

of messages, and is CAN 2.0B-compliant.

The multichannel buffered serial port (McBSP) connects to E1/T1 lines, phone-quality McBSP:

codecs for modem applications or high-quality stereo audio DAC devices. The McBSP receive and transmit registers are supported by a 16-level FIFO that significantly reduces

the overhead for servicing this peripheral.

SPI: The SPI is a high-speed, synchronous serial I/O port that allows a serial bit stream of

> programmed length (one to sixteen bits) to be shifted into and out of the device at a programmable bit-transfer rate. Normally, the SPI is used for communications between the DSP controller and external peripherals or another processor. Typical applications include external I/O or peripheral expansion through devices such as shift registers, display drivers, and ADCs. Multi-device communications are supported by the master/slave operation of the SPI. On the F281x and C281x, the port supports a 16-level, receive and transmit FIFO

for reducing servicing overhead.

SCI: The serial communications interface is a two-wire asynchronous serial port, commonly

known as UART. On the F281x and C281x, the port supports a 16-level, receive and

transmit FIFO for reducing servicing overhead.

Functional Overview

3.3 Register Map

The F281x and C281x devices contain three peripheral register spaces. The spaces are categorized as follows:

• Peripheral Frame 0: These are peripherals that are mapped directly to the CPU memory bus.

See Table 3-6.

Peripheral Frame 1: These are peripherals that are mapped to the 32-bit peripheral bus.

See Table 3-7.

Peripheral Frame 2: These are peripherals that are mapped to the 16-bit peripheral bus.

See Table 3-8.

Table 3-6. Peripheral Frame 0 Registers†

NAME	ADDRESS RANGE	SIZE (x16)	ACCESS TYPE‡
Device Emulation Registers	0x00 0880 0x00 09FF	384	EALLOW protected
Reserved	0x00 0A00 0x00 0A7F	128	CONT.TW
FLASH Registers [§]	0x00 0A80 0x00 0ADF	96	EALLOW protected CSM Protected
Code Security Module Registers	0x00 0AE0 0x00 0AEF	16	EALLOW protected
Reserved	0x00 0AF0 0x00 0B1F	48	100Y.COM.TW
XINTF Registers	0x00 0B20 0x00 0B3F	32	Not EALLOW protected
Reserved	0x00 0B40 0x00 0BFF	192	W.IOOX.COM.
CPU-TIMER0/1/2 Registers	0x00 0C00 0x00 0C3F	64	Not EALLOW protected
Reserved	0x00 0C40 0x00 0CDF	160	NWW.1003.COM.TV
PIE Registers	0x00 0CE0 0x00 0CFF	32	Not EALLOW protected
PIE Vector Table	0x00 0D00 0x00 0DFF	256	EALLOW protected
Reserved	0x00 0E00 0x00 0FFF	512	MAM. TOOK. COM

[†] Registers in Frame 0 support 16-bit and 32-bit accesses.

Table 3-7. Peripheral Frame 1 Registers

NAME	ADDRESS RANGE	SIZE (x16)	ACCESS TYPE
eCAN Registers	0x00 6000 0x00 60FF	256 (128 x 32)	Some eCAN control registers (and selected bits in other eCAN control registers) are EALLOW-protected.
eCAN Mailbox RAM	0x00 6100 0x00 61FF	256 (128 x 32)	Not EALLOW-protected
Reserved	0x00 6200 0x00 6FFF	3584	WWW.100Y.COM.TW WWW.

[¶] The eCAN control registers only support 32-bit read/write operations. All 32-bit accesses are aligned to even address boundaries.

[‡] If registers are EALLOW protected, then writes cannot be performed until the user executes the EALLOW instruction. The EDIS instruction disables writes. This prevents stray code or pointers from corrupting register contents.

[§] The Flash Registers are also protected by the Code Security Module (CSM).

Table 3-8. Peripheral Frame 2 Registers[†]

NAME	ADDRESS RANGE	SIZE (x16)	ACCESS TYPE
Reserved	0x00 7000 0x00 700F	16	IW
System Control Registers	0x00 7010 0x00 702F	32	EALLOW Protected
Reserved	0x00 7030 0x00 703F	16 J.C	MIN
SPI-A Registers	0x00 7040 0x00 704F	16	Not EALLOW Protected
SCI-A Registers	0x00 7050 0x00 705F	16	Not EALLOW Protected
Reserved	0x00 7060 0x00 706F	16	K.COM.TW
External Interrupt Registers	0x00 7070 0x00 707F	16	Not EALLOW Protected
Reserved	0x00 7080 0x00 70BF	64	100Y.COM.ITW
GPIO Mux Registers	0x00 70C0 0x00 70DF	32	EALLOW Protected
GPIO Data Registers	0x00 70E0 0x00 70FF	32	Not EALLOW Protected
ADC Registers	0x00 7100 0x00 711F	32	Not EALLOW Protected
Reserved	0x00 7120 0x00 73FF	736	N. 100X COM.TY
EV-A Registers	0x00 7400 0x00 743F	64	Not EALLOW Protected
Reserved	0x00 7440 0x00 74FF	192	MMM.100X.COM
EV-B Registers	0x00 7500 0x00 753F	64	Not EALLOW Protected
Reserved	0x00 7540 0x00 774F	528	M.M.W.100.1.
SCI-B Registers	0x00 7750 0x00 775F	16	Not EALLOW Protected
Reserved	0x00 7760 0x00 77FF	160	MMA.100X
McBSP Registers	0x00 7800 0x00 783F	64	Not EALLOW Protected
Reserved	0x00 7840 0x00 7FFF	1984	IN MAN.

[†] Peripheral Frame 2 only allows 16-bit accesses. All 32-bit accesses are ignored (invalid data may be returned or written).

3.4 **Device Emulation Registers**

These registers are used to control the protection mode of the C28x CPU and to monitor some critical device signals. The registers are defined in Table 3-9.

Table 3-9. Device Emulation Registers

NAME	ADDRESS RANGE	SIZE (x16)	1 100	DESCRIPTION
DEVICECNF	0x00 0880 0x00 0881	2	Device Configuration Register	T.COM.TW
PARTID	0x00 0882	ov.coM	Part ID Register	0x0001 or 0x0002 - F281x 0x0003 - C281x
REVID	0x00 0883	100X.COM	Revision ID Register	0x0001 - Silicon Revision A 0x0002 - Silicon Revision B 0x0003 - Silicon Revisions C, I 0x0004 - Reserved 0x0005 - Silicon Revision E 0x0006 - Silicon Revision F 0x0007 - Silicon Revision G
PROTSTART	0x00 0884	1	Block Protection Start Address	Register
PROTRANGE	0x00 0885	XIW.100	Block Protection Range Addres	ss Register
Reserved	0x00 0886 0x00 09FF	378	CON.IV	MMM.1001.COW.I.M

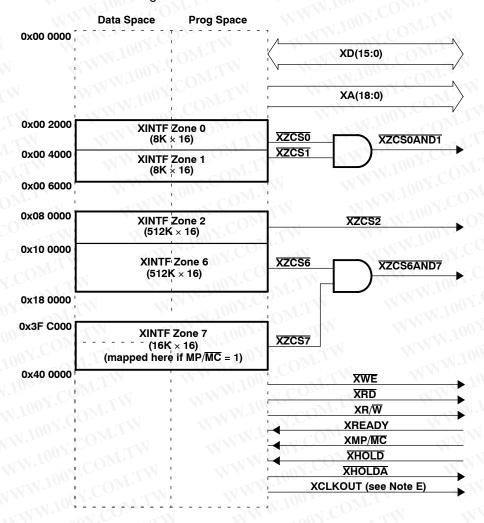
WWW.100Y.COM.TW 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM.TW

100X.COM.TW

WWW.100Y.COM.TW

100Y.COM.TW


WWW.100Y.COM.TW

3.5 External Interface, XINTF (2812 Only)

This section gives a top-level view of the external interface (XINTF) that is implemented on the 2812 devices.

The external interface is a non-multiplexed asynchronous bus, similar to the C240x external interface. The external interface on the 2812 is mapped into five fixed zones shown in Figure 3–5.

Figure 3-5 shows the 2812 XINTF signals.

- NOTES: A. The mapping of XINTF Zone 7 is dependent on the XMP/MC device input signal and the MP/MC mode bit (bit 8 of XINTCNF2 register). Zones 0, 1, 2, and 6 are always enabled.
 - B. Each zone can be programmed with different wait states, setup and hold timing, and is supported by zone chip selects (XZCS0AND1, XZCS2, XZCS6AND7), which toggle when an access to a particular zone is performed. These features enable glueless connection to many external memories and peripherals.
 - C. The chip selects for Zone 0 and 1 are ANDed internally together to form one chip select (XZCS0AND1). Any external memory that is connected to XZCS0AND1 is dually mapped to both Zones 0 and Zone 1.
 - D. The chip selects for Zone 6 and 7 are ANDed internally together to form one chip select (XZCS6AND7). Any external memory that is connected to XZCS6AND7 is dually mapped to both Zones 6 and Zone 7. This means that if Zone 7 is disabled (via the MP/MC mode) then any external memory is still accessible via Zone 6 address space.
 - E. XCLKOUT is also pinned out on the 2810 and 2811.

Figure 3-5. External Interface Block Diagram

The operation and timing of the external interface, can be controlled by the registers listed in Table 3-10.

Table 3-10. XINTF Configuration and Control Register Mappings

		Table 3-	-10. XINTF	Configuration and Control Register Mappings
LOON CO	NAME	ADDRESS	SIZE (x16)	DESCRIPTION
W. Too C	XTIMING0	0x00 0B20	C2	XINTF Timing Register, Zone 0 can access as two 16-bit registers or one 32-bit register
W.100 1	XTIMING1	0x00 0B22	2011	XINTF Timing Register, Zone 1 can access as two 16-bit registers or one 32-bit register
100X	XTIMING2	0x00 0B24	2	XINTF Timing Register, Zone 2 can access as two 16-bit registers or one 32-bit register
1005	XTIMING6	0x00 0B2C	2	XINTF Timing Register, Zone 6 can access as two 16-bit registers or one 32-bit register
IWW.I	XTIMING7	0x00 0B2E	2	XINTF Timing Register, Zone 7 can access as two 16-bit registers or one 32-bit register
-TVW.100	XINTCNF2	0x00 0B34	2	XINTF Configuration Register can access as two 16-bit registers or one 32-bit register
W 11	XBANK	0x00 0B38	W.107	XINTF Bank Control Register
MM	XREVISION	0x00 0B3A	-X 100 X .	XINTF Revision Register

3.5.1 Timing Registers

XINTF signal timing can be tuned to match specific external device requirements such as setup and hold times to strobe signals for contention avoidance and maximizing bus efficiency. The XINTF timing parameters can be configured individually for each zone based on the requirements of the memory or peripheral accessed by that particular zone. This allows the programmer to maximize the efficiency of the bus on a per zone basis. All XINTF timing values are with respect to XTIMCLK, which is equal to or one-half of the SYSCLKOUT rate, as shown in Figure 6-30.

For detailed information on the XINTF timing and configuration register bit fields, see the TMS320x281x DSP External Interface (XINTF) Reference Guide (literature number SPRU067).

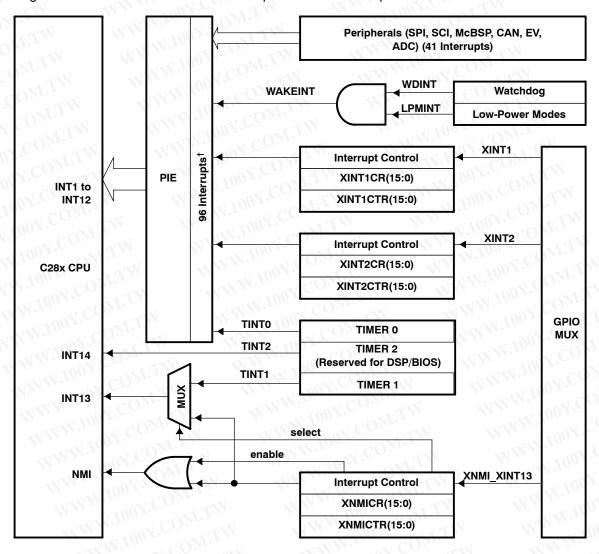
3.5.2 XREVISION Register

The XREVISION register contains a unique number to identify the particular version of XINTF used in the product. For the 2812, this register will be configured as described in Table 3-11.

Table 3-11. XREVISION Register Bit Definitions

BIT(S)	NAME	TYPE	RESET	DESCRIPTION
15-0	REVISION	R	0x0004	Current XINTF Revision. For internal use/reference. Test purposes only. Subject to change.

WWW.100Y.COM 特力材料886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw


WWW.100Y.COM.TW

LLOOY.COM.TW

Http://www. 100y. com. tw

3.6 Interrupts

Figure 3-6 shows how the various interrupt sources are multiplexed within the F281x and C281x devices.

[†] Out of a possible 96 interrupts, 45 are currently used by peripherals.

Figure 3-6. Interrupt Sources

Eight PIE block interrupts are grouped into one CPU interrupt. In total, 12 CPU interrupt groups, with 8 interrupts per group equals 96 possible interrupts. On the F281x and C281x, 45 of these are used by peripherals as shown in Table 3–12.

The TRAP #VectorNumber instruction transfers program control to the interrupt service routine corresponding to the vector specified. TRAP #0 attempts to transfer program control to the address pointed to by the reset vector. The PIE vector table does not, however, include a reset vector. Therefore, TRAP #0 should not be used when the PIE is enabled. Doing so will result in undefined behavior.

When the PIE is enabled, TRAP #1 through TRAP #12 will transfer program control to the interrupt service routine corresponding to the first vector within the PIE group. For example: TRAP #1 fetches the vector from INT1.1, TRAP #2 fetches the vector from INT2.1 and so forth.

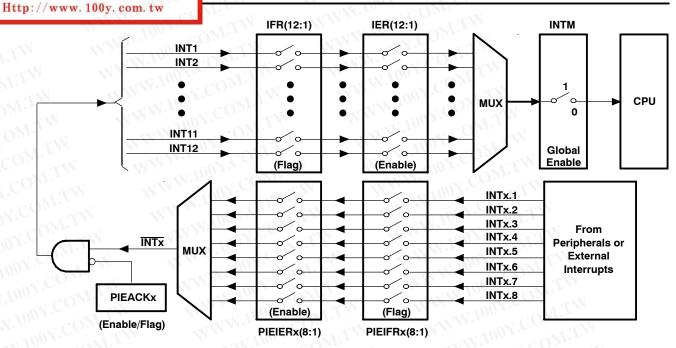


Figure 3-7. Multiplexing of Interrupts Using the PIE Block

Table 3-12.	PIE Peripheral	Interrupts†
I GOIO O IL.	I II OII PIIOI AI	IIII apto

CPU	COM		TANN. In.	PIE INTER	RRUPTS	TWW.I	COM,	-XX
INTERRUPTS	INTx.8	INTx.7	INTx.6	INTx.5	INTx.4	INTx.3	INTx.2	INTx.1
INT1	WAKEINT (LPM/WD)	TINTO (TIMER 0)	ADCINT (ADC)	XINT2	XINT1	Reserved	PDPINTB (EV-B)	PDPINTA (EV-A)
INT2	Reserved	T1OFINT (EV-A)	T1UFINT (EV-A)	T1CINT (EV-A)	T1PINT (EV-A)	CMP3INT (EV-A)	CMP2INT (EV-A)	CMP1INT (EV-A)
INT3	Reserved	CAPINT3 (EV-A)	CAPINT2 (EV-A)	CAPINT1 (EV-A)	T2OFINT (EV-A)	T2UFINT (EV-A)	T2CINT (EV-A)	T2PINT (EV-A)
INT4	Reserved	T3OFINT (EV-B)	T3UFINT (EV-B)	T3CINT (EV-B)	T3PINT (EV-B)	CMP6INT (EV-B)	CMP5INT (EV-B)	CMP4INT (EV-B)
INT5	Reserved	CAPINT6 (EV-B)	CAPINT5 (EV-B)	CAPINT4 (EV-B)	T40FINT (EV-B)	T4UFINT (EV-B)	T4CINT (EV-B)	T4PINT (EV-B)
INT6	Reserved	Reserved	MXINT (McBSP)	MRINT (McBSP)	Reserved	Reserved	SPITXINTA (SPI)	SPIRXINTA (SPI)
INT7	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
INT8	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
INT9	Reserved	Reserved	ECAN1INT (CAN)	ECANOINT (CAN)	SCITXINTB (SCI-B)	SCIRXINTB (SCI-B)	SCITXINTA (SCI-A)	SCIRXINTA (SCI-A)
INT10	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
INT11	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
INT12	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved

[†] Out of the 96 possible interrupts, 45 interrupts are currently used. The remaining interrupts are reserved for future devices. These interrupts can be used as software interrupts if they are enabled at the PIEIFRx level, provided none of the interrupts within the group is being used by a peripheral. Otherwise, interrupts coming in from peripherals may be lost by accidentally clearing their flag while modifying the PIEIFR.

To summarize, there are two safe cases when the reserved interrupts could be used as software interrupts:

- No peripheral within the group is asserting interrupts.
- 2) No peripheral interrupts are assigned to the group (example PIE group 12).

Table 3-13. PIE Configuration and Control Registers

NAME	ADDRESS	Size (x16)	DESCRIPTION
PIECTRL	0x0000-0CE0	Mor. FOM	PIE, Control Register
PIEACK	0x0000-0CE1	1001	PIE, Acknowledge Register
PIEIER1	0x0000-0CE2	N.100 1 CO	PIE, INT1 Group Enable Register
PIEIFR1	0x0000-0CE3	W.1007	PIE, INT1 Group Flag Register
PIEIER2	0x0000-0CE4	W.1007.	PIE, INT2 Group Enable Register
PIEIFR2	0x0000-0CE5	100 Y	PIE, INT2 Group Flag Register
PIEIER3	0x0000-0CE6	VI100X	PIE, INT3 Group Enable Register
PIEIFR3	0x0000-0CE7	V 1.100	PIE, INT3 Group Flag Register
PIEIER4	0x0000-0CE8	WW 1N.10	PIE, INT4 Group Enable Register
PIEIFR4	0x0000-0CE9	1 1 1	PIE, INT4 Group Flag Register
PIEIER5	0x0000-0CEA	WY	PIE, INT5 Group Enable Register
PIEIFR5	0x0000-0CEB	111	PIE, INT5 Group Flag Register
PIEIER6	0x0000-0CEC	1	PIE, INT6 Group Enable Register
PIEIFR6	0x0000-0CED	1	PIE, INT6 Group Flag Register
PIEIER7	0x0000-0CEE	1	PIE, INT7 Group Enable Register
PIEIFR7	0x0000-0CEF	1	PIE, INT7 Group Flag Register
PIEIER8	0x0000-0CF0	1	PIE, INT8 Group Enable Register
PIEIFR8	0x0000-0CF1	1	PIE, INT8 Group Flag Register
PIEIER9	0x0000-0CF2	TW 1	PIE, INT9 Group Enable Register
PIEIFR9	0x0000-0CF3	TVI	PIE, INT9 Group Flag Register
PIEIER10	0x0000-0CF4	TTN	PIE, INT10 Group Enable Register
PIEIFR10	0x0000-0CF5	021	PIE, INT10 Group Flag Register
PIEIER11	0x0000-0CF6	111	PIE, INT11 Group Enable Register
PIEIFR11	0x0000-0CF7	WILL CO.	PIE, INT11 Group Flag Register
PIEIER12	0x0000-0CF8	Y.CONT.TY	PIE, INT12 Group Enable Register
PIEIFR12	0x0000-0CF9	OV.CON	PIE, INT12 Group Flag Register
Reserved	0x0000-0CFA 0x0000-0CFF	ON COM	Reserved

Note: The PIE configuration and control registers are not protected by EALLOW mode. The PIE vector table is protected.

WW.100Y.COM.TW

3.6.1 External Interrupts

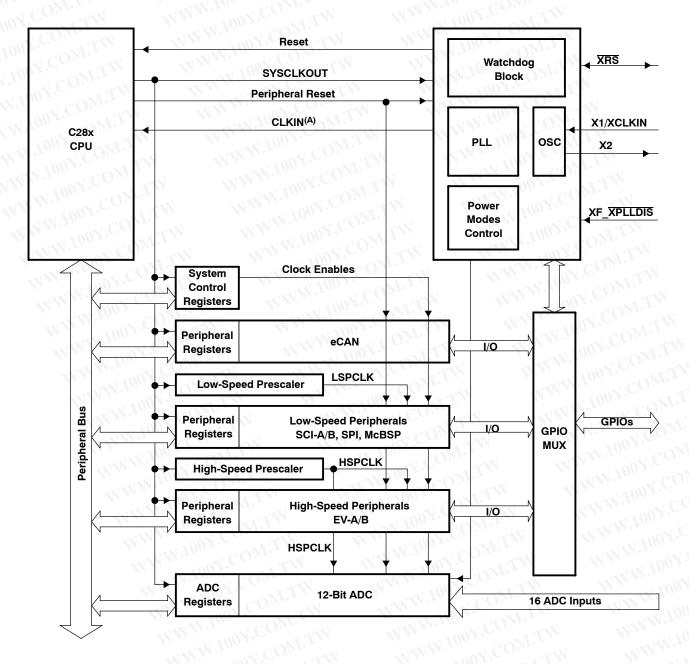
Table 3-14. External Interrupts Registers

NAME	ADDRESS	SIZE (x16)	DESCRIPTION
XINT1CR	0x00 7070	111	XINT1 control register
XINT2CR	0x00 7071	ON	XINT2 control register
Reserved	0x00 7072 0x00 7076	CON 5	WWW.IOOY.COM.IW
XNMICR	0x00 7077	CONT	XNMI control register
XINT1CTR	0x00 7078	COM	XINT1 counter register
XINT2CTR	0x00 7079	T.M.T.	XINT2 counter register
Reserved	0x00 707A 0x00 707E	5	IN WWW.100X.COM.TW
XNMICTR	0x00 707F	100 LOW	XNMI counter register

Each external interrupt can be enabled/disabled or qualified using positive or negative going edge. For more information, see the TMS320x281x DSP System Control and Interrupts Reference Guide (literature number SPRU078). WWW.100Y.COM

> 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.COM.TW


OOY.COM.

WWW.100Y.COM.TW

100Y.COM.TW

3.7 System Control

This section describes the F281x and C281x oscillator, PLL and clocking mechanisms, the watchdog function and the low power modes. Figure 3–8 shows the various clock and reset domains in the F281x and C281x devices that will be discussed.

NOTE A: CLKIN is the clock input to the CPU. SYSCLKOUT is the output clock of the CPU. They are of the same frequency.

Figure 3-8. Clock and Reset Domains

The PLL, clocking, watchdog and low-power modes, are controlled by the registers listed in Table 3-15.

Table 3-15. PLL, Clocking, Watchdog, and Low-Power Mode Registers[†]

NAME	ADDRESS	SIZE (x16)	DESCRIPTION
Reserved	0x00 7010 0x00 7017	8/1/	M. M.M. TOON COM. LA
Reserved	0x00 7018	21 C10Mr.	THE THINK TO COME
Reserved	0x00 7019	JULY LOW	III. M. IOO. COM.
HISPCP	0x00 701A	1007.	High-Speed Peripheral Clock Prescaler Register for HSPCLK clock
LOSPCP	0x00 701B	1.C0	Low-Speed Peripheral Clock Prescaler Register for LSPCLK clock
PCLKCR	0x00 701C	1, CC	Peripheral Clock Control Register
Reserved	0x00 701D	N.104	OW'I'L
LPMCR0	0x00 701E	1007.0	Low Power Mode Control Register 0
LPMCR1	0x00 701F	1,00	Low Power Mode Control Register 1
Reserved	0x00 7020	TOWN-1	COM. IN MAIN. TO V. COM.
PLLCR	0x00 7021	1100	PLL Control Register [‡]
SCSR	0x00 7022	1 100	System Control & Status Register
WDCNTR	0x00 7023	WW 1	Watchdog Counter Register
Reserved	0x00 7024		OV.COM. TW WWW. OOV.COM. TW
WDKEY	0x00 7025	1	Watchdog Reset Key Register
Reserved	0x00 7026 0x00 7028	3	TOO Y. COM. T.M. W. W. TOO Y. COM. T.
WDCR	0x00 7029	1	Watchdog Control Register
Reserved	0x00 702A 0x00 702F	6	M.100 Y.COM. T.M. M.M.M.100 Y.COM. T.

[†] All of the above registers can only be accessed, by executing the EALLOW instruction.

料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw WWW.100Y.COM.TW

WWW.100Y.COM.TW

100Y.COM.TW

[‡] The PLL control register (PLLCR) is reset to a known state by the XRS signal only. Emulation reset (through Code Composer Studio) will not reset PLLCR.

3.8 OSC and PLL Block

Figure 3-9 shows the OSC and PLL block on the F281x and C281x.

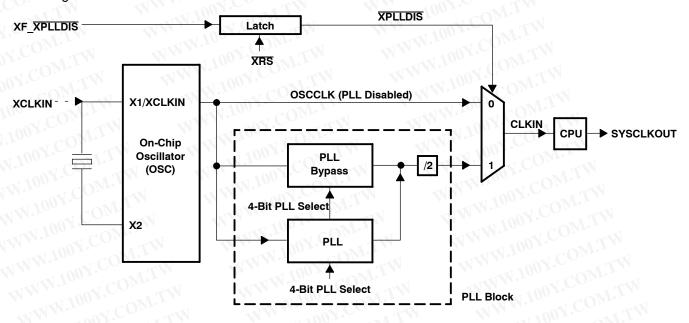


Figure 3-9. OSC and PLL Block

The on-chip oscillator circuit enables a crystal to be attached to the F281x and C281x devices using the X1/XCLKIN and X2 pins. If a crystal is not used, then an external oscillator can be directly connected to the X1/XCLKIN pin and the X2 pin is left unconnected. The logic-high level in this case should not exceed V_{DD} . The PLLCR bits [3:0] set the clocking ratio.

Table 3-16.	PLLCR	Register	Bit	Definitions	

BIT(S)	NAME	TYPE	XRS RESET [†]	WWW.	DI	ESCRIPTION
15:4	Reserved	R = 0	0:0	WWW.I	ON COL	LM MMM. ON CO.
	WW	100 =	OM.1	SYSCLKOU	T = (XCLKIN * n)/2	2, where n is the PLL multiplication factor.
		1.100 1.		Bit Value	'n COM	SYSCLKOUT
		W.100 x.		0000	PLL Bypassed	XCLKIN/2
		-x1 10U		0001	11100	XCLKIN/2
		11.		0010	2	XCLKIN
		100 and		0011	3	XCLKIN * 1.5
		W. N.		0100	4	XCLKIN * 2
	DIV	DAV.	2000	0101	5	XCLKIN * 2.5
3:0	DIV	R/W	0,0,0,0	0110	6	XCLKIN * 3
		- TVV.)		0111	7	XCLKIN * 3.5
		M. A.		1000	N8 (00)	XCLKIN * 4
				1001	9	XCLKIN * 4.5
		4// //		1010	10	XCLKIN * 5
				1011	11	Reserved
			1100	12	Reserved	
	WV		1101	13	Reserved	
				1110	14	Reserved
		11/1		1111	15	Reserved

[†] The PLLCR register is reset to a known state by the XRS reset line. If a reset is issued by the debugger, the PLL clocking ratio is not changed.

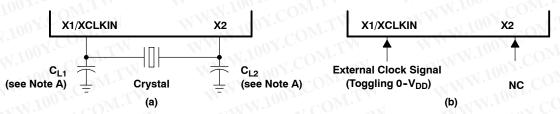
3.8.1 Loss of Input Clock

In PLL enabled mode, if the input clock XCLKIN or the oscillator clock is removed or absent, the PLL will still issue a "limp-mode" clock. The limp-mode clock will continue to clock the CPU and peripherals at a typical frequency of 1–4 MHz. The PLLCR register should have been written to with a non-zero value for this feature to work.

Normally, when the input clocks are present, the watchdog counter will decrement to initiate a watchdog reset or WDINT interrupt. However, when the external input clock fails, the watchdog counter will stop decrementing (i.e., the watchdog counter does not change with the limp-mode clock). This condition could be used by the application firmware to detect the input clock failure and initiate necessary shut-down procedure for the system.

NOTE:

Applications in which the correct CPU operating frequency is absolutely critical must implement a mechanism by which the DSP will be held in reset, should the input clocks ever fail. For example, an R-C circuit may be used to trigger the $\overline{\text{XRS}}$ pin of the DSP, should the capacitor ever get fully charged. An I/O pin may be used to discharge the capacitor on a periodic basis to prevent it from getting fully charged. Such a circuit would also help in detecting failure of the V_{DD3VFL} rail.



3.9 PLL-Based Clock Module

The F281x and C281x have an on-chip, PLL-based clock module. This module provides all the necessary clocking signals for the device, as well as control for low-power mode entry. The PLL has a 4-bit ratio control to select different CPU clock rates. The watchdog module should be disabled before writing to the PLLCR register. It can be re-enabled (if need be) after the PLL module has stabilized, which takes 131072 XCLKIN cycles.

The PLL-based clock module provides two modes of operation:

- Crystal-operation
 This mode allows the use of an external crystal/resonator to provide the time base to the device.
- External clock source operation
 This mode allows the internal oscillator to be bypassed. The device clocks are generated from an external clock source input on the X1/XCLKIN pin.

NOTE A: TI recommends that customers have the resonator/crystal vendor characterize the operation of their device with the DSP chip. The resonator/crystal vendor has the equipment and expertise to tune the tank circuit. The vendor can also advise the customer regarding the proper tank component values that will ensure start-up and stability over the entire operating range.

Figure 3-10. Recommended Crystal/Clock Connection

PLL MODE	REMARKS	SYSCLKOUT
PLL Disabled	Invoked by tying XPLLDIS pin low upon reset. PLL block is completely disabled. Clock input to the CPU (CLKIN) is directly derived from the clock signal present at the X1/XCLKIN pin.	XCLKIN
PLL Bypassed	Default PLL configuration upon power-up, if PLL is not disabled. The PLL itself is bypassed. However, the /2 module in the PLL block divides the clock input at the X1/XCLKIN pin by two before feeding it to the CPU.	XCLKIN/2
PLL Enabled	Achieved by writing a non-zero value "n" into PLLCR register. The /2 module in the PLL block now divides the output of the PLL by two before feeding it to the CPU.	(XCLKIN * n) / 2

Table 3-17. Possible PLL Configuration Modes

3.10 External Reference Oscillator Clock Option

The typical specifications for the external quartz crystal for a frequency of 30 MHz are listed below:

- Fundamental mode, parallel resonant
- C_I (load capacitance) = 12 pF
- C_{L1} = C_{L2} = 24 pF
- C_{shunt} = 6 pF
- ESR range = 25 to 40 Ω

3.11 Watchdog Block

The watchdog block on the F281x and C281x is identical to the one used on the 240x devices. The watchdog module generates an output pulse, 512 oscillator clocks wide (OSCCLK), whenever the 8-bit watchdog up counter has reached its maximum value. To prevent this, the user disables the counter or the software must periodically write a 0x55 + 0xAA sequence into the watchdog key register which will reset the watchdog counter. Figure 3-11 shows the various functional blocks within the watchdog module.

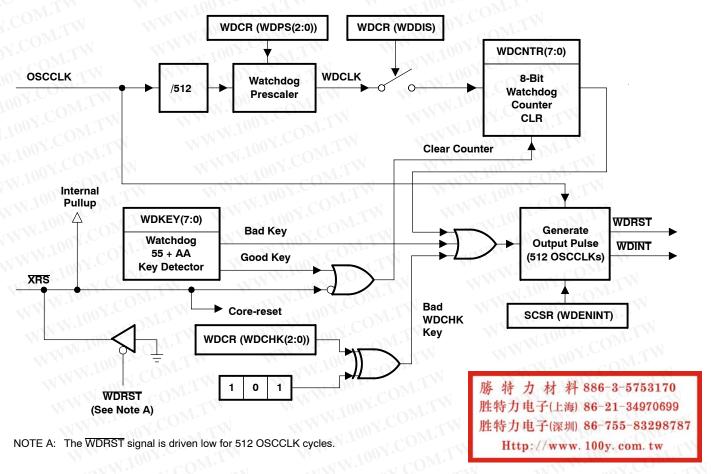


Figure 3-11. Watchdog Module

The WDINT signal enables the watchdog to be used as a wakeup from IDLE/STANDBY mode timer.

In STANDBY mode, all peripherals are turned off on the device. The only peripheral that remains functional is the watchdog. The WATCHDOG module will run off the PLL clock or the oscillator clock. The WDINT signal is fed to the LPM block so that it can wake the device from STANDBY (if enabled). See Section 3.12, Low-Power Modes Block, for more details.

In IDLE mode, the WDINT signal can generate an interrupt to the CPU, via the PIE, to take the CPU out of IDLE mode.

In HALT mode, this feature cannot be used because the oscillator (and PLL) are turned off and hence so is the WATCHDOG.

3.12 Low-Power Modes Block

The low-power modes on the F281x and C281x are similar to the 240x devices. Table 3-18 summarizes the various modes.

Table 3-18. F281x and C281x Low-Power Modes

MODE	LPM(1:0)	OSCCLK	CLKIN	SYSCLKOUT	EXIT [†]
Normal	X,X	on C	on <	on	- WT
IDLE	0,0	WWW.toox.COM	TW on	on‡	XRS, WDINT, Any Enabled Interrupt, XNMI Debugger [§]
STANDBY	on STANDBY 0,1 (watchdog still runnin		off c	off	XRS, WDINT, XINT1, XNMI, T1/2/3/4CTRIP, C1/2/3/4/5/6TRIP, SCIRXDA, SCIRXDB, CANRX, Debugger§
HALT	1,X	off (oscillator and PLL turned off, watchdog not functional)	off	off W	XRS, XNMI, Debugger [§]

[†] The Exit column lists which signals or under what conditions the low power mode will be exited. A low signal, on any of the signals, will exit the low power condition. This signal must be kept low long enough for an interrupt to be recognized by the device. Otherwise the IDLE mode will not be exited and the device will go back into the indicated low power mode.

The various low-power modes operate as follows:

This mode is exited by any enabled interrupt or an XNMI that is **IDLE Mode:**

recognized by the processor. The LPM block performs no tasks during

this mode as long as the LPMCR0(LPM) bits are set to 0,0.

All other signals (including XNMI) will wake the device from STANDBY **STANDBY Mode:**

mode if selected by the LPMCR1 register. The user will need to select which signal(s) will wake the device. The selected signal(s) are also qualified by the OSCCLK before waking the device. The number of

OSCCLKs is specified in the LPMCR0 register.

Only the XRS and XNMI external signals can wake the device from **HALT Mode:**

HALT mode. The XNMI input to the core has an enable/disable bit.

Hence, it is safe to use the XNMI signal for this function.

NOTE: The low-power modes do not affect the state of the output pins (PWM pins included). They will be in whatever state the code left them when the IDLE instruction was executed.

[†] The IDLE mode on the C28x behaves differently than on the 24x/240x. On the C28x, the clock output from the core (SYSCLKOUT) is still functional while on the 24x/240x the clock is turned off.

[§] On the C28x, the JTAG port can still function even if the core clock (CLKIN) is turned off.

4 Peripherals

The integrated peripherals of the F281x and C281x are described in the following subsections:

- Three 32-bit CPU-Timers
- Two event-manager modules (EVA, EVB)
- Enhanced analog-to-digital converter (ADC) module
- Enhanced controller area network (eCAN) module
- Multichannel buffered serial port (McBSP) module
- Serial communications interface modules (SCI-A, SCI-B)
- Serial peripheral interface (SPI) module
- · Digital I/O and shared pin functions

4.1 32-Bit CPU-Timers 0/1/2

There are three 32-bit CPU-timers on the F281x and C281x devices (CPU-TIMER0/1/2).

Timer 2 is reserved for DSP/BIOS. CPU-Timer 0 and CPU-Timer 1 can be used in user applications. These timers are different from the general-purpose (GP) timers that are present in the Event Manager modules (EVA, EVB).

NOTE: If the application is not using DSP/BIOS, then CPU-Timer 2 can be used in the application.

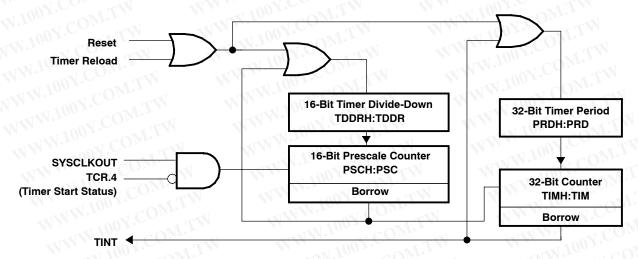


Figure 4-1. CPU-Timers

In the F281x and C281x devices, the timer interrupt signals (TINT0, TINT1, TINT2) are connected as shown in Figure 4-2.

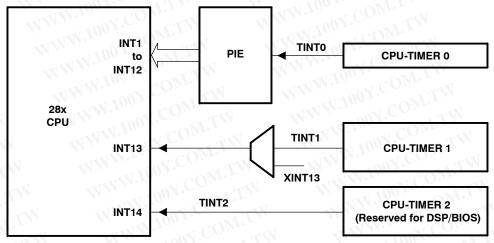


Figure 4-2. CPU-Timer Interrupts Signals and Output Signal (See Notes A and B)

The general operation of the timer is as follows: The 32-bit counter register "TIMH:TIM" is loaded with the value in the period register "PRDH:PRD". The counter register decrements at the SYSCLKOUT rate of the C28x. When the counter reaches 0, a timer interrupt output signal generates an interrupt pulse. The registers listed in Table 4–1 are used to configure the timers. For more information, see the *TMS320x281x DSP System Control and Interrupts Reference Guide* (literature number SPRU078).

Table 4-1. CPU-Timers 0, 1, 2 Configuration and Control Registers

WW.100Y.COM.TW

NAME	ADDRESS	SIZE (x16)	DESCRIPTION
TIMEROTIM	0x00 0C00	11	CPU-Timer 0, Counter Register
TIMER0TIMH	0x00 0C01	(O) 1 1 1	CPU-Timer 0, Counter Register High
TIMER0PRD	0x00 0C02	CONT	CPU-Timer 0, Period Register
TIMER0PRDH	0x00 0C03	COMIT	CPU-Timer 0, Period Register High
TIMER0TCR	0x00 0C04	1,1	CPU-Timer 0, Control Register
Reserved	0x00 0C05	V.CY"	TW WWW. 100Y.CO. TW
TIMER0TPR	0x00 0C06	10N	CPU-Timer 0, Prescale Register
TIMER0TPRH	0x00 0C07	1.01	CPU-Timer 0, Prescale Register High
TIMER1TIM	0x00 0C08	1007-1	CPU-Timer 1, Counter Register
TIMER1TIMH	0x00 0C09	1.00	CPU-Timer 1, Counter Register High
TIMER1PRD	0x00 0C0A	1, C	CPU-Timer 1, Period Register
TIMER1PRDH	0x00 0C0B	W.104	CPU-Timer 1, Period Register High
TIMER1TCR	0x00 0C0C	1007	CPU-Timer 1, Control Register
Reserved	0x00 0C0D	100	LICENTIN WWW. 100X.CO. LITW
TIMER1TPR	0x00 0C0E	WW-1	CPU-Timer 1, Prescale Register
TIMER1TPRH	0x00 0C0F	11/10	CPU-Timer 1, Prescale Register High
TIMER2TIM	0x00 0C10	110	CPU-Timer 2, Counter Register
TIMER2TIMH	0x00 0C11	1	CPU-Timer 2, Counter Register High
TIMER2PRD	0x00 0C12	1	CPU-Timer 2, Period Register
TIMER2PRDH	0x00 0C13	111	CPU-Timer 2, Period Register High
TIMER2TCR	0x00 0C14	W i	CPU-Timer 2, Control Register
Reserved	0x00 0C15	Wi Wi	100x.00 M. 1100x. M.I.
TIMER2TPR	0x00 0C16	1	CPU-Timer 2, Prescale Register
TIMER2TPRH	0x00 0C17	1	CPU-Timer 2, Prescale Register High
	0x00 0C18	40	Milon COMILL MANAGONI

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.COM.TW

WWW.100Y.COM.TW

1.100Y.COM.TW

4.2 Event Manager Modules (EVA, EVB)

The event-manager modules include general-purpose (GP) timers, full-compare/PWM units, capture units, and quadrature-encoder pulse (QEP) circuits. EVA and EVB timers, compare units, and capture units function identically. However, timer/unit names differ for EVA and EVB. Table 4–2 shows the module and signal names used. Table 4–2 shows the features and functionality available for the event-manager modules and highlights EVA nomenclature.

Event managers A and B have identical peripheral register sets with EVA starting at 7400h and EVB starting at 7500h. The paragraphs in this section describe the function of GP timers, compare units, capture units, and QEPs using EVA nomenclature. These paragraphs are applicable to EVB with regard to function—however, module/signal names would differ. Table 4–3 lists the EVA registers. For more information, see the TMS320x281x DSP Event Manager (EV) Reference Guide (literature number SPRU065).

W. COB	WWW	EVA	EVB		
EVENT MANAGER MODULES	MODULE	SIGNAL	MODULE	SIGNAL	
GP Timers	GP Timer 1 GP Timer 2	T1PWM/T1CMP T2PWM/T2CMP	GP Timer 3 GP Timer 4	T3PWM/T3CMP T4PWM/T4CMP	
Compare Units	Compare 1 Compare 2 Compare 3	PWM1/2 PWM3/4 PWM5/6	Compare 4 Compare 5 Compare 6	PWM7/8 PWM9/10 PWM11/12	
Capture Units	Capture 1 Capture 2 Capture 3	CAP1 CAP2 CAP3	Capture 4 Capture 5 Capture 6	CAP4 CAP5 CAP6	
QEP Channels	QEP1 QEP2 QEPI1	QEP1 QEP2	QEP3 QEP4 QEPI2	QEP3 QEP4	
External Clock Inputs	Direction External Clock	TDIRA TCLKINA	Direction External Clock	TDIRB TCLKINB	
External Trip Inputs	Compare	C1TRIP C2TRIP C3TRIP	Compare	C4TRIP C5TRIP C6TRIP	
External Trip Inputs	COMP	T1CTRIP_PDPINTA†	WTM	T3CTRIP_PDPINTB	

Table 4-2. Module and Signal Names for EVA and EVB

[†] In the 24x/240x-compatible mode, the T1CTRIP_PDPINTA pin functions as PDPINTA and the T3CTRIP_PDPINTB pin functions as PDPINTB.

Table 4-3. EVA Registers[†]

NAME	ADDRESS	SIZE (x16)	DESCRIPTION
GPTCONA	0x00 7400	1	GP Timer Control Register A
T1CNT	0x00 7401	1	GP Timer 1 Counter Register
T1CMPR	0x00 7402	1	GP Timer 1 Compare Register
T1PR	0x00 7403	T 1	GP Timer 1 Period Register
T1CON	0x00 7404	1	GP Timer 1 Control Register
T2CNT	0x00 7405	1	GP Timer 2 Counter Register
T2CMPR	0x00 7406	TW	GP Timer 2 Compare Register
T2PR	0x00 7407		GP Timer 2 Period Register
T2CON	0x00 7408	011.1	GP Timer 2 Control Register
EXTCONA [‡]	0x00 7409	T.M.T	GP Extension Control Register A
COMCONA	0x00 7411	111	Compare Control Register A
ACTRA	0x00 7413	COP1 T	Compare Action Control Register A
DBTCONA	0x00 7415	TOM.	Dead-Band Timer Control Register A
CMPR1 0x00 7417		JAM.	Compare Register 1
CMPR2 0x00 7418		1	Compare Register 2
CMPR3	0x00 7419	WY.Ch	Compare Register 3
CAPCONA	ONA 0x00 7420		Capture Control Register A
CAPFIFOA 0x00 7422		100 100	Capture FIFO Status Register A
CAP1FIFO	0x00 7423	1 100 Yr	Two-Level Deep Capture FIFO Stack 1
CAP2FIFO	0x00 7424	1001/.C	Two-Level Deep Capture FIFO Stack 2
CAP3FIFO	0x00 7425	1	Two-Level Deep Capture FIFO Stack 3
CAP1FBOT	0x00 7427	VIV.100°	Bottom Register Of Capture FIFO Stack 1
CAP2FBOT	0x00 7428	100	Bottom Register Of Capture FIFO Stack 2
CAP3FBOT	0x00 7429	1,00	Bottom Register Of Capture FIFO Stack 3
EVAIMRA	0x00 742C	111111	Interrupt Mask Register A
EVAIMRB	0x00 742D	1.1	Interrupt Mask Register B
EVAIMRC	0x00 742E	1	Interrupt Mask Register C
EVAIFRA	0x00 742F	11/1	Interrupt Flag Register A
EVAIFRB	0x00 7430	1	Interrupt Flag Register B
EVAIFRC	0x00 7431	1	Interrupt Flag Register C

[†] The EV-B register set is identical except the address range is from 0x00-7500 to 0x00-753F. The above registers are mapped to Zone 2. This space allows only 16-bit accesses. 32-bit accesses produce undefined results.

[‡] New register compared to 24x/240x

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787

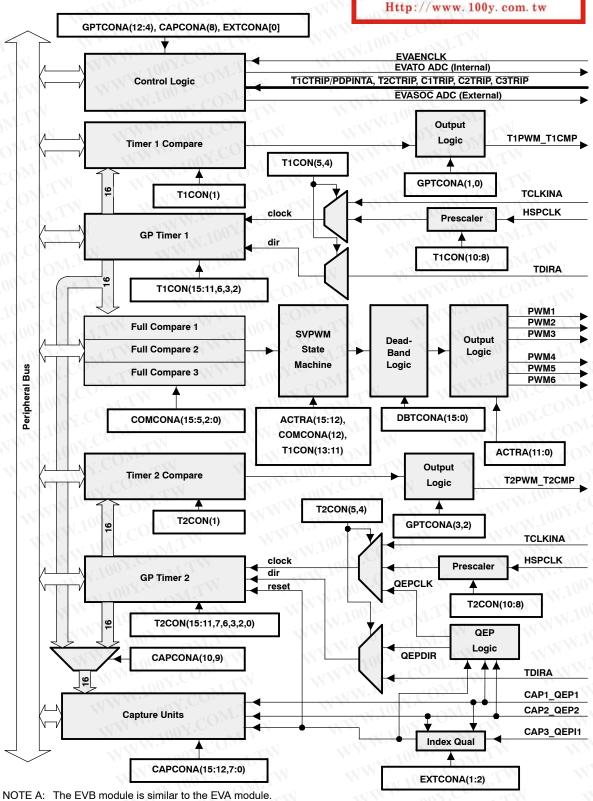


Figure 4-3. Event Manager A Functional Block Diagram (See Note A)

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

4.2.1 General-Purpose (GP) Timers

There are two GP timers. The GP timer x (x = 1 or 2 for EVA; x = 3 or 4 for EVB) includes:

- A 16-bit timer, up-/down-counter, TxCNT, for reads or writes
- A 16-bit timer-compare register, TxCMPR (double-buffered with shadow register), for reads or writes
- A 16-bit timer-period register, TxPR (double-buffered with shadow register), for reads or writes
- A 16-bit timer-control register, TxCON, for reads or writes
- · Selectable internal or external input clocks
- A programmable prescaler for internal or external clock inputs
- Control and interrupt logic, for four maskable interrupts: underflow, overflow, timer compare, and period interrupts
- A selectable direction input pin (TDIRx) (to count up or down when directional up-/down-count mode is selected)

The GP timers can be operated independently or synchronized with each other. The compare register associated with each GP timer can be used for compare function and PWM-waveform generation. There are three continuous modes of operations for each GP timer in up- or up/down-counting operations. Internal or external input clocks with programmable prescaler are used for each GP timer. GP timers also provide the time base for the other event-manager submodules: GP timer 1 for all the compares and PWM circuits, GP timer 2/1 for the capture units and the quadrature-pulse counting operations. Double-buffering of the period and compare registers allows programmable change of the timer (PWM) period and the compare/PWM pulse width as needed.

4.2.2 Full-Compare Units

There are three full-compare units on each event manager. These compare units use GP timer1 as the time base and generate six outputs for compare and PWM-waveform generation using programmable deadband circuit. The state of each of the six outputs is configured independently. The compare registers of the compare units are double-buffered, allowing programmable change of the compare/PWM pulse widths as needed.

4.2.3 Programmable Deadband Generator

Deadband generation can be enabled/disabled for each compare unit output individually. The deadband-generator circuit produces two outputs (with or without deadband zone) for each compare unit output signal. The output states of the deadband generator are configurable and changeable as needed by way of the double-buffered ACTRx register.

4.2.4 PWM Waveform Generation

Up to eight PWM waveforms (outputs) can be generated simultaneously by each event manager: three independent pairs (six outputs) by the three full-compare units with *programmable deadbands*, and two independent PWMs by the GP-timer compares.

4.2.5 Double Update PWM Mode

The F281x and C281x Event Manager supports "Double Update PWM Mode." This mode refers to a PWM operation mode in which the position of the leading edge and the position of the trailing edge of a PWM pulse are independently modifiable in each PWM period. To support this mode, the compare register that determines the position of the edges of a PWM pulse must allow (buffered) compare value update once at the beginning of a PWM period and another time in the middle of a PWM period. The compare registers in F281x and C281x Event Managers are all buffered and support three compare value reload/update (value in buffer becoming active) modes. These modes have earlier been documented as compare value reload conditions. The reload condition that supports double update PWM mode is reloaded on Underflow (beginning of PWM period) OR Period (middle of PWM period). Double update PWM mode can be achieved by using this condition for compare value reload.

特力材料886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

4.2.6 **PWM Characteristics**

Characteristics of the PWMs are as follows:

- 16-bit registers
- Wide range of programmable deadband for the PWM output pairs
- Change of the PWM carrier frequency for PWM frequency wobbling as needed
- Change of the PWM pulse widths within and after each PWM period as needed
- External-maskable power and drive-protection interrupts
- Pulse-pattern-generator circuit, for programmable generation of asymmetric, symmetric, and four-space vector PWM waveforms
- Minimized CPU overhead using auto-reload of the compare and period registers
- The PWM pins are driven to a high-impedance state when the PDPINTx pin is driven low and after PDPINTx signal qualification. The PDPINTx pin (after qualification) is reflected in bit 8 of the COMCONx register.
 - PDPINTA pin status is reflected in bit 8 of COMCONA register.
 - PDPINTB pin status is reflected in bit 8 of COMCONB register.
- EXTCON register bits provide options to individually trip control for each PWM pair of signals

4.2.7 Capture Unit

The capture unit provides a logging function for different events or transitions. The values of the selected GP timer counter is captured and stored in the two-level-deep FIFO stacks when selected transitions are detected on capture input pins, CAPx (x = 1, 2, or 3 for EVA; and x = 4, 5, or 6 for EVB). The capture unit consists of three capture circuits.

- Capture units include the following features:
 - One 16-bit capture control register, CAPCONx (R/W)
 - One 16-bit capture FIFO status register, CAPFIFOx
 - Selection of GP timer 1/2 (for EVA) or 3/4 (for EVB) as the time base
 - Three 16-bit 2-level-deep FIFO stacks, one for each capture unit
 - Three capture input pins (CAP1/2/3 for EVA, CAP4/5/6 for EVB)—one input pin per capture unit. [All inputs are synchronized with the device (CPU) clock. In order for a transition to be captured, the input must hold at its current level to meet the input qualification circuitry requirements. The input pins CAP1/2 and CAP4/5 can also be used as QEP inputs to the QEP circuit.]
 - User-specified transition (rising edge, falling edge, or both edges) detection
 - Three maskable interrupt flags, one for each capture unit
 - The capture pins can also be used as general-purpose interrupt pins, if they are not used for the capture function.

4.2.8 Quadrature-Encoder Pulse (QEP) Circuit

Two capture inputs (CAP1 and CAP2 for EVA; CAP4 and CAP5 for EVB) can be used to interface the on-chip QEP circuit with a quadrature encoder pulse. Full synchronization of these inputs is performed on-chip. Direction or leading-quadrature pulse sequence is detected, and GP timer 2/4 is incremented or decremented by the rising and falling edges of the two input signals (four times the frequency of either input pulse).

With EXTCONA register bits, the EVA QEP circuit can use CAP3 as a capture index pin as well. Similarly, with EXTCONB register bits, the EVB QEP circuit can use CAP6 as a capture index pin.

Peripherals

4.2.9 External ADC Start-of-Conversion

EVA/EVB start-of-conversion (SOC) can be sent to an external pin (EVASOC/EVBSOC) for external ADC interface. EVASOC and EVBSOC are MUXed with T2CTRIP and T4CTRIP, respectively.

4.3 Enhanced Analog-to-Digital Converter (ADC) Module

A simplified functional block diagram of the ADC module is shown in Figure 4-4. The ADC module consists of a 12-bit ADC with a built-in sample-and-hold (S/H) circuit. Functions of the ADC module include:

- 12-bit ADC core with built-in S/H
- Analog input: 0.0 V to 3.0 V (Voltages above 3.0 V produce full-scale conversion results.)
- Fast conversion rate: 80 ns at 25-MHz ADC clock, 12.5 MSPS
- 16-channel, MUXed inputs
- Autosequencing capability provides up to 16 "autoconversions" in a single session. Each conversion can be programmed to select any 1 of 16 input channels
- Sequencer can be operated as two independent 8-state sequencers or as one large 16-state sequencer
 (i.e., two cascaded 8-state sequencers)
- Sixteen result registers (individually addressable) to store conversion values
 - The digital value of the input analog voltage is derived by:

Digital Value = 0, when input \leq 0 V

Digital Value = $4096 \times \frac{\text{Input Analog Voltage} - \text{ADCLO}}{3}$, when 0 V < input < 3 VDigital Value = 4095, when input \geq 3 V

- Multiple triggers as sources for the start-of-conversion (SOC) sequence
 - S/W software immediate start
 - EVA Event manager A (multiple event sources within EVA)
 - EVB Event manager B (multiple event sources within EVB)
- Flexible interrupt control allows interrupt request on every end-of-sequence (EOS) or every other EOS
- Sequencer can operate in "start/stop" mode, allowing multiple "time-sequenced triggers" to synchronize conversions
- EVA and EVB triggers can operate independently in dual-sequencer mode
- Sample-and-hold (S/H) acquisition time window has separate prescale control

The ADC module in the F281x and C281x has been enhanced to provide flexible interface to event managers A and B. The ADC interface is built around a fast, 12-bit ADC module with a fast conversion rate of 80 ns at 25-MHz ADC clock. The ADC module has 16 channels, configurable as two independent 8-channel modules to service event managers A and B. The two independent 8-channel modules can be cascaded to form a 16-channel module. Although there are multiple input channels and two sequencers, there is only one converter in the ADC module. Figure 4-4 shows the block diagram of the F281x and C281x ADC module.

The two 8-channel modules have the capability to autosequence a series of conversions, each module has the choice of selecting any one of the respective eight channels available through an analog MUX. In the cascaded mode, the autosequencer functions as a single 16-channel sequencer. On each sequencer, once the conversion is complete, the selected channel value is stored in its respective RESULT register. Autosequencing allows the system to convert the same channel multiple times, allowing the user to perform oversampling algorithms. This gives increased resolution over traditional single-sampled conversion results.

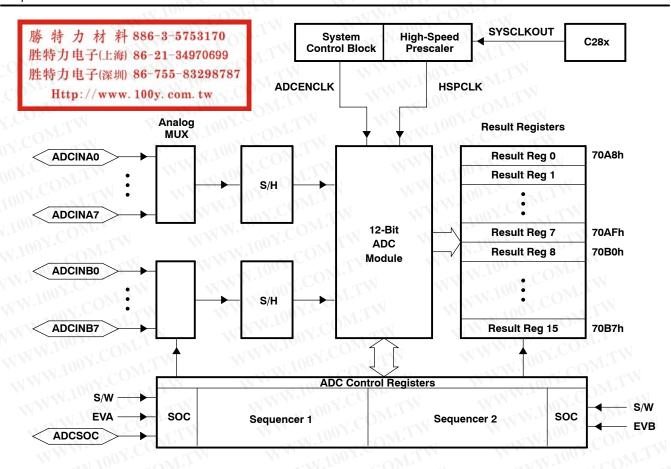
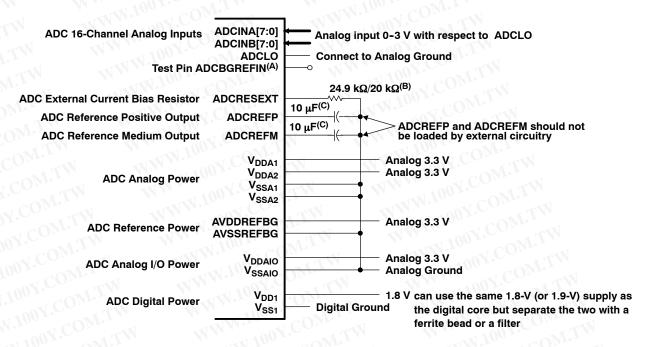


Figure 4-4. Block Diagram of the F281x and C281x ADC Module

To obtain the specified accuracy of the ADC, proper board layout is critical. To the best extent possible, traces leading to the ADCIN pins should not run in close proximity to the digital signal paths. This is to minimize switching noise on the digital lines from getting coupled to the ADC inputs. Furthermore, proper isolation techniques must be used to isolate the ADC module power pins (V_{DDA1}/V_{DDA2}, AV_{DDREFBG}) from the digital supply. For better accuracy and ESD protection, unused ADC inputs should be connected to analog ground.

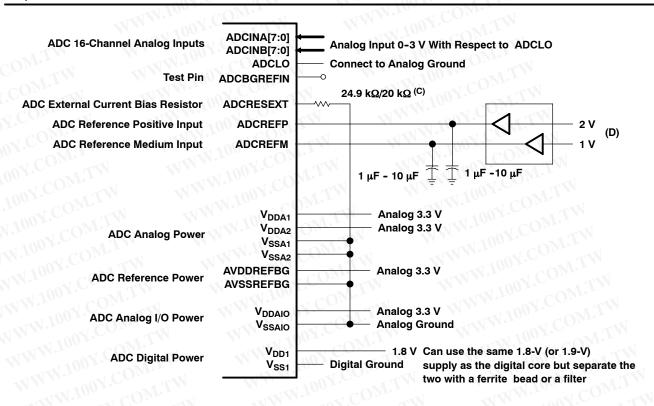
Notes:


- 1. The ADC registers are accessed at the SYSCLKOUT rate. The internal timing of the ADC module is controlled by the high-speed peripheral clock (HSPCLK).
- 2. The behavior of the ADC module based on the state of the ADCENCLK and HALT signals is as follows:

ADCENCLK: On reset, this signal will be low. While reset is active-low (XRS) the clock to the register will still function. This is necessary to make sure all registers and modes go into their default reset state. The analog module will however be in a low-power inactive state. As soon as reset goes high, then the clock to the registers will be disabled. When the user sets the ADCENCLK signal high, then the clocks to the registers will be enabled and the analog module will be enabled. There will be a certain time delay (ms range) before the ADC is stable and can be used.

HALT: This signal only affects the analog module. It does not affect the registers. If low, the ADC module is powered. If high, the ADC module goes into low-power mode. The HALT mode will stop the clock to the CPU, which will stop the HSPCLK. Therefore the ADC register logic will be turned off indirectly.

Figure 4–5 shows the ADC pin-biasing for internal reference and Figure 4–6 shows the ADC pin-biasing for external reference.



- NOTES: A. Provide access to this pin in PCB layouts. Intended for test purposes only.
 - B. Use 24.9 k Ω for ADC clock range 1 18.75 MHz; use 20 k Ω for ADC clock range 18.75 25 MHz.
 - C. TAIYO YUDEN EMK325F106ZH, EMK325BJ106MD, or equivalent ceramic capacitor
 - D. External decoupling capacitors are recommended on all power pins.
 - E. Analog inputs must be driven from an operational amplifier that does not degrade the ADC performance.

Figure 4-5. ADC Pin Connections With Internal Reference

NOTE:

The temperature rating of any recommended component must match the rating of the end product.

NOTES: A. External decoupling capacitors are recommended on all power pins.

- B. Analog inputs must be driven from an operational amplifier that does not degrade the ADC performance.
- C. Use 24.9 k Ω for ADC clock range 1 18.75 MHz; use 20 k Ω for ADC clock range 18.75 25 MHz.
- D. It is recommended that buffered external references be provided with a voltage difference of (ADCREFP-ADCREFM)
 = 1 V ± 0.1% or better.

External reference is enabled using bit 8 in the ADCTRL3 Register at ADC power up. In this mode, the accuracy of external reference is critical for overall gain. The voltage ADCREFP-ADCREFM will determine the overall accuracy. Do not enable internal references when external references are connected to ADCREFP and ADCREFM. See the TMS320x281x DSP Analog-to-Digital Converter (ADC) Reference Guide (literature number SPRU060) for more information.

Figure 4-6. ADC Pin Connections With External Reference

The ADC operation is configured, controlled, and monitored by the registers listed in Table 4-4.

Table 4-4. ADC Registers[†]

NAME I ADDRESS I		SIZE (x16)	DESCRIPTION		
ADCTRL1	0x00 7100	0 1	ADC Control Register 1		
ADCTRL2	0x00 7101	011	ADC Control Register 2		
ADCMAXCONV	0x00 7102	T.Mar.	ADC Maximum Conversion Channels Register		
ADCCHSELSEQ1	0x00 7103	C'i	ADC Channel Select Sequencing Control Register 1		
ADCCHSELSEQ2	0x00 7104	$^{\circ}$ C $_{O_{Mr}}$	ADC Channel Select Sequencing Control Register 2		
ADCCHSELSEQ3	0x00 7105	101	ADC Channel Select Sequencing Control Register 3		
ADCCHSELSEQ4	0x00 7106	1	ADC Channel Select Sequencing Control Register 4		
ADCASEQSR	0x00 7107	MAP.	ADC Auto-Sequence Status Register		
ADCRESULT0	0x00 7108	1.C	ADC Conversion Result Buffer Register 0		
ADCRESULT1	0x00 7109	1001	ADC Conversion Result Buffer Register 1		
ADCRESULT2	0x00 710A	100,	ADC Conversion Result Buffer Register 2		
ADCRESULT3	0x00 710B	101	ADC Conversion Result Buffer Register 3		
ADCRESULT4	0x00 710C	1	ADC Conversion Result Buffer Register 4		
ADCRESULT5	0x00 710D	W.F	ADC Conversion Result Buffer Register 5		
ADCRESULT6	0x00 710E	110	ADC Conversion Result Buffer Register 6		
ADCRESULT7	0x00 710F	1.4	ADC Conversion Result Buffer Register 7		
ADCRESULT8	0x00 7110	WY.	ADC Conversion Result Buffer Register 8		
ADCRESULT9	0x00 7111	111	ADC Conversion Result Buffer Register 9		
ADCRESULT10	0x00 7112	1	ADC Conversion Result Buffer Register 10		
ADCRESULT11	0x00 7113	W	ADC Conversion Result Buffer Register 11		
ADCRESULT12	0x00 7114	11	ADC Conversion Result Buffer Register 12		
ADCRESULT13	0x00 7115	1.1	ADC Conversion Result Buffer Register 13		
ADCRESULT14	0x00 7116	1	ADC Conversion Result Buffer Register 14		
ADCRESULT15	0x00 7117	1 1	ADC Conversion Result Buffer Register 15		
ADCTRL3	0x00 7118	1 🔻	ADC Control Register 3		
ADCST	0x00 7119	1	ADC Status Register		
Reserved	0x00 711C 0x00 711F	4	4 WWW.100X.COM.TW WWW.100X.CO		

[†] The above registers are Peripheral Frame 2 Registers.

WWW.100Y.COM.T

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM.TW

4.4 Enhanced Controller Area Network (eCAN) Module

The CAN module has the following features:

- Fully compliant with CAN protocol, version 2.0B
- Supports data rates up to 1 Mbps
- Thirty-two mailboxes, each with the following properties:
 - Configurable as receive or transmit
 - Configurable with standard or extended identifier
 - Has a programmable receive mask
 - Supports data and remote frame
 - Composed of 0 to 8 bytes of data
 - Uses a 32-bit time stamp on receive and transmit message
 - Protects against reception of new message
 - Holds the dynamically programmable priority of transmit message
 - Employs a programmable interrupt scheme with two interrupt levels
 - Employs a programmable alarm on transmission or reception time-out
- Low-power mode
- · Programmable wake-up on bus activity
- Automatic reply to a remote request message
- Automatic retransmission of a frame in case of loss of arbitration or error
- 32-bit local network time counter synchronized by a specific message (communication in conjunction with mailbox 16)
- Self-test mode
 - Operates in a loopback mode receiving its own message. A "dummy" acknowledge is provided, thereby eliminating the need for another node to provide the acknowledge bit.

NOTE: For a SYSCLKOUT of 150 MHz, the smallest bit rate possible is 23.4 kbps.

The 28x CAN has passed the conformance test per ISO/DIS 16845. Contact TI for details.

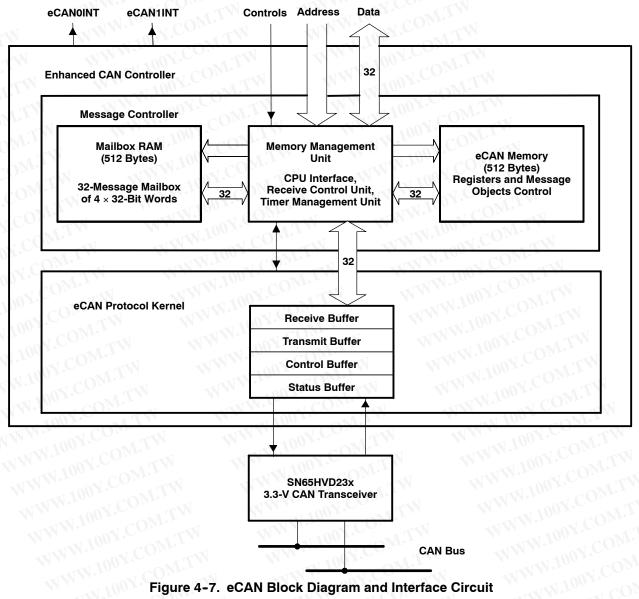


Figure 4-7. eCAN Block Diagram and Interface Circuit

Table 4-5. 3.3-V eCAN Transceivers for the TMS320F281x and TMS320C281x DSPs

WW.100Y.COM.TW

PART NUMBER	SUPPLY VOLTAGE	LOW-POWER MODE	SLOPE CONTROL	VREF	OTHER	T _A
SN65HVD230	3.3 V	Standby	Adjustable	Yes	COM	-40°C to 85°C
SN65HVD230Q	3.3 V	Standby	Adjustable	Yes	00 r. COHT. I.A.	-40°C to 125°C
SN65HVD231	3.3 V	Sleep	Adjustable	Yes	1007 17V	-40°C to 85°C
SN65HVD231Q	3.3 V	Sleep	Adjustable	Yes	CD TY	-40°C to 125°C
SN65HVD232	3.3 V	None	None	None	Vitas COMP.	-40°C to 85°C
SN65HVD232Q	3.3 V	None	None	None	M.100 OM: 1	-40°C to 125°C
SN65HVD233	3.3 V	Standby	Adjustable	None	Diagnostic Loopback	-40°C to 125°C
SN65HVD234	3.3 V	Standby & Sleep	Adjustable	None	14. 100 ± CO.	-40°C to 125°C
SN65HVD235	3.3 V	Standby	Adjustable	None	Autobaud Loopback	-40°C to 125°C
ISO1050	3-5.5 V	None	None	None	Built-in Isolation Low Prop Delay Thermal Shutdown Failsafe Operation Dominant Time-out	-55°C to 105°C

WWW.100Y.COM.TW 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw WWW.100Y.COM.TW

WWW.100Y.COM

WWW.100Y.COM.TW

100Y.COM.TW

WW.100Y.COM.TW

OOY.COM.TW

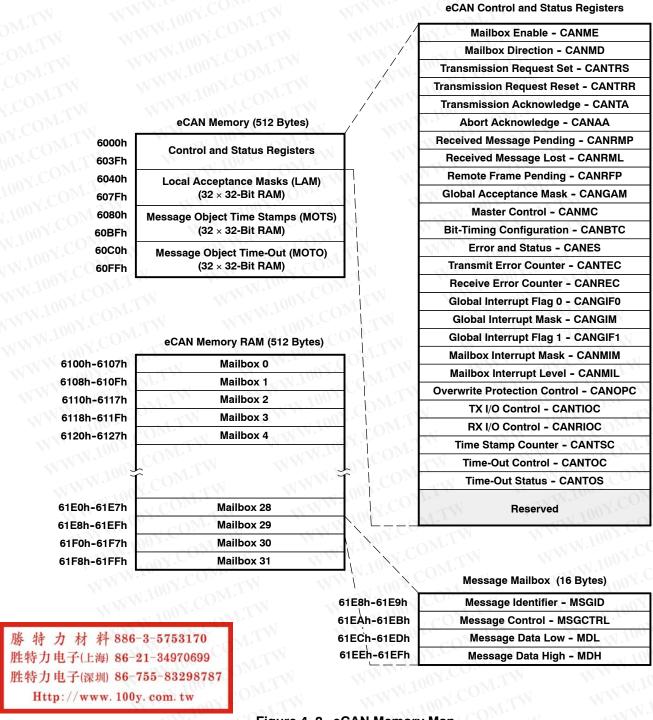


Figure 4-8. eCAN Memory Map

NOTE:

If the eCAN module is not used in an application, the RAM available (LAM, MOTS, MOTO, and mailbox RAM) can be used as general-purpose RAM. The CAN module clock should be enabled for this.

The CAN registers listed in Table 4–6 are used by the CPU to configure and control the CAN controller and the message objects. eCAN control registers only support 32-bit read/write operations. Mailbox RAM can be accessed as 16 bits or 32 bits. 32-bit accesses are aligned to an even boundary.

Table 4-6. CAN Registers Map[†]

REGISTER NAME	ADDRESS	SIZE (x32)	DESCRIPTION
CANME	0x00 6000	1	Mailbox enable
CANMD	0x00 6002	1	Mailbox direction
CANTRS	0x00 6004	1	Transmit request set
CANTRR	0x00 6006	. 1	Transmit request reset
CANTA	0x00 6008	1	Transmission acknowledge
CANAA	0x00 600A	W 1	Abort acknowledge
CANRMP	0x00 600C	~\\ ¹	Receive message pending
CANRML	0x00 600E	1	Receive message lost
CANRFP	0x00 6010	(11)	Remote frame pending
CANGAM	0x00 6012	TI	Global acceptance mask
CANMC	0x00 6014	1	Master control
CANBTC	0x00 6016	ONT	Bit-timing configuration
CANES	0x00 6018	, Ito	Error and status
CANTEC	0x00 601A	1, 1	Transmit error counter
CANREC	0x00 601C	CH	Receive error counter
CANGIF0	0x00 601E	$_{\rm J}$ ${ m CO^{N}}$	Global interrupt flag 0
CANGIM	0x00 6020	10	Global interrupt mask
CANGIF1	0x00 6022	1	Global interrupt flag 1
CANMIM	0x00 6024	1.C	Mailbox interrupt mask
CANMIL	0x00 6026	1, (Mailbox interrupt level
CANOPC	0x00 6028	1001	Overwrite protection control
CANTIOC	0x00 602A	1010	TX I/O control
CANRIOC	0x00 602C	100	RX I/O control
CANTSC	0x00 602E	N-Y	Time stamp counter (Reserved in SCC mode)
CANTOC	0x00 6030	1100	Time-out control (Reserved in SCC mode)
CANTOS	0x00 6032	1 1	Time-out status (Reserved in SCC mode)

[†] These registers are mapped to Peripheral Frame 1.

4.5 Multichannel Buffered Serial Port (McBSP) Module

The McBSP module has the following features:

- Compatible to McBSP in TMS320C54x[™] /TMS320C55x[™] DSP devices, except the DMA features
- Full-duplex communication
- Double-buffered data registers which allow a continuous data stream
- Independent framing and clocking for receive and transmit
- External shift clock generation or an internal programmable frequency shift clock
- A wide selection of data sizes including 8-, 12-, 16-, 20-, 24-, or 32-bits
- 8-bit data transfers with LSB or MSB first
- · Programmable polarity for both frame synchronization and data clocks
- Highly programmable internal clock and frame generation
- Support A-bis mode
- Direct interface to industry-standard CODECs, Analog Interface Chips (AICs), and other serially connected A/D and D/A devices
- Works with SPI-compatible devices
- Two 16 x 16-level FIFO for Transmit channel
- Two 16 x 16-level FIFO for Receive channel

The following application interfaces can be supported on the McBSP:

- T1/E1 framers
- MVIP switching-compatible and ST-BUS-compliant devices including:
 - MVIP framers
 - H.100 framers
 - SCSA framers
 - IOM-2 compliant devices
 - AC97-compliant devices (the necessary multiphase frame synchronization capability is provided.)
 - IIS-compliant devices
- McBSP clock rate = CLKG = $\frac{\text{CLKSRG}}{(1 + \text{CLKGDIV})}$, where CLKSRG source could be LSPCLK, CLKX, or CLKR.[†]

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

TMS320C54x and TMS320C55x are trademarks of Texas Instruments.

[†] Serial port performance is limited by I/O buffer switching speed. Internal prescalers must be adjusted such that the peripheral speed is less than the I/O buffer speed limit—20-MHz maximum.

Figure 4-9 shows the block diagram of the McBSP module with FIFO, interfaced to the F281x and C281x version of Peripheral Frame 2.

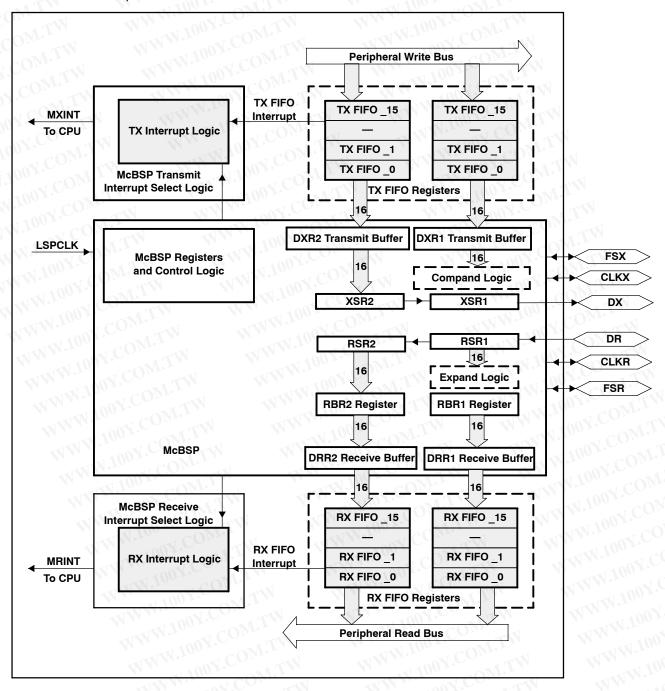


Figure 4-9. McBSP Module With FIFO

Table 4–7 provides a summary of the McBSP registers.

Table 4-7. McBSP Register Summary

NAME	ADDRESS 0x00 78xxh	TYPE (R/W)	RESET VALUE (HEX)	DESCRIPTION
	WWW.	DATA RE	GISTERS, RECEIVE,	TRANSMIT†
1.1.	TWW.In	T COM.	0x0000	McBSP Receive Buffer Register
$M_{\widetilde{\mathcal{I}},M}$	W	O. T.	0x0000	McBSP Receive Shift Register
-111	THE WAY	001.0	0x0000	McBSP Transmit Shift Register
DRR2	00	100X CO	0x0000	McBSP Data Receive Register 2 - Read First if the word size is greater than 16 bits, else ignore DRR2
DRR1	01	W.10RY.CC	0x0000	McBSP Data Receive Register 1 - Read Second if the word size is greater than 16 bits else read DRR1 only
DXR2	02	MM WOOK	0x0000	McBSP Data Transmit Register 2 - Write First if the word size is greater than 16 bits, else ignore DXR2
DXR1	03	W 100	0x0000	McBSP Data Transmit Register 1 - Write Second if the word size is greater than 16 bits else write to DXR1 only
17001.	OMIT	McE	SSP CONTROL REGIS	STERS
SPCR2	04	R/W	0x0000	McBSP Serial Port Control Register 2
SPCR1	05	R/W	0x0000	McBSP Serial Port Control Register 1
RCR2	06	R/W	0x0000	McBSP Receive Control Register 2
RCR1	07	R/W	0x0000	McBSP Receive Control Register 1
XCR2	08	R/W	0x0000	McBSP Transmit Control Register 2
XCR1	09	R/W	0x0000	McBSP Transmit Control Register 1
SRGR2	OA OA	R/W	0x0000	McBSP Sample Rate Generator Register 2
SRGR1	0B	R/W	0x0000	McBSP Sample Rate Generator Register 1
MA	100Y. M.T.	MULTIC	IANNEL CONTROL F	REGISTERS
MCR2	0C	R/W	0x0000	McBSP Multichannel Register 2
MCR1	0D	R/W	0x0000	McBSP Multichannel Register 1
RCERA	0E	R/W	0x0000	McBSP Receive Channel Enable Register Partition A
RCERB	OF	R/W	0x0000	McBSP Receive Channel Enable Register Partition B
XCERA	10	R/W	0x0000	McBSP Transmit Channel Enable Register Partition A
XCERB	11 CO	R/W	0x0000	McBSP Transmit Channel Enable Register Partition B
PCR	.12	R/W	0x0000	McBSP Pin Control Register
RCERC	13	R/W	0x0000	McBSP Receive Channel Enable Register Partition C
RCERD	14	R/W	0x0000	McBSP Receive Channel Enable Register Partition D
XCERC	15	R/W	0x0000	McBSP Transmit Channel Enable Register Partition C
XCERD	16	R/W	0x0000	McBSP Transmit Channel Enable Register Partition D

 $^{^\}dagger$ DRR2/DRR1 and DXR2/DXR1 share the same addresses of receive and transmit FIFO registers in FIFO mode.

[‡] FIFO pointers advancing is based on order of access to DRR2/DRR1 and DXR2/DXR1 registers.

Table 4-7. McBSP Register Summary (Continued)

NAME	ADDRESS 0x00 78xxh	TYPE (R/W)	RESET VALUE (HEX)	DESCRIPTION
OM:IV		MULTICHANNE	L CONTROL REGIST	ERS (CONTINUED)
RCERE	17	R/W	0x0000	McBSP Receive Channel Enable Register Partition E
RCERF	18	R/W	0x0000	McBSP Receive Channel Enable Register Partition F
XCERE	19	R/W	0x0000	McBSP Transmit Channel Enable Register Partition E
XCERF	1A	R/W	0x0000	McBSP Transmit Channel Enable Register Partition F
RCERG	1B	R/W	0x0000	McBSP Receive Channel Enable Register Partition G
RCERH	1C (V)	R/W	0x0000	McBSP Receive Channel Enable Register Partition H
XCERG	1D	R/W	0x0000	McBSP Transmit Channel Enable Register Partition G
XCERH	1E	R/W	0x0000	McBSP Transmit Channel Enable Register Partition H
1007.	M.T.W	FIFO MODE REC	GISTERS (applicable	only in FIFO mode)
TOON.CO	WT	11/1/1	FIFO Data Registers	s‡ WW. 11001.
DRR2	00	W R	0x0000	McBSP Data Receive Register 2 - Top of receive FIFO - Read First FIFO pointers will not advance
DRR1	O1 01	R. V.	0x0000	McBSP Data Receive Register 1 - Top of receive FIFO - Read Second for FIFO pointers to advance
DXR2	02	w	0x0000	McBSP Data Transmit Register 2 - Top of transmit FIFC - Write First FIFO pointers will not advance
DXR1	03	w	0x0000	McBSP Data Transmit Register 1 - Top of transmit FIFC - Write Second for FIFO pointers to advance
11/14	OX. TW	1/1/4	FIFO Control Registe	ers. N. 100
MFFTX	20	R/W	0xA000	McBSP Transmit FIFO Register
MFFRX	21	R/W	0x201F	McBSP Receive FIFO Register
MFFCT	22	R/W	0x0000	McBSP FIFO Control Register
MFFINT	23	R/W	0x0000	McBSP FIFO Interrupt Register
MFFST	24	R/W	0x0000	McBSP FIFO Status Register

DRR2/DRR1 and DXR2/DXR1 share the same addresses of receive and transmit FIFO registers in FIFO mode.

WWW.100Y.COM.TW

WW.100Y.COM.T

[‡] FIFO pointers advancing is based on order of access to DRR2/DRR1 and DXR2/DXR1 registers.

Peripherals

4.6 Serial Communications Interface (SCI) Module

The F281x and C281x devices include two serial communications interface (SCI) modules. The SCI modules support digital communications between the CPU and other asynchronous peripherals that use the standard non-return-to-zero (NRZ) format. The SCI receiver and transmitter are double-buffered, and each has its own separate enable and interrupt bits. Both can be operated independently or simultaneously in the full-duplex mode. To ensure data integrity, the SCI checks received data for break detection, parity, overrun, and framing errors. The bit rate is programmable to over 65000 different speeds through a 16-bit baud-select register.

Features of each SCI module include:

- Two external pins:
 - SCITXD: SCI transmit-output pin
 - SCIRXD: SCI receive-input pin

NOTE: Both pins can be used as GPIO if not used for SCI.

Baud rate programmable to 64K different rates[†]

- Data-word format
 - One start bit
 - Data-word length programmable from one to eight bits
 - Optional even/odd/no parity bit
 - One or two stop bits
- Four error-detection flags: parity, overrun, framing, and break detection
- Two wake-up multiprocessor modes: idle-line and address bit
- Half- or full-duplex operation
- Double-buffered receive and transmit functions
- Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms with status flags.
 - Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX EMPTY flag (transmitter-shift register is empty)
 - Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag (break condition occurred), and RX ERROR flag (monitoring four interrupt conditions)
- Separate enable bits for transmitter and receiver interrupts (except BRKDT)
- Max bit rate = $\frac{75 \text{ MHz}}{16}$ = 4.688 × 10⁶ b/s

[†] Serial port performance is limited by I/O buffer switching speed. Internal prescalers must be adjusted such that the peripheral speed is less than the I/O buffer speed limit—20 MHz maximum.

- NRZ (non-return-to-zero) format
- Ten SCI module control registers located in the control register frame beginning at address 7050h

NOTE: All registers in this module are 8-bit registers that are connected to Peripheral Frame 2. When a register is accessed, the register data is in the lower byte (7-0), and the upper byte (15-8) is read as zeros. Writing to the upper byte has no effect.

Enhanced features:

- Auto baud-detect hardware logic
- 16-level transmit/receive FIFO

The SCI port operation is configured and controlled by the registers listed in Table 4-8 and Table 4-9.

Table 4-8. SCI-A Registers[†]

NAME	ADDRESS	SIZE (x16)	DESCRIPTION
SCICCRA	0x00 7050	101.	SCI-A Communications Control Register
SCICTL1A	0x00 7051	TWO T	SCI-A Control Register 1
SCIHBAUDA	0x00 7052	1100	SCI-A Baud Register, High Bits
SCILBAUDA	0x00 7053	1 100	SCI-A Baud Register, Low Bits
SCICTL2A	0x00 7054	WWY	SCI-A Control Register 2
SCIRXSTA	0x00 7055	WWW.I	SCI-A Receive Status Register
SCIRXEMUA	0x00 7056	1.11.1	SCI-A Receive Emulation Data Buffer Register
SCIRXBUFA	0x00 7057	WY	SCI-A Receive Data Buffer Register
SCITXBUFA	0x00 7059	1	SCI-A Transmit Data Buffer Register
SCIFFTXA	0x00 705A	1	SCI-A FIFO Transmit Register
SCIFFRXA	0x00 705B	1	SCI-A FIFO Receive Register
SCIFFCTA	0x00 705C	1	SCI-A FIFO Control Register
SCIPRIA	0x00 705F	1	SCI-A Priority Control Register

[†] Shaded registers are new registers for the FIFO mode.

Table 4-9. SCI-B Registers^{†‡}

NAME	ADDRESS	SIZE (x16)	DESCRIPTION
SCICCRB	0x00 7750	1	SCI-B Communications Control Register
SCICTL1B	0x00 7751	1	SCI-B Control Register 1
SCIHBAUDB 🕥	0x00 7752	TW1	SCI-B Baud Register, High Bits
SCILBAUDB	0x00 7753	TVI.	SCI-B Baud Register, Low Bits
SCICTL2B	0x00 7754	0 1	SCI-B Control Register 2
SCIRXSTB	0x00 7755	1	SCI-B Receive Status Register
SCIRXEMUB	0x00 7756	11	SCI-B Receive Emulation Data Buffer Register
SCIRXBUFB	0x00 7757	COP 1 TW	SCI-B Receive Data Buffer Register
SCITXBUFB	0x00 7759	CONT	SCI-B Transmit Data Buffer Register
SCIFFTXB	0x00 775A	COMIT	SCI-B FIFO Transmit Register
SCIFFRXB	0x00 775B	IMT	SCI-B FIFO Receive Register
SCIFFCTB	0x00 775C	V.CY	SCI-B FIFO Control Register
SCIPRIB	0x00 775F	-1 (10 N)	SCI-B Priority Control Register

[†] Shaded registers are new registers for the FIFO mode.

[‡] Registers in this table are mapped to peripheral bus 16 space. This space only allows 16-bit accesses. 32-bit accesses produce undefined results.

特力材料886-3-5753170

胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

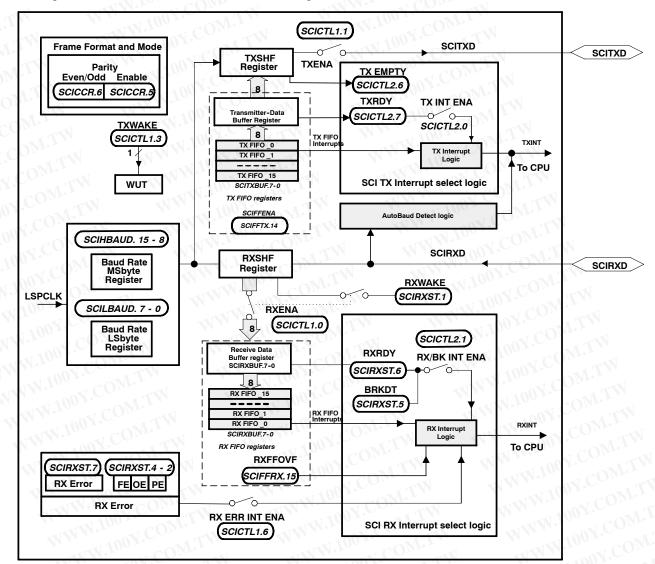


Figure 4-10 shows the SCI module block diagram.

Figure 4-10. Serial Communications Interface (SCI) Module Block Diagram

100Y.COM.

4.7 Serial Peripheral Interface (SPI) Module

The F281x and C281x devices include the four-pin serial peripheral interface (SPI) module. The SPI is a high-speed, synchronous serial I/O port that allows a serial bit stream of programmed length (one to sixteen bits) to be shifted into and out of the device at a programmable bit-transfer rate. Normally, the SPI is used for communications between the DSP controller and external peripherals or another processor. Typical applications include external I/O or peripheral expansion through devices such as shift registers, display drivers, and ADCs. Multidevice communications are supported by the master/slave operation of the SPI.

特力材料886-3-5753170

胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw

The SPI module features include:

- Four external pins:
 - SPISOMI: SPI slave-output/master-input pin
 - SPISIMO: SPI slave-input/master-output pin
 - SPISTE: SPI slave transmit-enable pin
 - SPICLK: SPI serial-clock pin

NOTE: All four pins can be used as GPIO, if the SPI module is not used.

- · Two operational modes: master and slave
- Baud rate: 125 different programmable rates

- Baud rate =
$$\frac{\text{LSPCLK}}{(\text{SPIBRR} + 1)}$$
, when SPIBRR $\neq 0$
= $\frac{\text{LSPCLK}}{4}$, when SPIBRR = 0, 1, 2, 3

Serial port performance is limited by I/O buffer switching speed. Internal prescalers must be adjusted such that the peripheral speed is less than the I/O buffer speed limit—20 MHz maximum.

- Data word length: one to sixteen data bits
- Four clocking schemes (controlled by clock polarity and clock phase bits) include:
 - Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.
 - Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the falling edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.
 - Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.
 - Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the falling edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.
- · Simultaneous receive and transmit operation (transmit function can be disabled in software)
- Transmitter and receiver operations are accomplished through either interrupt-driven or polled algorithms.
- Nine SPI module control registers: Located in control register frame beginning at address 7040h.

NOTE: All registers in this module are 16-bit registers that are connected to Peripheral Frame 2. When a register is accessed, the register data is in the lower byte (7–0), and the upper byte (15–8) is read as zeros. Writing to the upper byte has no effect.

Enhanced feature:

- 16-level transmit/receive FIFO
- Delayed transmit control

The SPI port operation is configured and controlled by the registers listed in Table 4-10.

Table 4-10. SPI Registers

W.100Y.COM.TW

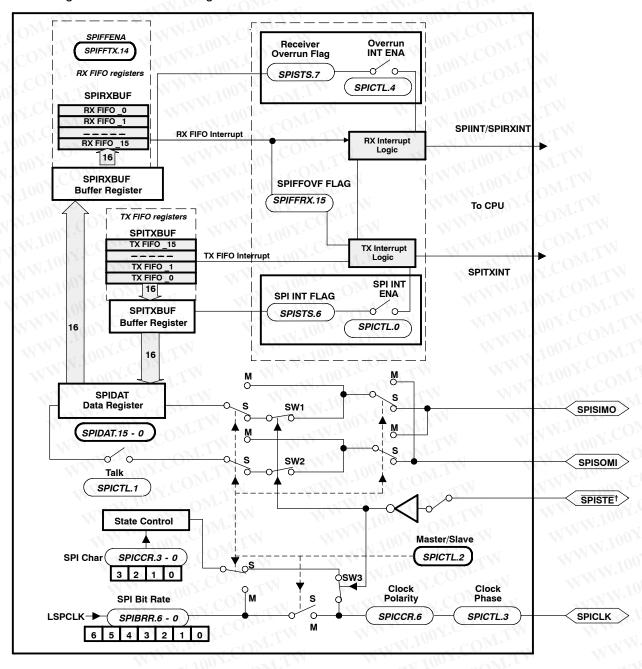
NAME	ADDRESS	SIZE (x16)	DESCRIPTION
SPICCR	0x00 7040	1111	SPI Configuration Control Register
SPICTL	0x00 7041	TT	SPI Operation Control Register
SPISTS	0x00 7042	ON TO	SPI Status Register
SPIBRR	0x00 7044	COM-1	SPI Baud Rate Register
SPIRXEMU	0x00 7046	Mil	SPI Receive Emulation Buffer Register
SPIRXBUF	0x00 7047	I. TW	SPI Serial Input Buffer Register
SPITXBUF	0x00 7048	COM	SPI Serial Output Buffer Register
SPIDAT	0x00 7049	CON	SPI Serial Data Register
SPIFFTX	0x00 704A	JUL SINI	SPI FIFO Transmit Register
SPIFFRX	0x00 704B	OY. T	SPI FIFO Receive Register
SPIFFCT	0x00 704C	ON GON	SPI FIFO Control Register
SPIPRI	0x00 704F	10N	SPI Priority Control Register

NOTE: The above registers are mapped to Peripheral Frame 2. This space only allows 16-bit accesses. 32-bit accesses produce undefined results. WWW.100Y.COM.T WWW.100

WWW.100Y

WWW.100Y.COM.T

WWW.100Y.COM.TW 特力材料886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www.100y.com.tw WWW.100Y.COM.TW



WWW.100Y.COM.TW

100Y.COM.TW

Http://www.100y.com.tw

Figure 4-11 is a block diagram of the SPI in slave mode.

[†] SPISTE is driven low by the master for a slave device.

Figure 4-11. Serial Peripheral Interface Module Block Diagram (Slave Mode)

4.8 GPIO MUX

The GPIO Mux registers, are used to select the operation of shared pins on the F281x and C281x devices. The pins can be individually selected to operate as "Digital I/O" or connected to "Peripheral I/O" signals (via the GPxMUX registers). If selected for "Digital I/O" mode, registers are provided to configure the pin direction (via the GPxDIR registers) and to qualify the input signal to remove unwanted noise (via the GPxQUAL) registers). Table 4–11 lists the GPIO Mux Registers.

Table 4-11. GPIO Mux Registers^{†‡§}

NAME	ADDRESS	SIZE (x16)	REGISTER DESCRIPTION
GPAMUX	0x00 70C0	TIME	GPIO A Mux Control Register
GPADIR	0x00 70C1	1.001	GPIO A Direction Control Register
GPAQUAL	0x00 70C2	ON COL	GPIO A Input Qualification Control Register
Reserved	0x00 70C3	COM.	COM.
GPBMUX	0x00 70C4	CON. 1 N	GPIO B Mux Control Register
GPBDIR	0x00 70C5	1007.4	GPIO B Direction Control Register
GPBQUAL	0x00 70C6	1CON	GPIO B Input Qualification Control Register
Reserved	0x00 70C7	1,00	M. To COM.
Reserved	0x00 70C8	1007.	William CONCIL
Reserved	0x00 70C9	1017.0	WI TOOK ON THE
Reserved	0x00 70CA	1 1 C	WWW. ON CO. CTW
Reserved	0x00 70CB	WW.H	COM.
GPDMUX	0x00 70CC	100	GPIO D Mux Control Register
GPDDIR	0x00 70CD	1,00	GPIO D Direction Control Register
GPDQUAL	0x00 70CE	WWY	GPIO D Input Qualification Control Register
Reserved	0x00 70CF	1111	A COMP.
GPEMUX	0x00 70D0	1,1,1	GPIO E Mux Control Register
GPEDIR	0x00 70D1	WY	GPIO E Direction Control Register
GPEQUAL	0x00 70D2	11	GPIO E Input Qualification Control Register
Reserved	0x00 70D3	1.00	TO COM. THE WAY, TO SECOND
GPFMUX	0x00 70D4	1	GPIO F Mux Control Register
GPFDIR	0x00 70D5	i	GPIO F Direction Control Register
Reserved	0x00 70D6	1 11	THE WAY TOOK OF
Reserved	0x00 70D7	1 1	IN. E. COMP. TWW. SAY.CO
GPGMUX	0x00 70D8	1	GPIO G Mux Control Register
GPGDIR	0x00 70D9	1	GPIO G Direction Control Register
Reserved	0x00 70DA	1 1	MAN 100X.C T. M. 1100X.
Reserved	0x00 70DB	1	WWW. OY.COM TW WWW.
Reserved	0x00 70DC 0x00 70DF	4	WWW.100Y.COM.

[†] Reserved locations return undefined values and writes are ignored.

[‡] Not all inputs support input signal qualification.

[§] These registers are EALLOW protected. This prevents spurious writes from overwriting the contents and corrupting the system.

If configured for "Digital I/O" mode, additional registers are provided for setting individual I/O signals (via the GPxSET registers), for clearing individual I/O signals (via the GPxCLEAR registers), for toggling individual I/O signals (via the GPxTOGGLE registers), or for reading/writing to the individual I/O signals (via the GPxDAT registers). Table 4–12 lists the GPIO Data Registers. For more information, see the *TMS320x281x DSP System Control and Interrupts Reference Guide* (literature number SPRU078).

Table 4-12. GPIO Data Registers^{†‡}

NAME	ADDRESS	SIZE (x16)	REGISTER DESCRIPTION
GPADAT	0x00 70E0	CGN.	GPIO A Data Register
GPASET	0x00 70E1	COM	GPIO A Set Register
GPACLEAR	0x00 70E2	10N	GPIO A Clear Register
GPATOGGLE	0x00 70E3	100Y.4	GPIO A Toggle Register
GPBDAT	0x00 70E4	1CO	GPIO B Data Register
GPBSET	0x00 70E5	N.100 1, CO	GPIO B Set Register
GPBCLEAR	0x00 70E6	1001	GPIO B Clear Register
GPBTOGGLE	0x00 70E7	1007.0	GPIO B Toggle Register
Reserved	0x00 70E8	M. 1 ov.	On THE WAY OUT CO. THE
Reserved	0x00 70E9	WW.Ho	COM.
Reserved	0x00 70EA	1100 1	CONTACTOR OF THE STATE OF THE S
Reserved	0x00 70EB	1 100	TO THE WILLIAM THE
GPDDAT	0x00 70EC	WWY.	GPIO D Data Register
GPDSET	0x00 70ED	TN111.10	GPIO D Set Register
GPDCLEAR	0x00 70EE	1.1.1	GPIO D Clear Register
GPDTOGGLE	0x00 70EF	WY	GPIO D Toggle Register
GPEDAT	0x00 70F0	11	GPIO E Data Register
GPESET	0x00 70F1	1	GPIO E Set Register
GPECLEAR	0x00 70F2	1	GPIO E Clear Register
GPETOGGLE	0x00 70F3	1	GPIO E Toggle Register
GPFDAT	0x00 70F4	1	GPIO F Data Register
GPFSET	0x00 70F5	N 1	GPIO F Set Register
GPFCLEAR	0x00 70F6	1	GPIO F Clear Register
GPFTOGGLE	0x00 70F7	1	GPIO F Toggle Register
GPGDAT	0x00 70F8	1	GPIO G Data Register
GPGSET	0x00 70F9	1	GPIO G Set Register
GPGCLEAR	0x00 70FA	1	GPIO G Clear Register
GPGTOGGLE	0x00 70FB	1	GPIO G Toggle Register
Reserved	0x00 70FC 0x00 70FF	M.TY	MM. 100X COW.TM MM. 10

[†] Reserved locations will return undefined values and writes will be ignored.

[‡] These registers are NOT EALLOW protected. The above registers will typically be accessed regularly by the user.

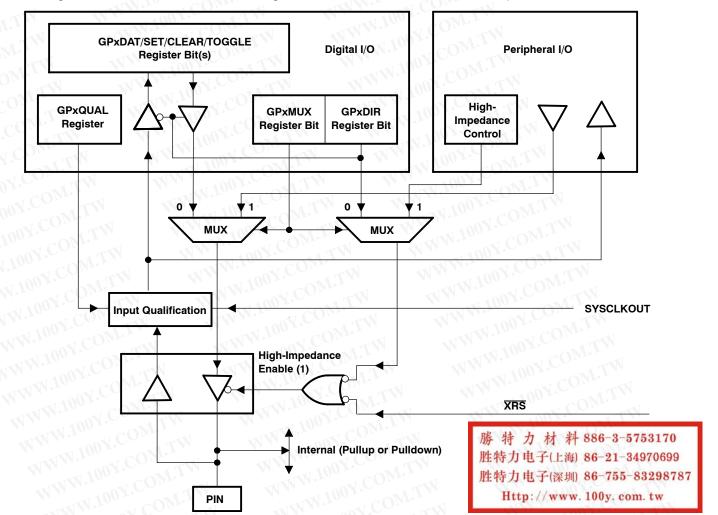


Figure 4-12 shows how the various register bits select the various modes of operation for GPIO function.

- NOTES: A. In the GPIO mode, when the GPIO pin is configured for output operation, reading the GPxDAT data register only gives the value written, not the value at the pin. In the peripheral mode, the state of the pin can be read through the GPxDAT register, provided the corresponding direction bit is zero (input mode).
 - B. Some selected input signals are qualified by the SYSCLKOUT. The GPxQUAL register specifies the qualification sampling period. The sampling window is 6 samples wide and the output is only changed when all samples are the same (all 0's or all 1's). This feature removes unwanted spikes from the input signal.

Figure 4-12. GPIO/Peripheral Pin Multiplexing

NOTE:

The input function of the GPIO pin and the input path to the peripheral are always enabled. It is the output function of the GPIO pin that is multiplexed with the output path of the primary (peripheral) function. Since the output buffer of a pin connects back to the input buffer, any GPIO signal present at the pin will be propagated to the peripheral module as well. Therefore, when a pin is configured for GPIO operation, the corresponding peripheral functionality (and interrupt-generating capability) must be disabled. Otherwise, interrupts may be inadvertently triggered. This is especially critical when the $\overline{\text{PDPINTA}}$ and $\overline{\text{PDPINTB}}$ pins are used as GPIO pins, since a value of zero for GPDDAT.0 or GPDDAT.5 ($\overline{\text{PDPINTx}}$) will put PWM pins in a high-impedance state. The $\overline{\text{CxTRIP}}$ and $\overline{\text{TxCTRIP}}$ pins will also put the corresponding PWM pins in high impedance, if they are driven low (as GPIO pins) and bit EXTCONx.0 = 1.

5 **Development Support**

Texas Instruments (TI) offers an extensive line of development tools for the C28x™ generation of DSPs, including tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully integrate and debug software and hardware modules.

特力材料886-3-5753170

胜特力电子(上海) 86-21-34970699

胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw

The following products support development of F281x- and C281x-based applications:

Software Development Tools

- Code Composer Studio™ Integrated Development Environment (IDE)
 - C/C++ Compiler
 - Code generation tools
 - Assembler/Linker
 - Cycle Accurate Simulator
- Application algorithms
- Sample applications code

Hardware Development Tools

- 2812 eZdsp
- JTAG-based emulators SPI515, XDS510PP, XDS510PP Plus, XDS510 USB
- Universal 5-V dc power supply
- Documentation and cables

Device and Development Support Tool Nomenclature 5.1

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all [TMS320] DSP devices and support tools. Each [TMS320] DSP commercial family member has one of three prefixes: TMX, TMP, or TMS (e.g., TMS320F2812GHH). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS).

TMX Experimental device that is not necessarily representative of the final device's electrical specifications

TMP Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability verification

TMS Fully qualified production device

Support tool development evolutionary flow:

TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing.

TMDS Fully qualified development-support product

TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer

"Developmental product is intended for internal evaluation purposes."

TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.

TMS320 is a trademark of Texas Instruments

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, PBK) and temperature range (for example, A). Figure 5–1 provides a legend for reading the complete device name for any TMS320x28x family member.

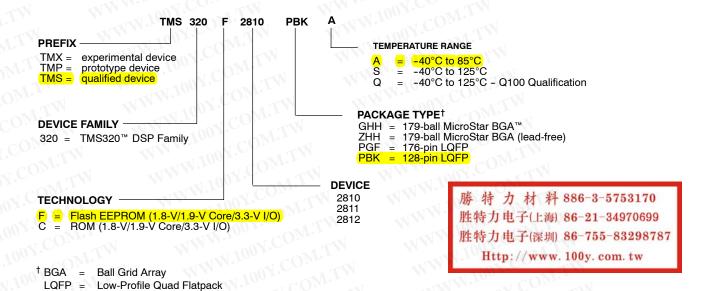


Figure 5-1. TMS320x28x Device Nomenclature

5.2 Documentation Support

Extensive documentation supports all of the TMS320™ DSP family generations of devices from product announcement through applications development. The types of documentation available include: data sheets and data manuals, with design specifications; and hardware and software applications.

Table 5–1 shows the peripheral reference guides appropriate for use with the devices in this data manual. See the *TMS320x28xx*, *28xxx DSP Peripheral Reference Guide* (literature number SPRU566) for more information on types of peripherals.

PERIPHERAL	LIT. NO.	TYPE [†]	2812	2811, 2810
TMS320x281x DSP System Control and Interrupts	SPRU078	TO TIME	X	X
TMS320x281x DSP External Interface (XINTF)	SPRU067	CO	N X	MAN. TOOX.
TMS320x281x Enhanced Controller Area Network (eCAN)	SPRU074	0	X	X
TMS320x281x DSP Event Manager (EV)	SPRU065	0	X	X
TMS320x281x DSP Analog-to-Digital Converter (ADC)	SPRU060	0	X	X (00)
TMS320x281x DSP Multichannel Buffered Serial Port (McBSP)	SPRU061	0	X	X
TMS320x281x Serial Communications Interface (SCI)	SPRU051	0,00	X	X
TMS320x281x Serial Peripheral Interface	SPRU059	100	X	X
TMS320x281x DSP Boot ROM	SPRU095	1097.0	X	Х

Table 5-1. TMS320x281x Peripheral Selection Guide

[†] A type change represents a major functional feature difference in a peripheral module. Within a peripheral type, there may be minor differences between devices which do not affect the basic functionality of the module. These device-specific differences are listed in the peripheral reference guides.

The following documents are available on the TI website (http://www.ti.com):

TMS320C28x CPU and Instruction Set Reference Guide (literature number SPRU430) describes the central processing unit (CPU) and the assembly language instructions of the TMS320C28x[™] fixed-point digital signal processors (DSPs). It also describes emulation features available on these DSPs.

TMS320x281x DSP Analog-to-Digital Converter (ADC) Reference Guide (literature number SPRU060) describes the ADC module. The module is a 12-bit pipelined ADC. The analog circuits of this converter, referred to as the core in this document, include the front-end analog multiplexers (MUXs), sample-and-hold (S/H) circuits, the conversion core, voltage regulators, and other analog supporting circuits. Digital circuits, referred to as the wrapper in this document, include programmable conversion sequencer, result registers, interface to analog circuits, interface to device peripheral bus, and interface to other on-chip modules.

TMS320x281x DSP Boot ROM Reference Guide (literature number SPRU095) describes the purpose and features of the bootloader (factory-programmed boot-loading software). It also describes other contents of the device on-chip boot ROM and identifies where all of the information is located within that memory.

TMS320x281x DSP Event Manager (EV) Reference Guide (literature number SPRU065) describes the EV modules that provide a broad range of functions and features that are particularly useful in motion control and motor control applications. The EV modules include general-purpose (GP) timers, full-compare/PWM units, capture units, and quadrature-encoder pulse (QEP) circuits.

TMS320x281x DSP External Interface (XINTF) Reference Guide (literature number SPRU067) describes the external interface (XINTF) of the 281x digital signal processors (DSPs).

TMS320x281x DSP Multichannel Buffered Serial Port (McBSP) Reference Guide (literature number SPRU061) describes the McBSP) available on the 281x devices. The McBSPs allow direct interface between a DSP and other devices in a system.

TMS320x281x DSP System Control and Interrupts Reference Guide (literature number SPRU078) describes the various interrupts and system control features of the 281x digital signal processors (DSPs).

TMS320x281x Enhanced Controller Area Network (eCAN) Reference Guide (literature number SPRU074) describes the eCAN that uses established protocol to communicate serially with other controllers in electrically noisy environments. With 32 fully configurable mailboxes and time-stamping feature, the eCAN module provides a versatile and robust serial communication interface. The eCAN module implemented in the C28x DSP is compatible with the CAN 2.0B standard (active).

TMS320x28xx, **28xxx DSP Peripheral Reference Guide** (literature number SPRU566) describes the peripheral reference guides of the 28x digital signal processors (DSPs).

TMS320x281x Serial Communications Interface (SCI) Reference Guide (literature number SPRU051) describes the SCI that is a two-wire asynchronous serial port, commonly known as a UART. The SCI modules support digital communications between the CPU and other asynchronous peripherals that use the standard non-return-to-zero (NRZ) format.

TMS320x281x Serial Peripheral Interface Reference Guide (literature number SPRU059) describes the SPI – a high-speed synchronous serial input/output (I/O) port that allows a serial bit stream of programmed length (one to sixteen bits) to be shifted into and out of the device at a programmed bit-transfer rate. The SPI is used for communications between the DSP controller and external peripherals or another controller.

3.3V DSP for Digital Motor Control Application Report (literature number SPRA550). The application report first describes a scenario of a 3.3-V-only motor controller indicating that for most applications, no significant issue of interfacing between 3.3 V and 5 V exists. Cost-effective 3.3-V/5-V interfacing techniques are then discussed for the situations where such interfacing is needed. On-chip 3.3-V analog-to-digital converter (ADC) versus 5-V ADC is also discussed. Guidelines for component layout and printed circuit board (PCB) design that can reduce system noise and EMI effects are summarized in the last section.

TMS320C28x Instruction Set Simulator Technical Overview (literature number SPRU608) describes the simulator, available within the Code Composer Studio for TMS320C2000 IDE, that simulates the instruction set of the C28x core.

TMS320C28x DSP/BIOS 5.x Application Programming Interface (API) Reference Guide (literature number SPRU625) describes development using DSP/BIOS.

TMS320C28x Assembly Language Tools v5.0.0 User's Guide (literature number SPRU513) describes the assembly language tools (assembler and other tools used to develop assembly language code), assembler directives, macros, common object file format, and symbolic debugging directives for the TMS320C28x[™] device.

TMS320C28x Optimizing C/C++ Compiler v5.0.0 User's Guide (literature number SPRU514) describes the TMS320C28x[™] C/C++ compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320[™] DSP assembly language source code for the TMS320C28x device.

Programming Examples for the TMS320F281x eCAN (literature number SPRA876) contains several programming examples to illustrate how the eCAN module is set up for different modes of operation. The objective is to help you come up to speed quickly in programming the eCAN. All programs have been extensively commented to aid easy understanding. The CANalyzer tool from Vector CANtech, Inc. was used to monitor and control the bus operation. All projects and CANalyzer configuration files are included in the attached SPRA876.zip file.

F2810, **F2811**, **and F2812 ADC Calibration Application Report** (literature number SPRA989) describes a method for improving the absolute accuracy of the 12-bit analog-to-digital converter (ADC) found on the F2810/F2811/F2812 devices. Due to inherent gain and offset errors, the absolute accuracy of the ADC is impacted. The methods described in this application note can improve the absolute accuracy of the ADC to achieve levels better than 0.5%. This application note is accompanied by an example program (ADCcalibration.zip) that executes from RAM on the F2812 EzDSP.

A series of DSP textbooks is published by Prentice-Hall and John Wiley & Sons to support digital signal processing research and education. The TMS320™ DSP newsletter, *Details on Signal Processing*, is published quarterly and distributed to update TMS320™ DSP customers on product information.

Updated information on the TMS320™ DSP controllers can be found on the worldwide web at: http://www.ti.com.

To send comments regarding this *TMS320F2810*, *TMS320F2811*, *TMS320F2812*, *TMS320C2810*, *TMS320C2811*, *TMS320C2812 Digital Signal Processors Data Manual* (literature number SPRS174), use the *comments@books.sc.ti.com* email address, which is a repository for feedback. For questions and support, contact the Product Information Center listed at the **http://www.ti.com/sc/docs/pic/home.htm** site.

6 Electrical Specifications

This section provides the absolute maximum ratings and the recommended operating conditions for the TMS320F281x and TMS320C281x DSPs.

6.1 Absolute Maximum Ratings

Unless otherwise noted, the list of absolute maximum ratings are specified over operating temperature ranges. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Section 6.2 is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to V_{SS}.

Supply voltage range, V _{DDIO} , V _{DD3VFL} , V _{DDA1} , V _{DDA2} , V _{DDAIO} , and AV _{DDREFBG}	0.3 V to 4.6 V
Supply voltage range, V _{DD} , V _{DD1}	
Input voltage range, V _{IN}	0.3 V to 4.6 V
Output voltage range, V _O	0.3 V to 4.6 V
Input clamp current, I _{IK} (V _{IN} < 0 or V _{IN} > V _{DDIO}) [†]	±20 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{DDIO})	±20 mA
Operating ambient temperature ranges, T _A : A version (GHH, ZHH, PGF, PBK) [‡]	40°C to 85°C
T _A : S version (GHH, ZHH, PGF, PBK)‡	40°C to 125°C
T _A : Q version (PGF, PBK) [‡]	40°C to 125°C
Junction temperature range, T _j	40°C to 150°C
Storage temperature range, T _{stg} [‡]	65°C to 150°C

[†] Continuous clamp current per pin is ±2 mA

[‡] Long-term high-temperature storage and/or extended use at maximum temperature conditions may result in a reduction of overall device life. For additional information, see *IC Package Thermal Metrics Application Report* (literature number SPRA953) and *Reliability Data for TMS320LF24xx and TMS320F28xx Devices Application Report* (literature number SPRA963).

Recommended Operating Conditions[†] 6.2

TW				MIN	NOM	MAX	UNI
V _{DDIO}	Device supply v	oltage, I/O	MM. 100X.02	3.14	3.3	3.47	V
1.2	-AMW.Io	"A COM.	1.8 V (135 MHz)	1.71	1.8	1.89	
V_{DD}, V_{DD1}	Device supply v	oltage, CPU	1.9 V (150 MHz)	1.81	1.9	2	V
V _{SS}	Supply ground	100Y.	W. 1001	OM.I.	0		V
V _{DDA1} , V _{DDA2} , AV _{DDREFBG} , V _{DDAIO}	ADC supply volt	age OM	IM MMM.100X	3.14	3.3	3.47	V
V _{DD3VFL}	Flash programm	ning supply voltage	TW WWW.	3.14	3.3	3.47	V
" COM.	Device clock frequency (system clock)		V _{DD} = 1.9 V ± 5%	2	TW	150	MHz
†SYSCLKOUT			V _{DD} = 1.8 V ± 5%	2	-31	135	
OY.Co	High laveling d	1007.	All inputs except X1/XCLKIN	2		V_{DDIO}	V
V _{IH}	High-level input	voltage	X1/XCLKIN (@ 50 μA max)	0.7V _{DD}	TW	V_{DD}	V
no I COM	, F. -1920, Lance Herrice	W.IO.	All inputs except X1/XCLKIN	ON CO	W	0.8	٧
V _{IL}	Low-level input	voltage	X1/XCLKIN (@ 50 μA max)	1.10	Mr.	0.3V _{DD}	
. 100 X.Co	High-level outpu	it source current,	All I/Os except Group 2	N.1001.	OMT	-4	
Іон СО	V _{OH} = 2.4 V	WWW.	Group 2 [‡]	1007.	- 11	-8	m/
W.Ioo T.C.	Low-level outpu	t sink current,	All I/Os except Group 2	IW.	COL	4	
loL	$V_{OL} = V_{OL} MAX$		Group 2 [‡]	M.Ino	COM	8	m/
1007.	TIME	A version	ODY. OM.TW	-40	001	85	°C
TA	Ambient temperature	S version	NOY.CO TY	-40	N.C	125	- C
	tomporature	Q version	COM	-40	N.CU	125	°C

W.100Y.COM.TW

WWW.100Y.COM.TW

特力材料886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM

WWW.100Y.COM.TW

100Y.COM.TW

 $^{^\}dagger$ See Section 6.9 for power sequencing of V_{DDIO}, V_{DDAIO}, V_{DD}, V_{DDA1}/V_{DDA2}/AV_{DDREFBG}, and V_{DD3VFL}. † Group 2 pins are as follows: XINTF pins, T1CTRIP_PDPINTA, TDO, XCLKOUT, XF, EMU0, and EMU1. WWW.100Y.COM.TW

WWW.100Y.COM.TW

Electrical Characteristics Over Recommended Operating Conditions 6.3 (Unless Otherwise Noted)

Ohr.	PARAME	TER	TES	T CONDITIONS	MIN	TYP	MAX	UNIT
co_{M}	, I	TANN TO	$I_{OH} = I_{OH}MAX$	WWW. To OV. C	2.4			.,
V _{OH}	High-level o	utput voltage	I _{OH} = 50 μA	M.Ino	V _{DDIO} - 0.2	Ú		V
V _{OL}	Low-level or	utput voltage	$I_{OL} = I_{OL}MAX$	W.100 x	COMIT	-<1	0.4	٧
N.Co	Input	With pullup	V _{DDIO} = 3.3 V, V _{IN} =	0 V	-80	-140	-190	
IIL [†]	current (low level)	With pulldown	V _{DDIO} = 3.3 V, V _{IN} =	0 V	Y.Co.M.	LM	±2	μΑ
100Y.	Input	With pullup	V _{DDIO} = 3.3 V,	All I/Os [§] (including XRS) except EVB	-80	-140	-190	
I _{IL} ‡	current (low level)		$V_{IN} = 0 V$	GPIOB/EVB	-13	-25	-35	μΑ
	(low level)	With pulldown	V _{DDIO} = 3.3 V, V _{IN} =	0 V	1001.0	MIN	±2	
N.To	Input	With pullup	V _{DDIO} = 3.3 V, V _{IN} =	V_{DD}	1100 Y.C.	Time	±2	
hi .1V	current (high level)	With pulldown [¶]	$V_{DDIO} = 3.3 \text{ V},$ $V_{IN} = V_{DD}$	OM.TW WW	28	50	80	μΑ
l _{oz}	Leakage cur without inter high-impeda (off-state)		V _O = V _{DDIO} or 0 V	.COM.TW W	MM.1002	I.COM	±2	μ Α
C _i	Input capaci	tance	-1X/W.100	T CON.	MW.IO	2	Mr.	pF
Co	Output capa	citance	10	ar. COWILL	W.10	3	OM.	pF

[†] Applicable to C281x devices

特力材料886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.COM.TW

WWW.100Y.COM.TW

100Y.COM.TW

[‡] Applicable to F281x devices

[§] The following pins have no internal PU/PD: GPIOE0, GPIOE1, GPIOF0, GPIOF1, GPIOF2, GPIOF3, GPIOF12, GPIOG4, and GPIOG5.

 $[\]P$ The following pins have an internal pulldown: XMP/\$\overline{MC}\$, TESTSEL, and \$\overline{TRST}\$.

Electrical Specifications

Current Consumption by Power-Supply Pins Over Recommended Operating Conditions During Low-Power Modes at 150-MHz SYSCLKOUT (TMS320F281x)

CHOPE	TEST SOUDITIONS M.TV	I _{DI}		100 I _{DD}	io [†]	I _{DD3}	VFL	I _{DD}	A [‡]
MODE	TEST CONDITIONS	TYP	MAX§	TYP	MAX§	TYP	MAX§	TYP	MAX§
Operational	All peripheral clocks are enabled. All PWM pins are toggled at 100 kHz. Data is continuously transmitted out of the SCIA, SCIB, and CAN ports. The hardware multiplier is exercised. Code is running out of flash with 5 wait-states.	195 mA [¶]	230 mA	15 mA	30 mA	40 mA	45 mA	40 mA	50 mA
IDLE	 Flash is powered down XCLKOUT is turned off All peripheral clocks are on, except ADC 	125 mA	150 mA	5 mA	10 mA	2 μΑ	4 μΑ	1 μΑ	20 μΑ
STANDBY	- Flash is powered down - Peripheral clocks are turned off - Pins without an internal PU/PD are tied high/low	5 mA	10 mA	5 μΑ	20 μΑ	2 μΑ	4 μΑ	N 1 μA	20 μΑ
HALT	- Flash is powered down - Peripheral clocks are turned off - Pins without an internal PU/PD are tied high/low - Input clock is disabled	70 μΑ	MIN	5 μΑ	20 μΑ	2 μΑ	4 μA	1 μΑ	20 μΑ

[†] I_{DDIO} current is dependent on the electrical loading on the I/O pins.

NOTE:

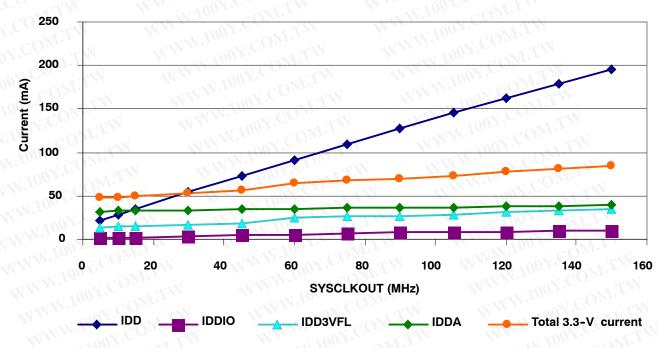
HALT and STANDBY modes cannot be used when the PLL is disabled.

6.5 Current Consumption by Power-Supply Pins Over Recommended Operating Conditions During Low-Power Modes at 150-MHz SYSCLKOUT (TMS320C281x)

	W.1007. CM:14, W.100	I _D	D	I _{DD}	io [†]	I _{DD}	A [‡]
MODE	TEST CONDITIONS	TYP	MAX§	TYP	MAX§	TYP	MAX§
Operational	All peripheral clocks are enabled. All PWM pins are toggled at 100 kHz. Data is continuously transmitted out of the SCIA, SCIB, and CAN ports. The hardware multiplier is exercised. Code is running out of ROM with 5 wait-states.	210 mA [¶]	260 mA	20 mA	30 mA	40 mA	50 mA
IDLE	XCLKOUT is turned off All peripheral clocks are on, except ADC	140 mA	165 mA	20 mA	30 mA	5 μΑ	10 μΑ
STANDBY	Peripheral clocks are turned off Pins without an internal PU/PD are tied high/low	5 mA	10mA	5 μΑ	20 μΑ	5 μΑ	10 μΑ
HALT	Peripheral clocks are turned off Pins without an internal PU/PD are tied high/low Input clock is disabled	70 μΑ	ON.CO	5 μΑ	10 μΑ	1 μΑ	4.10 N.100

 $^{^\}dagger$ I_{DDIO} current is dependent on the electrical loading on the I/O pins.

[†] I_{DDA} includes current into V_{DDA1}, V_{DDA2}, AV_{DDREFBG}, and V_{DDAIO} pins. § MAX numbers are at 125°C, and MAX voltage (V_{DD} = 1.89 V; V_{DDIO}, V_{DD3VFL}, V_{DDA} = 3.47 V).


[¶] I_{DD} represents the total current drawn from the 1.8-V rail (V_{DD}). It includes a small amount of current (<1 mA) drawn by V_{DD1}

[‡] I_{DDA} includes current into V_{DDA1}, V_{DDA2}, AV_{DDREFBG}, and V_{DDAIO} pins.

[§] MAX numbers are at 125°C, and MAX voltage (V_{DD} = 1.89 V; V_{DDIO}, V_{DD3VFL}, V_{DDA} = 3.47 V).

[¶] I_{DD} represents the total current drawn from the 1.8-V rail (V_{DD}). It includes a small amount of current (<1 mA) drawn by V_{DD1}.

6.6 Current Consumption Graphs

NOTES: A. Test conditions are as defined in Table 6-5 for operational currents.

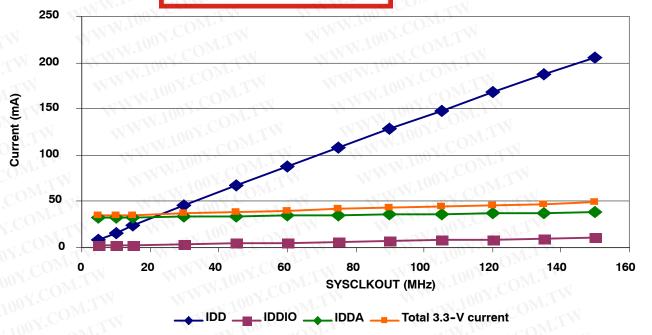

- B. I_{DD} represents the total current drawn from the 1.8-V rail (V_{DD}). It includes a small amount of current (<1 mA) drawn by V_{DD1}.
- C. IDDA represents the current drawn by VDDA1 and VDDA2 rails.
- D. Total 3.3-V current is the sum of IDDIO, IDD3VFL, and IDDA. It includes a small amount of current (<1 mA) drawn by VDDAIO.

Figure 6-1. F2812/F2811/F2810 Typical Current Consumption Over Frequency

Figure 6-2. F2812/F2811/F2810 Typical Power Consumption Over Frequency

NOTES: A. Test conditions are as defined in Table 6-5 for operational currents.

- B. I_{DD} represents the total current drawn from the 1.8-V rail (V_{DD}). It includes a small amount of current (<1 mA) drawn by V_{DD1}.
- C. IDDA represents the current drawn by VDDA1 and VDDA2 rails.
- D. Total 3.3-V current is the sum of IDDIO and IDDA. It includes a small amount of current (<1 mA) drawn by VDDAIO.

Figure 6-3. C2812/C2811/C2810 Typical Current Consumption Over Frequency

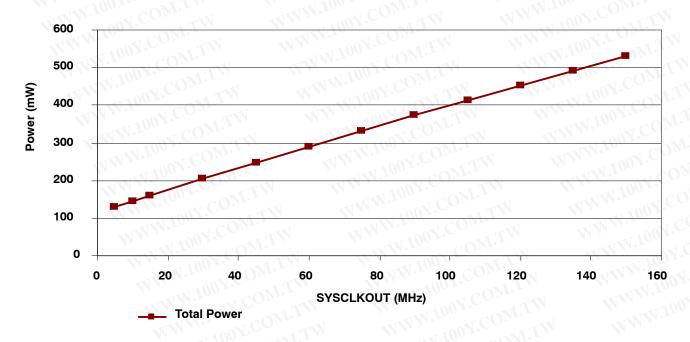


Figure 6-4. C2812/C2811/C2810 Typical Power Consumption Over Frequency

6.7 **Reducing Current Consumption**

28x DSPs incorporate a unique method to reduce the device current consumption. A reduction in current consumption can be achieved by turning off the clock to any peripheral module which is not used in a given application. Table 6-1 indicates the typical reduction in current consumption achieved by turning off the clocks to various peripherals.

Table 6-1. Typical Current Consumption by Various Peripherals (at 150 MHz)
--

PERIPHERAL MODULE	I _{DD} CURRENT REDUCTION (mA)
eCAN	12
EVA	7 W 6 1001.
EVB	W 6 100 100 100 100 100 100 100 100 100 1
ADC	8 [‡]
SCI	4
SPI	5 NW
McBSP	13

[†] All peripheral clocks are disabled upon reset. Writing to/reading from peripheral registers is possible only after the peripheral clocks are turned

Emulator Connection Without Signal Buffering for the DSP

Figure 6-5 shows the connection between the DSP and JTAG header for a single-processor configuration. If the distance between the JTAG header and the DSP is greater than 6 inches, the emulation signals must be buffered. If the distance is less than 6 inches, buffering is typically not needed. Figure 6-5 shows the simpler, no-buffering situation. For the pullup/pulldown resistor values, see the pin description section.

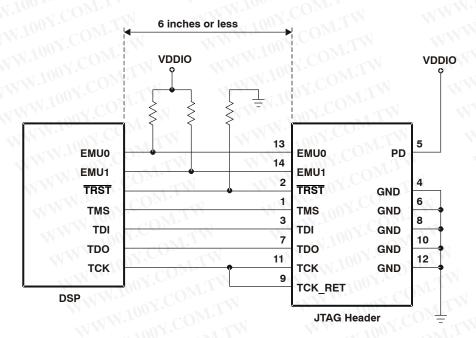


Figure 6-5. Emulator Connection Without Signal Buffering for the DSP

[‡] This number represents the current drawn by the digital portion of the ADC module. Turning off the clock to the ADC module results in the elimination of the current drawn by the analog portion of the ADC (I_{DDA}) as well.

6.9 Power Sequencing Requirements

TMS320F2812/F2811/F2810 silicon requires dual voltages (1.8-V or 1.9-V and 3.3-V) to power up the CPU, Flash, ROM, ADC, and the I/Os. To ensure the correct reset state for all modules during power up, there are some requirements to be met while powering up/powering down the device. The current F2812 silicon reference schematics (Spectrum Digital Incorporated eZdsp. board) suggests two options for the power sequencing circuit.

Power sequencing is not needed for C281x devices. In other words, 3.3-V and 1.8-V (or 1.9-V) can ramp together. C281x can also be used on boards that have F281x power sequencing implemented; however, if the 1.8-V (or 1.9-V) rail lags the 3.3-V rail, the GPIO pins are undefined until the 1.8-V rail reaches at least 1 V.

Option 1:

In this approach, an external power sequencing circuit enables V_{DDIO} first, then V_{DD} and V_{DD1} (1.8 V or 1.9 V). After 1.8 V (or 1.9 V) ramps, the 3.3 V for Flash (V_{DD3VFL}) and ADC ($V_{DDA1}/V_{DDA2}/AV_{DDREFBG}$) modules are ramped up. While option 1 is still valid, TI has simplified the requirement. Option 2 is the recommended approach.

Option 2:

Enable power to all 3.3-V supply pins (V_{DDIO} , V_{DD3VFL} , $V_{DDA1}/V_{DDA2}/V_{DDAIO}/AV_{DDREFBG}$) and then ramp 1.8 V (or 1.9 V) (V_{DD}/V_{DD1}) supply pins.

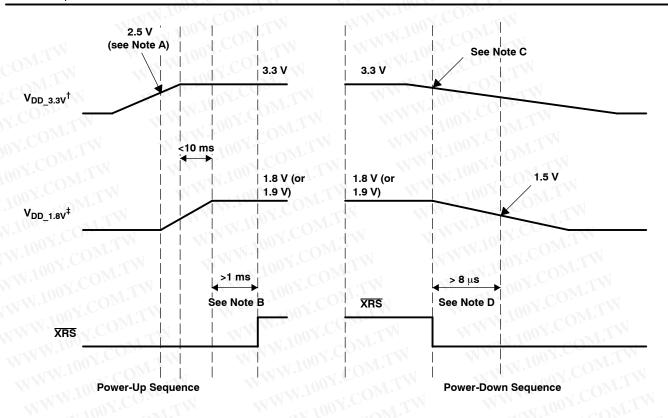
1.8 V or 1.9 V (V_{DD}/V_{DD1}) should not reach 0.3 V until V_{DDIO} has reached 2.5 V. This ensures the reset signal from the I/O pin has propagated through the I/O buffer to provide power-on reset to all the modules inside the device. See Figure 6–11 for power-on reset timing.

Power-Down Sequencing:

During power-down, the device reset should be asserted low (8 μ s, minimum) before the V_{DD} supply reaches 1.5 V. This will help to keep on-chip flash logic in reset prior to the V_{DDIO}/V_{DD} power supplies ramping down. It is recommended that the device reset control from "Low-Dropout (LDO)" regulators or voltage supervisors be used to meet this constraint. LDO regulators that facilitate power-sequencing (with the aid of additional external components) may be used to meet the power sequencing requirement. See www.spectrumdigital.com for F2812 eZdsp $^{\text{TM}}$ schematics and updates.

Table 6-2. Recommended "Low-Dropout Regulators"

SUPPLIER	PART NUMBER
Texas Instruments	TPS767D301


NOTE:

The GPIO pins are undefined until $V_{DD} = 1 \text{ V}$ and $V_{DDIO} = 2.5 \text{ V}$.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

eZdsp is a trademark of Spectrum Digital Incorporated.

[†] V_{DD 3.3V} - V_{DDIO}, V_{DD3VFL}, V_{DDAIO}, V_{DDA1}, V_{DDA2}, AV_{DDREFBG}

NOTES: A. 1.8-V (or 1.9 V) supply should ramp after the 3.3-V supply reaches at least 2.5 V.

- B. Reset (XRS) should remain low until supplies and clocks are stable. See Figure 6-11, Power-on Reset in Microcomputer Mode (XMP/MC = 0), for minimum requirements.
- C. Voltage supervisor or LDO reset control will trip reset (XRS) first when the 3.3-V supply is off regulation. Typically, this occurs a few milliseconds before the 1.8-V (or 1.9 V) supply reaches 1.5 V.
- D. Keeping reset low (XRS) at least 8 µs prior to the 1.8-V (or 1.9 V) supply reaching 1.5 V will keep the flash module in complete reset before the supplies ramp down.
- E. Since the state of GPIO pins is undefined until the 1.8-V (or 1.9 V) supply reaches at least 1 V, this supply should be ramped as quickly as possible (after the 3.3-V supply reaches at least 2.5 V).
- F. Other than the power supply pins, no pin should be driven before the 3.3-V rail has been fully powered up.

Figure 6-6. F2812/F2811/F2810 Typical Power-Up and Power-Down Sequence - Option 2

 $^{^{\}ddagger}$ V_{DD} $_{1.8V}$ $^{-}$ V_{DD} , V_{DD1}

6.10 Signal Transition Levels

Note that some of the signals use different reference voltages, see the recommended operating conditions table. Output levels are driven to a minimum logic-high level of 2.4 V and to a maximum logic-low level of 0.4 V.

Figure 6-7 shows output levels.

Figure 6-7. Output Levels

Output transition times are specified as follows:

- For a high-to-low transition, the level at which the output is said to be no longer high is below V_{OH(MIN)} and the level at which the output is said to be low is V_{OL(MAX)} and lower.
- For a low-to-high transition, the level at which the output is said to be no longer low is above V_{OL(MAX)} and the level at which the output is said to be high is V_{OH(MIN)} and higher.

Figure 6-8 shows the input levels.

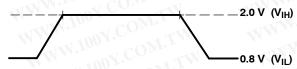


Figure 6-8. Input Levels

Input transition times are specified as follows:

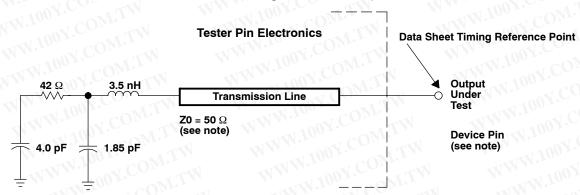
- For a high-to-low transition on an input signal, the level at which the input is said to be no longer high is below V_{IH(MIN)} and the level at which the input is said to be low is V_{IL(MAX)} and lower.
- For a *low-to-high transition* on an input signal, the level at which the input is said to be no longer low is above V_{IL(MAX)} and the level at which the input is said to be high is V_{IH(MIN)} and higher.

NOTE: See the individual timing diagrams for levels used for testing timing parameters.

6.11 Timing Parameter Symbology

Timing parameter symbols used are created in accordance with JEDEC Standard 100. To shorten the symbols, some of the pin names and other related terminology have been abbreviated as follows:

Lowercase s	subscripts and their meanings:	Letters and	symbols and their meanings:
a	access time	Н	High
C	cycle time (period)	L WW	Low
d	delay time	V	Valid
f	fall time	X	Unknown, changing, or don't care level
h	hold time	Z	High impedance
r	rise time		
su	setup time		
t com.	transition time		
V	valid time		
W	pulse duration (width)		


6.12 General Notes on Timing Parameters

All output signals from the 28x devices (including XCLKOUT) are derived from an internal clock such that all output transitions for a given half-cycle occur with a minimum of skewing relative to each other.

The signal combinations shown in the following timing diagrams may not necessarily represent actual cycles. For actual cycle examples, see the appropriate cycle description section of this document.

6.13 Test Load Circuit

This test load circuit is used to measure all switching characteristics provided in this document.

NOTE: The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must be taken into account. A transmission line with a delay of 2 ns or longer can be used to produce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns or longer) from the data sheet timing.

Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin.

Figure 6-9. 3.3-V Test Load Circuit

6.14 Device Clock Table

This section provides the timing requirements and switching characteristics for the various clock options available on the F281x and C281x DSPs. Table 6-3 lists the cycle times of various clocks.

Table 6-3. TMS320F281x and TMS320C281x Clock Table and Nomenclature

	W.100 COM. T.	MIN	NOM	MAX	UNIT
On this socillator along	t _{c(OSC)} , Cycle time	28.6		50	ns
On-chip oscillator clock	Frequency	20		35	MHz
VOLVIN	t _{c(Cl)} , Cycle time	6.67	N	250	ns
XCLKIN	Frequency	CON 4	rVV	150	MHz
OVOCLIKOLIT	t _{c(SCO)} , Cycle time	6.67	-48]	500	ns
SYSCLKOUT	Frequency	100 2	. I. A.	150	MHz
VOLKOUT	t _{c(XCO)} , Cycle time	6.67	T.TW	2000	ns
XCLKOUT	Frequency	0.5	WILL	150	MHz
Hobolik COM	t _{c(HCO)} , Cycle time	6.67	13.3 [‡]	V	ns
HSPCLK	Frequency	NW. Too	75 [‡]	150	MHz
LODOLK	t _{c(LCO)} , Cycle time	13.3	26.6 [‡]	. 4	ns
LSPCLK	Frequency	1007	37.5 [‡]	75	MHz
NN. 3 LOV. CONS	t _{c(ADCCLK)} , Cycle time [†]	40	i.Co	TW	ns
ADC clock	Frequency	WWW.	V.COP	25	MHz
ODE TAY TOWN	t _{c(SPC)} , Cycle time	50	~√ CO	Mr.	ns
SPI clock	Frequency	-TW.10		20	MHz
Wash 1007.Co	t _{c(CKG)} , Cycle time	50	001.	C.Mo.	ns
McBSP	Frequency	MAN	1007.C	20	MHz
VERNOV WILLIAM CON	$t_{c(XTIM)}$, Cycle time	6.67	You	Co.	ns
XTIMCLK	Frequency		V.In.	150	MHz

[†] The maximum value for ADCCLK frequency is 25 MHz. For SYSCLKOUT values of 25 MHz or lower, ADCCLK has to be SYSCLKOUT/2 or lower. ADCCLK = SYSCLKOUT is not a valid mode for any value of SYSCLKOUT.

[‡] This is the default reset value if SYSCLKOUT = 150 MHz.

6.15 Clock Requirements and Characteristics

6.15.1 Input Clock Requirements

The clock provided at the XCLKIN pin generates the internal CPU clock cycle.

Table 6-4. Input Clock Frequency

V.COP	PARAMETER	V WT	AM 100 X.C.	MIN TY	P MAX	UNIT
-1 CO	MI. TO CO	Resonator	WWW.	20	35	
101.	M.TW 100 1.	Crystal	IN TOO	20	35	l
T _X	Input clock frequency	·······································	Without PLL	4	150	MHz
		XCLKIN	With PLL	5	100	
f	Limp mode clock frequency	COM	WWW.	T.Com	2	MHz

Table 6-5. XCLKIN Timing Requirements - PLL Bypassed or Enabled

NO.	OON.C	M.TW WW.1001.	MIN	MAX	UNIT
C8	t _{c(CI)}	Cycle time, XCLKIN	6.67	250	ns
C9	t _{f(CI)}	Fall time, XCLKIN	i.Co.	6	ns
C10	t _{r(CI)}	Rise time, XCLKIN	A.CO	6	ns
C11	t _{w(CIL)}	Pulse duration, X1/XCLKIN low as a percentage of t _{c(Cl)}	40	60	%
C12	t _{w(CIH)}	Pulse duration, X1/XCLKIN high as a percentage of t _{c(Cl)}	40	60	%

Table 6-6. XCLKIN Timing Requirements - PLL Disabled

NO.	WW.	The COMP.	WWW WWW	MIN	MAX	UNIT
C8	t _{c(CI)}	Cycle time, XCLKIN	OM:	6.67	250	ns
	MAI	25100 FOLKER TAN M. 221100 F.	Up to 30 MHz	0.100	6	M_{1}
C9	t _{f(CI)}	Fall time, XCLKIN	30 MHz to 150 MHz	-x1 10	2	ns
040		VIV. THE VOLUME OF THE WAY OF	Up to 30 MHz	144.	6	, O -
C10	t _{r(CI)}	Rise time, XCLKIN	30 MHz to 150 MHz	WW.	2	ns
V	. 1	M. 1003. W. 114. M. 1003	XCLKIN ≤ 120 MHz	40	60	1 CO
C11	t _{w(CIL)}	Pulse duration, X1/XCLKIN low as a percentage of t _{c(CI)}	120 < XCLKIN ≤ 150 MHz	45	55	%
040	1.	The second secon	XCLKIN ≤ 120 MHz	40	60	01
C12	t _{w(CIH)}	Pulse duration, X1/XCLKIN high as a percentage of $t_{\text{c(CI)}}$	120 < XCLKIN ≤ 150 MHz	45	55	%

Table 6-7. Possible PLL Configuration Modes

PLL MODE	REMARKS	SYSCLKOUT
PLL Disabled	Invoked by tying XPLLDIS pin low upon reset. PLL block is completely disabled. Clock input to the CPU (CLKIN) is directly derived from the clock signal present at the X1/XCLKIN pin.	XCLKIN
PLL Bypassed	Default PLL configuration upon power-up, if PLL is not disabled. The PLL itself is bypassed. However, the /2 module in the PLL block divides the clock input at the X1/XCLKIN pin by two before feeding it to the CPU.	XCLKIN/2
PLL Enabled	Achieved by writing a non-zero value "n" into PLLCR register. The /2 module in the PLL block now divides the output of the PLL by two before feeding it to the CPU.	(XCLKIN * n) / 2

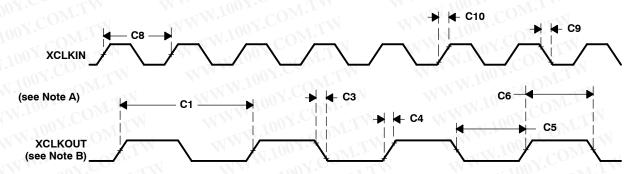

6.15.2 Output Clock Characteristics

Table 6-8. XCLKOUT Switching Characteristics (PLL Bypassed or Enabled)^{†‡}

No.	W	PARAMETER	MIN TYP MAX	X UNIT
C1	t _{c(XCO)}	Cycle time, XCLKOUT	6.67 [§]	ns
СЗ	t _{f(XCO)}	Fall time, XCLKOUT	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ns
C4	t _{r(XCO)}	Rise time, XCLKOUT	V.100 2	ns
C5	t _{w(XCOL)}	Pulse duration, XCLKOUT low	H-2 H+2	2 ns
C6	t _{w(XCOH)}	Pulse duration, XCLKOUT high	H-2 H+2	2 ns
C7	t _p	PLL lock time [¶]	131072	t _{c(CI)} ns

[†] A load of 40 pF is assumed for these parameters.

This parameter has changed from 4096 XCLKIN cycles in the earlier revisions of the silicon.

NOTES: A. The relationship of XCLKIN to XCLKOUT depends on the divide factor chosen. The waveform relationship shown in Figure 6-10 is intended to illustrate the timing parameters only and may differ based on configuration.

B. XCLKOUT configured to reflect SYSCLKOUT.

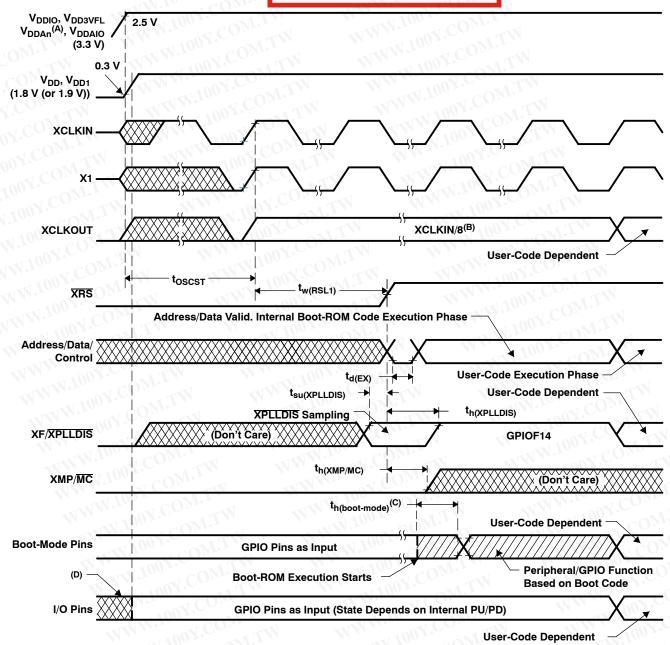
Figure 6-10. Clock Timing

6.16 Reset Timing

Table 6-9. Reset (XRS) Timing Requirements[†]

		2 () 32 (
	WILLIAM WAS	17001.	MIN	NOM	MAX	UNIT
t _{w(RSL1)}	Pulse duration, stable XCLKIN to XRS high	V 100Y.CO	8t _{c(CI)}	MAL	700 X	cycles
t _{w(RSL2)}	Pulse duration, XRS low	Warm reset	8t _{c(CI)}	MM	1100	cycles
t _{w(WDRS)}	Pulse duration, reset pulse generated by watchdog	M. Co	WT	512t _{c(CI)}	400	cycles
t _{d(EX)}	Delay time, address/data valid after XRS high	MM.In. O.C.	OM.	32t _{c(CI)}	11.10	cycles
toscsT [‡]	Oscillator start-up time	M.100 2	OM	10	MM_{-T}	ms
t _{su(XPLLDIS)}	Setup time for XPLLDIS pin	M.100 1.	16t _{c(CI)}	1	WW.	cycles
t _{h(XPLLDIS)}	Hold time for XPLLDIS pin	W 1 100 X	16t _{c(CI)}	· 1	V	cycles
t _{h(XMP/MC)}	Hold time for XMP/MC pin	WW 100	16t _{c(CI)}		M A.	cycles
t _{h(boot-mode)}	Hold time for boot-mode pins	WWW	2520t _{c(CI)} §	N.	MA	cycles

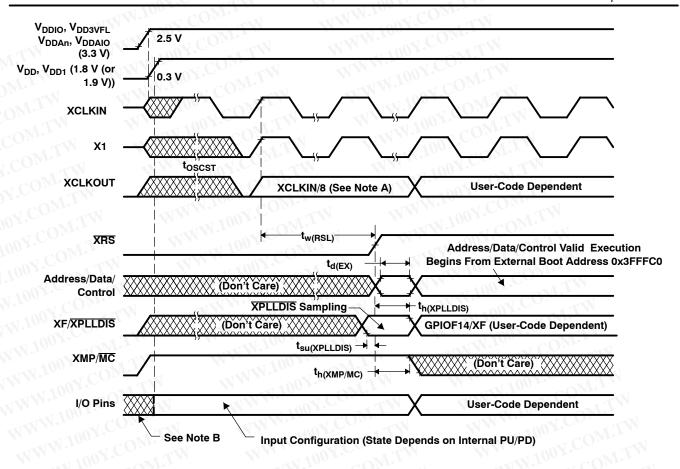
[†] If external oscillator/clock source are used, reset time has to be low at least for 1 ms after V_{DD} reaches 1.5 V.


 $^{^{\}ddagger}$ H = 0.5t_{c(XCO)}

[§] The PLL must be used for maximum frequency operation.

[‡] Dependent on crystal/resonator and board design.

[§] The boot ROM reads the password locations. Therefore, this timing requirement includes the wakeup time for flash. See the *TMS320x281x DSP Boot ROM Reference Guide* (literature number SPRU095) and *TMS320x281x DSP System Control and Interrupts Reference Guide* (literature number SPRU078) for further information.


胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

NOTES: A. V_{DDAn} - V_{DDA1}/V_{DDA2} and AV_{DDREFBG}

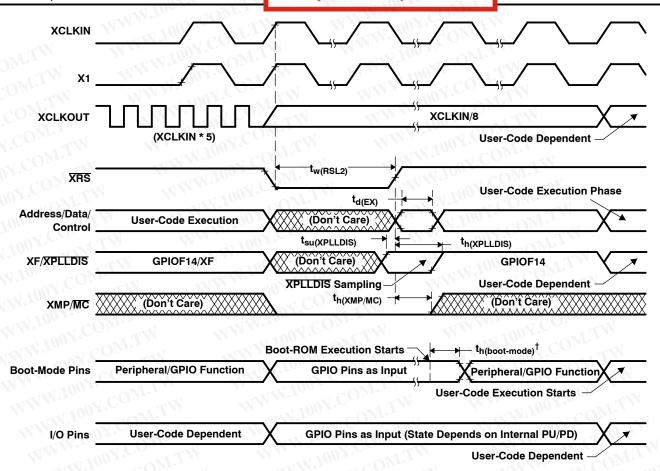

- B. Upon power up, SYSCLKOUT is XCLKIN/2 if the PLL is enabled. Since both the XTIMCLK and CLKMODE bits in the XINTCNF2 register come up with a reset state of 1, SYSCLKOUT is further divided by 4 before it appears at XCLKOUT. This explains why XCLKOUT = XCLKIN/8 during this phase.
- C. After reset, the Boot ROM code executes instructions for 1260 SYSCLKOUT cycles (SYSCLKOUT = XCLKIN/2) and then samples BOOT Mode pins. Based on the status of the Boot Mode pin, the boot code branches to destination memory or boot code function in ROM. The BOOT Mode pins should be held high/low for at least 2520 XCLKIN cycles from boot ROM execution time for proper selection of Boot modes.
 - If Boot ROM code executes after power-on conditions (in debugger environment), the Boot code execution time is based on the current SYSCLKOUT speed. The SYSCLKOUT will be based on user environment and could be with or without PLL enabled.
- D. The state of the GPIO pins is undefined (i.e., they could be input or output) until the 1.8-V (or 1.9-V) supply reaches at least 1 V and 3.3-V supply reaches 2.5 V.

Figure 6-11. Power-on Reset in Microcomputer Mode (XMP/MC = 0) (See Note D)

- NOTES: A. Upon power up, SYSCLKOUT is XCLKIN/2 if the PLL is enabled. Since both the XTIMCLK and CLKMODE bits in the XINTCNF2 register come up with a reset state of 1, SYSCLKOUT is further divided by 4 before it appears at XCLKOUT. This explains why XCLKOUT = XCLKIN/8 during this phase.
 - B. The state of the GPIO pins is undefined (i.e., they could be input or output) until the 1.8-V (or 1.9-V) supply reaches at least 1 V and 3.3-V supply reaches 2.5 V..

Figure 6-12. Power-on Reset in Microprocessor Mode (XMP/ \overline{MC} = 1)

[†] After reset, the Boot ROM code executes instructions for 1260 SYSCLKOUT cycles (SYSCLKOUT = XCLKIN/2) and then samples BOOT Mode pins. Based on the status of the Boot Mode pin, the boot code branches to destination memory or boot code function in ROM. The BOOT Mode pins should be held high/low for at least 2520 XCLKIN cycles from boot ROM execution time for proper selection of Boot

If Boot ROM code executes after power-on conditions (in debugger environment), the Boot code execution time is based on the current SYSCLKOUT speed. The SYSCLKOUT will be based on user environment and could be with or without PLL enabled.

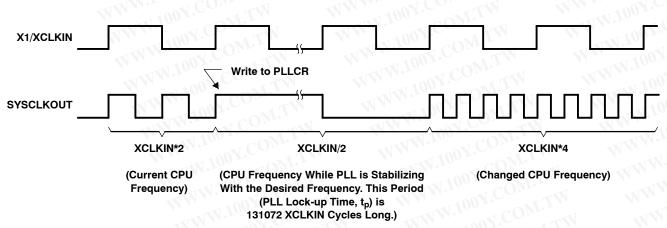
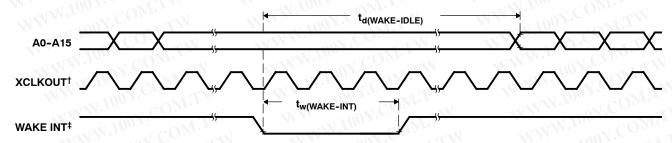


Figure 6-13. Warm Reset in Microcomputer Mode

Figure 6-14. Effect of Writing Into PLLCR Register

6.17 Low-Power Mode Wakeup Timing

Table 6-10. IDLE Mode Timing Requirements


WII	WW. TI 100 X. CON. TW	TEST CONDITIONS	TON WIN	NOM	MAX	UNIT
W	Pulse duration, external wake-up	Without input qualifier	2t _{c(SCO)}			Cycles
^t w(WAKE-INT)	signal	With input qualifier	1t _{c(SCO)} + IQT [†]			Cycles

[†] Input Qualification Time (IQT) = [$t_{c(SCO)} \times 2 \times QUALPRD$] \times 5 + [$t_{c(SCO)} \times 2 \times QUALPRD$].

Table 6-11. IDLE Mode Switching Characteristics

COM	PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
Y.COM.	Delay time, external wake signal to program execution resume [‡]	N.TW WY	W.IOV.COMITW	
OX.COM	- Wake-up from Flash - Flash module in active state	Without input qualifier	8t _{c(SCO)}	Cycles
OON.CON	- Wake-up from Flash - Flash module in active state	With input qualifier	8t _{c(SCO)} + IQT [†]	Cycles
^t d(WAKE-IDLE)	- Wake-up from Flash - Flash module in sleep state	Without input qualifier	1050t _{c(SCO)}	Cycles
W.100Y.C	- Wake-up from Flash - Flash module in sleep state	With input qualifier	1050t _{c(SCO)} + IQT [†]	Cycles
T 100Y.	- Wake-up from SARAM	Without input qualifier	8t _{c(SCO)}	Cycles
MM. OUX	- Wake-up from SARAM	With input qualifier	8t _{c(SCO)} + IQT [†]	Cycles

[†] Input Qualification Time (IQT) = [$t_{c(SCO)} \times 2 \times QUALPRD$] \times 5 + [$t_{c(SCO)} \times 2 \times QUALPRD$]. † This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered by the wake-up) signal involves additional latency.

[†] XCLKOUT = SYSCLKOUT

Figure 6-15. IDLE Entry and Exit Timing

[‡] WAKE INT can be any enabled interrupt, WDINT, XNMI, or XRS.

Table 6-12. STANDBY Mode Timing Requirements

WTDE	MM. 1007.	TEST CONDITIONS	MIN	NOM	MAX	UNIT
COM	Pulse duration, external	Without input qualifier	12t _{c(CI)}	TW		Cycles
τ _w (WAKE-INT)	wake-up signal	With input qualifier	(2 + QUALSTDBY)† * t _{c(CI)}	TVN		Cycles

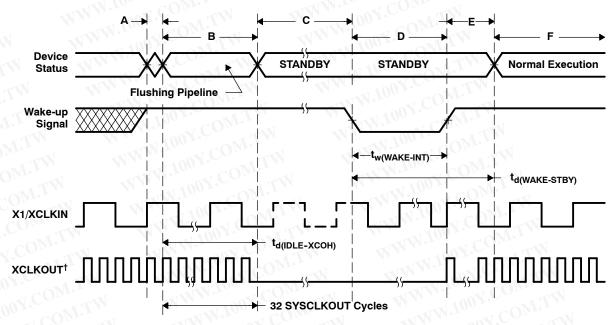

[†] QUALSTDBY is a 6-bit field in the LPMCR0 register.

Table 6-13. STANDBY Mode Switching Characteristics

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
t _{d(IDLE-} XCOH)	Delay time, IDLE instruction executed to XCLKOUT high	ON.COM.IT	32t _{c(SCO)}	45t _{c(SCO)}	Cycles
100X.CO	Delay time, external wake signal to program execution resume [†]	100 ^Y .COM.TY	N WWW.1	100Y.COM.TW	
	Wake-up from Flash Flash module in active state	Without input qualifier	TH WHY	12t _{c(CI)}	Cycles
t _{d(WAKE-STBY)}	Wake-up from Flash Flash module in active state	With input qualifier	TAN MA	$12t_{c(CI)} + t_{w(WAKE-INT)}$	Cycles
	- Wake-up from Flash - Flash module in sleep state	Without input qualifier	M.TW W	1125t _{c(SCO)}	Cycles
	- Wake-up from Flash - Flash module in sleep state	With input qualifier	OM.TW V	1125t _{c(SCO)} + t _{w(WAKE-INT)}	Cycles
	- Wake-up from SARAM	Without input qualifier	CONT.TW	12t _{c(CI)}	Cycles
	- Wake-up from SARAM	With input qualifier	COM	$12t_{c(CI)} + t_{w(WAKE-INT)}$	Cycles

[†] This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered by the wake-up) signal involves additional latency.

NOTES: A. IDLE instruction is executed to put the device into STANDBY mode.

- B. The PLL block responds to the STANDBY signal. SYSCLKOUT is held for the number of cycles indicated below before being turned off:
 - 16 cycles, when DIVSEL = 00 or 01
 - 32 cycles, when DIVSEL = 10
 - 64 cycles, when DIVSEL = 11

This delay enables the CPU pipeline and any other pending operations to flush properly. If an access to XINTF is in progress and its access time is longer than this number, then it will fail. It is recommended that STANDBY mode be entered from SARAM without an XINTF access in progress.

- C. Clocks to the peripherals are turned off. However, the PLL and watchdog are not shut down. The device is now in STANDBY mode.
- D. The external wake-up signal is driven active.
- E. After a latency period, the STANDBY mode is exited.
- F. Normal execution resumes. The device will respond to the interrupt (if enabled).

Figure 6-16. STANDBY Entry and Exit Timing

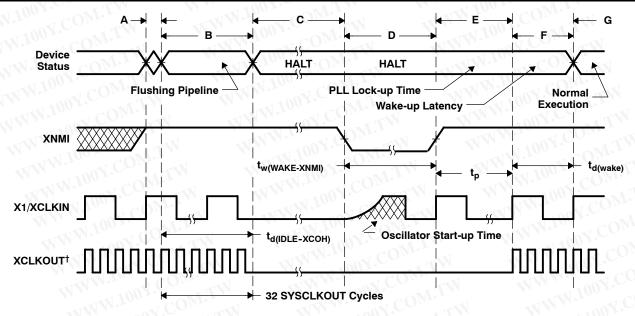


Table 6-14. HALT Mode Timing Requirements

WTI	WW. TIOOY.CO.II.TW	MIN NOM	MAX	UNIT
t _{w(WAKE-XNMI)}	Pulse duration, XNMI wakeup signal	2t _{c(CI)}		Cycles
t _{w(WAKE-XRS)}	Pulse duration, XRS wakeup signal	8t _{c(CI)}		Cycles

Table 6-15. HALT Mode Switching Characteristics

A'COMP.	PARAMETER	MIN	TYP	MAX	UNIT
t _{d(IDLE-XCOH)}	Delay time, IDLE instruction executed to XCLKOUT high	32t _{c(SCO)}	45t _{c(SCO)}	W	Cycles
tp	PLL lock-up time	TWW. Too	" COM.	131072t _{c(CI)}	Cycles
100 X . COM	Delay time, PLL lock to program execution resume	101 101	COM	.1	
t _{d(wake)}	- Wake-up from flash - Flash module in sleep state	WWW.10	OOX.COJ	1125t _{c(SCO)}	Cycles
	- Wake-up from SARAM	WW.	700 CO	35t _{c(SCO)}	Cycles

† XCLKOUT = SYSCLKOUT

NOTES: A. IDLE instruction is executed to put the device into HALT mode.

- B. The PLL block responds to the HALT signal. SYSCLKOUT is held for another 32 cycles before the oscillator is turned off and the CLKIN to the core is stopped. This 32-cycle delay enables the CPU pipe and any other pending operations to flush properly.
- C. Clocks to the peripherals are turned off and the internal oscillator and PLL are shut down. The device is now in HALT mode and consumes absolute minimum power.
- D. When XNMI is driven active, the oscillator is turned on; but the PLL is not activated. The pulse duration of 2t_{c(CI)} is applicable when an external oscillator is used. If the internal oscillator is used, the oscillator wake-up time should be added to this parameter.
- E. When XNMI is deactivated, it initiates the PLL lock sequence, which takes 131,072 X1/XCLKIN cycles.
- F. When CLKIN to the core is enabled, the device will respond to the interrupt (if enabled), after a latency. The HALT mode is now exited
- G. Normal operation resumes.

Figure 6-17. HALT Wakeup Using XNMI

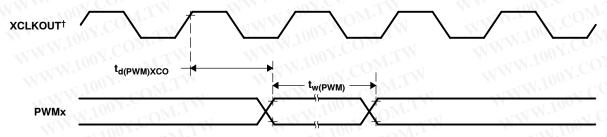
勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

6.18 Event Manager Interface

6.18.1 PWM Timing

PWM refers to all PWM outputs on EVA and EVB.

Table 6-16. PWM Switching Characteristics^{†‡}


PARAMETER		TEST CONDITIONS	MIN	MAX	UNIT
t _{w(PWM)} §	Pulse duration, PWMx output high/low	TI 100Y. COM.TW	25		ns
t _{d(PWM)} XCO	Delay time, XCLKOUT high to PWMx output switching	XCLKOUT = SYSCLKOUT/4		10	ns

[†] See the GPIO output timing for fall/rise times for PWM pins.

Table 6-17. Timer and Capture Unit Timing Requirements ¶#

			MIN W	MAX	UNIT
t _{w(TDIR)}	Pulse duration, TDIRx low/high	Without input qualifier	2t _{c(SCO)}		
		With input qualifier	1t _{c(SCO)} + IQT	ſ	cycles
t _{w(CAP)}	Pulse duration, CAPx input low/high	Without input qualifier	2t _{c(SCO)}	N.	
		With input qualifier	1t _{c(SCO)} + IQT	N	cycles
tw(TCLKINL)	Pulse duration, TCLKINx low as a percentage	ge of TCLKINx cycle time	40	60	%
t _{w(TCLKINH)}	Pulse duration, TCLKINx high as a percenta	age of TCLKINx cycle time	40	60	%
t _{c(TCLKIN)}	Cycle time, TCLKINx	OM:TW	4t _{c(HCO)}	TA	ns

The QUALPRD bit field value can range from 0 (no qualification) through 0xFF (510 SYSCLKOUT cycles). The qualification sampling period is 2n SYSCLKOUT cycles, where "n" is the value stored in the QUALPRD bit field. As an example, when QUALPRD = 1, the qualification sampling period is 1 x 2 = 2 SYSCLKOUT cycles (i.e., the input is sampled every 2 SYSCLKOUT cycles). Six such samples will be taken over five sampling windows, each window being 2n SYSCLKOUT cycles. For QUALPRD = 1, the minimum width that is needed is 5 x 2 = 10 SYSCLKOUT cycles. However, since the external signal is driven asynchronously, a 11-SYSCLKOUT-wide pulse ensures reliable recognition.

[†] XCLKOUT = SYSCLKOUT

Figure 6-18. PWM Output Timing

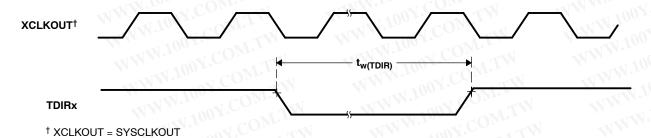


Figure 6-19. TDIRx Timing

[‡] PWM pin toggling frequency is limited by the GPIO output buffer switching frequency (20 MHz).

 $[\]$ PWM outputs may be 100%, 0%, or increments of $t_{c(HCO)}$ with respect to the PWM period.

[#] Maximum input frequency to the QEP = min[HSPCLK/2, 20 MHz]

Table 6-18. External ADC Start-of-Conversion - EVA - Switching Characteristics†

WILL	PARAMETER	MIN	MAX	UNIT
t _d (XCOH-EVASOCL)	Delay time, XCLKOUT high to EVASOC low	OOY. CONT.TW	1t _{c(SCO)}	cycle
t _{w(EVASOCL)}	Pulse duration, EVASOC low	32t _{c(HCO)}		ns

[†] XCLKOUT = SYSCLKOUT

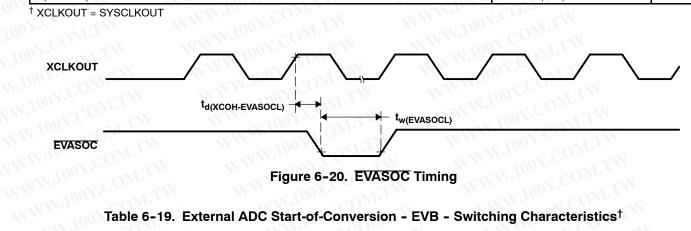


Figure 6-20. EVASOC Timing

Table 6-19. External ADC Start-of-Conversion - EVB - Switching Characteristics[†]

M. 1001.00	PARAMETER	MIN MAX	UNIT
t _{d(XCOH-EVBSOCL)}	Delay time, XCLKOUT high to EVBSOC low	1t _{c(SCO)}	cycle
t _{w(EVBSOCL)}	Pulse duration, EVBSOC low	32t _{c(HCO)}	ns

[†] XCLKOUT = SYSCLKOUT

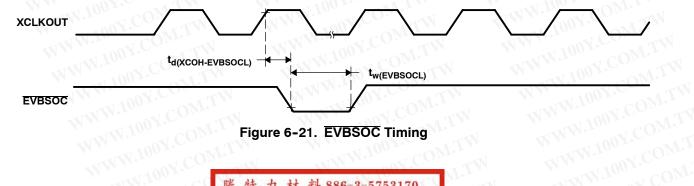


Figure 6-21. EVBSOC Timing

WWW.100Y.CON 特力材料886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw WWW.100Y.COM.TW

WWW.100Y.COM

WWW.100Y.COM.TW

WWW.100Y.COM.TW

100Y.COM.TW

6.18.2 Interrupt Timing

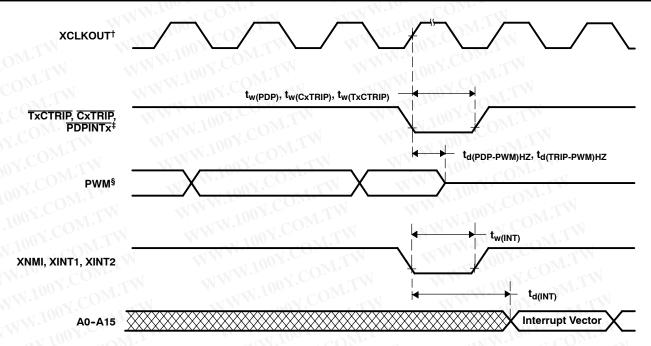
Table 6-20. Interrupt Switching Characteristics

$V_{I,I}$	PARAMETER	WW.Yo	MIN	MAX	UNI
t _d (PDP-PWM)HZ	Delay time, PDPINTx low to PWM high-impedance state	Without input qualifier	00^{1} . CO_{M} .	12	ns
		With input qualifier	To COM	$1t_{c(SCO)} + IQT^{\dagger} + 12$	į
t _{d(TRIP-PWM)} HZ	Delay time, CxTRIP/TxCTRIP signals low to PWM high-impedance state Without input qualifier With input qualifier	A.Too A'COL	3 * t _{c(SCO)}	ns	
COM		With input qualifier	A. TOON.CE	2t _{c(SCO)} + IQT [†]	
t _{d(INT)}	Delay time, INT low/high to interrupt-vector fetch		VW.	IQT + 12t _{c(SCO)}	ns

Table 6-21. Interrupt Timing Requirements

· CO	WWW. CO.	TW WW	MIN MAX	UNIT	
t _{w(INT)}	Pulse duration, INT input low/high	with no qualifier	2t _{c(SCO)}	cycle	
	i dise daration, hvi input low/iligh	with qualifier	1t _{c(SCO)} + IQT [†]	Cycle	
t _{w(PDP)}	Pulse duration, PDPINTx input low	with no qualifier	2t _{c(SCO)}	cycle	
		with qualifier	1t _{c(SCO)} + IQT [†]	Cycle	
1005	Pulse duration, CXTRIP input low	with no qualifier	2t _{c(SCO)}	cycle	
t _{w(CxTRIP)}		with qualifier	1t _{c(SCO)} + IQT [†]	Cycle	
MAN. Inc	Dules duration TrOTDID insult law	with no qualifier	2t _{c(SCO)}	avala.	
tw(TxCTRIP)	Pulse duration, TxCTRIP input low	with qualifier	1t _{c(SCO)} + IQT [†]	cycle	

 $^{^{\}dagger}$ Input Qualification Time (IQT) = $[t_{c(SCO)} \times 2 \times \text{QUALPRD}] \times 5 + [t_{c(SCO)} \times 2 \times \text{QUALPRD}].$


WWW.100Y.COM.TV

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.COM.TW

100Y.COM.TW

† XCLKOUT = SYSCLKOUT

CXTRIP - C1TRIP, C2TRIP, C3TRIP, C4TRIP, C5TRIP, or C6TRIP

PDPINTX - PDPINTA or PDPINTB

Figure 6-22. External Interrupt Timing

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM.T

[†] TXCTRIP - T1CTRIP, T2CTRIP, T3CTRIP, T4CTRIP

[§] PWM refers to **all** the PWM pins in the device (i.e., PWMn and TnPWM pins or PWM pin pair relevant to each CXTRIP pin). The state of the PWM pins after PDPINTx is taken high depends on the state of the FCOMPOE bit.

General-Purpose Input/Output (GPIO) - Output Timing 6.19

Table 6-22. General-Purpose Output Switching Characteristics

WW.100Y.COM.TW

1.1	PARAMETER	TWW.I	A COM.	MIN	MAX	UNIT
t _{d(XCOH-GPO)}	Delay time, XCLKOUT high to GPIO low/high	All GPIOs	COM.	- T	1t _{c(SCO)}	cycle
t _{r(GPO)}	Rise time, GPIO switching low to high	All GPIOs	Mon.		10	ns
t _{f(GPO)}	Fall time, GPIO switching high to low	All GPIOs	OOX.CO	IM	10	ns
f _{GPO}	Toggling frequency, GPO pins	WWW.	ON CO	TW	20	MHz

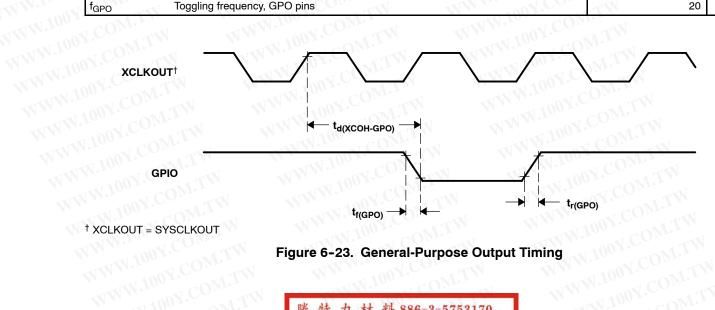
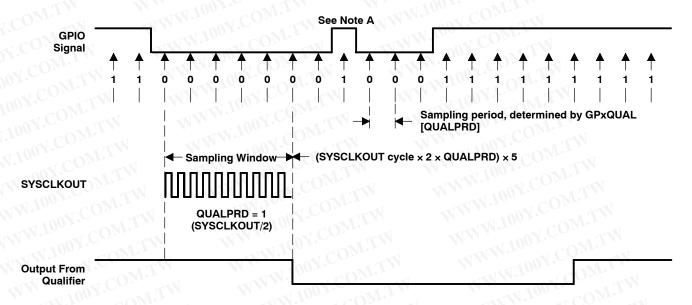


Figure 6-23. General-Purpose Output Timing WWW.100Y.COM.TW

特力材料886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.COM.

WWW.100Y.COM.TW


100Y.COM.TW

WWW.100Y.COM.TW

100Y.COM.TW

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

6.20 General-Purpose Input/Output (GPIO) - Input Timing

- NOTES: A. This glitch is ignored by the input qualifier. The QUALPRD bit field specifies the qualification sampling period. It can vary from 00 to 0xFF. Input qualification is not applicable when QUALPRD = 00. For any other value "n", the qualification sampling period in 2n SYSCLKOUT cycles (i.e., at every 2n SYSCLKOUT cycle, the GPIO pin will be sampled). Six consecutive samples must be of the same value for a given input to be recognized.
 - B. For the qualifier to detect the change, the input must be stable for 10 SYSCLKOUT cycles or greater. In other words, the inputs should be stable for (5 × QUALPRD × 2) SYSCLKOUT cycles. This would enable five sampling periods for detection to occur. Since external signals are driven asynchronously, a 13-SYSCLKOUT-wide pulse provides reliable recognition.

Figure 6-24. GPIO Input Qualifier - Example Diagram for QUALPRD = 1

Table 6-23. General-Purpose Input Timing Requirements

	MMM. TO COMP.	COM MIN MAX				UNIT
	Dulas divertion CRIO law/high	All ODIOs	With no qualifier	2t _{c(SCO)}	, To	$^{1}C_{O_{D}}$
^t w(GPI)	Pulse duration, GPIO low/high	All GPIOs	With qualifier	1t _{c(SCO)} + IQT [†]		cycles

[†] Input Qualification Time (IQT) = $[t_{c(SCO)} \times 2 \times QUALPRD] \times 5 + [t_{c(SCO)} \times 2 \times QUALPRD]$.

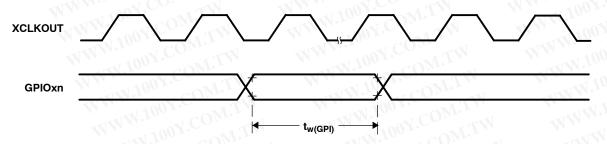
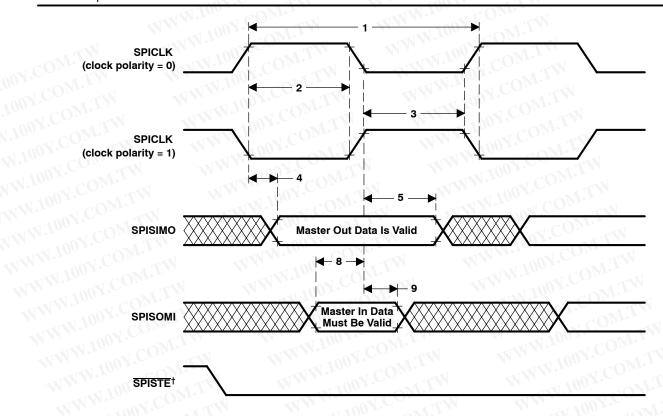


Figure 6-25. General-Purpose Input Timing


NOTE: The pulse width requirement for general-purpose input is applicable for the XBIO and ADCSOC pins as well.

SPI Master Mode Timing 6.21

Table 6-24. SPI Master Mode External Timing (Clock Phase =

IND	1	su	4	Su	COV	SU		SU	WWV	SE TO SE	I.CC	SU		≘	
RR + 1) RR > 3	MAX	127t _{c(LCO)}	0.5t _c (sPc)м -0.5t _{c(L} co)	0.5t _c (spc)M -0.5t _{c(LCO)}	$0.5t_{c(SPC)M} + 0.5t_{c(LCO)}$	$0.5t_{c(\mathrm{SPC})\mathrm{M}} + 0.5t_{c(\mathrm{LCO})}$		10	WW WW	WWW.I	100X.C 100X. 100X	COM COM	勝胜华	特 力 持力电子 持力电子 Http://	材料 886-3-575 子(上海) 86-21-349 子(深圳) 86-755-83 /www. 100y. com.
SPI WHEN (SPIBRR + 1) IS ODD AND SPIBRR > 3	NIM Z Z C C C	5t _{c(LCO)}	$0.5t_{c(\mathrm{SPC})\mathrm{M}}$ - $0.5t_{c(\mathrm{LCO})}$ -10	0.5t _{c(SPC)} M-0.5t _{c(LCO)} -10	0.5t _{c(SPC)M} +0.5t _{c(LCO)} -10	0.5t _{c(SPC)} M+0.5t _{c(LCO)} -10	01-01	CO,	0.5t _{c(SPC)} M+0.5t _{c(LCO)} -10	$0.5t_{c(\mathrm{SPC})\mathrm{M}} + 0.5t_{c(\mathrm{LCO})} - 10$	TWI WW OWN OWN OWN OWN OWN OWN OWN OWN OWN	M.M. M.10 (10) (10) (0)	0.5t _{c(SPC)} M-0.5t _{c(LCO)} -10	$0.5 t_{ m c(SPC)M}$ – $0.5 t_{ m c(LCO)}$ – 10	l clock rate:
3 + 1) IS EVEN = 0 OR 2	MAX	128t _{c(LCO)}	0.5t _c (sPc)м	0.5t _c (sPC)м	0.5t _c (sPC)м	0.5t _c (sPC)м	M.70	100, 00, 0. 0. 0. 0. 0. 0.	COW:	N EW EW EW		WW.	W.100 WW.10	700X.CO	rared. / bit (SPICCR.6). d to the following SPI
SPI WHEN (SPIBRR + 1) IS EVEN OR SPIBRR = 0 OR 2	NIM 6 8 8	4t _{c(LCO)}	0.5t _c (sPC)M-10	0.5t _c (SPC)M-10	0.5t _c (SPC)M-10	0.5t _c (SPC)M-10	- 10	1.10 1.10	0.5t _{c(SPC)M} -10	0.5t _{c(SPC)} M-10	O N EW	0	0.25t _{c(SPC)M} -10	0.25t _c (sPC)M-10	The CLOCK PHASE bit (SPICTL.3) is cleared. SPCLK BRR + 1) Is controlled by the CLOCK POLARITY bit (SPICCR.6). such that the SPI clock speed is limited to the following SPI clock rate: ster mode receive 12.5 MHz MAX
NANA	444444	Cycle time, SPICLK	Pulse duration, SPICLK high (clock polarity = 0)	Pulse duration, SPICLK low (clock polarity = 1)	Pulse duration, SPICLK low (clock polarity = 0)	Pulse duration, SPICLK high (clock polarity = 1)	Delay time, SPICLK high to SPISIMO valid (clock polarity = 0)	Delay time, SPICLK low to SPISIMO valid (clock polarity = 1)	Valid time, SPISIMO data valid after SPICLK low (clock polarity = 0)	Valid time, SPISIMO data valid after SPICLK high (clock polarity = 1)	Setup time, SPISOMI before SPICLK low (clock polarity = 0)	Setup time, SPISOMI before SPICLK high (clock polarity = 1)	Valid time, SPISOMI data valid after SPICLK low (clock polarity = 0)	Valid time, SPISOMI data valid after SPICLK high (clock polarity = 1)	ICTL.2) is set and the LSPCLK or (SPIE) K signal referenced rs must be adjusted rs: 20 MHz MAX, mas
		t _c (SPC)M	tw(spcH)M	tw(SPCL)M	tw(SPCL)M	tw(sPCH)M	t _d (spch-simo)m	ф(spcl-simo)м	t _v (spcl-simo)m	t _v (SPCH-SIMO)M	м(лонs-Iмоs)иг	[‡] su(soмI-sРсн)м	t _v (spcl-somi)M	t₀(SPCH-SOMI)M	The MASTER/SLAVE bit (SP t _{c(SPC)} = SPI clock cycle time t _{c(LCO)} = LSPCLK cycle time The active edge of the SPICL The active edge of the SPICL Master mode transmi
Š.		1	9	N _S	N.19	SS SS	CO	84 84	Ψ N	Ž O	4	200 N	1.CO) &		The M t _c (SPC) The ac

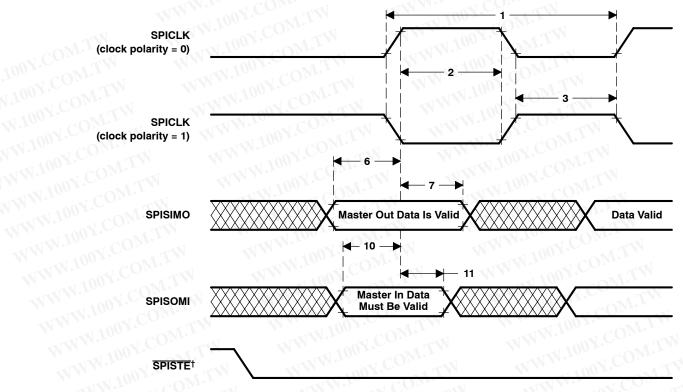
TEXAS INSTRUMENTS

 $^{^\}dagger$ In the master mode, $\overline{\text{SPISTE}}$ goes active $0.5t_{c(SPC)}$ before valid SPI clock edge. On the trailing end of the word, the SPISTE will go inactive 0.5t_{c(SPC)} after the receiving edge (SPICLK) of the last data bit, except that SPISTE stays active between back-to-back transmit words in both FIFO and non-FIFO modes.

Figure 6-26. SPI Master Mode External Timing (Clock Phase = 0)

Table 6-25. SPI Master Mode External Timing (Clock Phase = 1) $^{\dagger\pm}$

Ñ.			SPI WHEN (SPIBRR + 1) IS EVEN OR SPIBRR = 0 OR 2	+ 1) IS EVEN 0 OR 2	SPI WHEN (SPIBRR + 1) IS ODD AND SPIBRR > 3	BRR + 1) IBRR > 3	UNIT
			NIW	MAX	NIN O	MAX	
1	t _c (SPC)M	Cycle time, SPICLK	4t _{c(LCO)}	128t _{c(LCO)}	2tc(LCO)	127t _{c(LCO)}	su
ď	t _w (sPCH)M	Pulse duration, SPICLK high (clock polarity = 0)	0.5t _{c(SPC)} M-10	0.5t _c (sPC)M	0.5t _{c(SPC)} M-0.5t _{c(LCO)} -10	$0.5t_{c(\mathrm{SPC})\mathrm{M}}$ - $0.5t_{c(\mathrm{LCO})}$	NW
⁸ N	tw(sPCL)M	Pulse duration, SPICLK low (clock polarity = 1)	0.5t _c (sPC)M-10	0.5t _c (sPC)M	0.5t _{c(SPC)} M-0.5t _{c(LCO)} -10	0.5t _c (SPC)M -0.5t _{c(LCO)}	su 1
	t _w (sPCL)M	Pulse duration, SPICLK low (clock polarity = 0)	0.5t _c (sPC)M-10	0.5t _c (SPC)M	0.5t _{c(SPC)} M+0.5t _{c(LCO)} -10	$0.5t_{c(SPC)M} + 0.5t_{c(LCO)}$	00.1 0.7.
n 1	t _w (sPCH)M	Pulse duration, SPICLK high (clock polarity = 1)	0.5t _{c(SPC)} M-10	0.5t _c (sPC)M	0.5t _{c(SPC)} M+0.5t _{c(LCO)} -10	$0.5t_{c(\mathrm{SPC})\mathrm{M}} + 0.5t_{c(\mathrm{LCO})}$	SE O
₈ 9	м(но-spcн)м	Setup time, SPISIMO data valid before SPICLK high (clock polarity = 0)	0.5t _{c(SPC)} м-10	MMA MMA	0.5t _c (sPс)м -10	OM.T COM.T COM.T COM	Su
OM	t _{su(SIMO-SPCL)} M	Setup time, SPISIMO data valid before SPICLK low (clock polarity = 1)	0.5t _{c(SPC)} M-10	N.10	0.5t _{c(SPC)} M -10	N N N N N N N N	
	t _v (spch-simo)M	Valid time, SPISIMO data valid after SPICLK high (clock polarity = 0)	0.5t _c (sPC)M-10	0.X°C X°C(0.5t _{c(SPC)} M - 10	N	
۶.	t _v (spcl-simo)m	Valid time, SPISIMO data valid after SPICLK low (clock polarity = 1)	0.5t _{c(SPC)} M-10		0.5t _{c(SPC)} M -10	N N N	SL
4	t _{su(} SOMI-SPCH)M	Setup time, SPISOMI before SPICLK high (clock polarity = 0)		W TW LTV	0		V.10
201	t _{su(} SOMI-SPCL)M	Setup time, SPISOMI before SPICLK low (clock polarity = 1)		-7	WWW WW	N.10, N.10, 100,	SU
() () () () () () () () () ()	t _v (sPCH-SOMI)M	Valid time, SPISOMI data valid after SPICLK high (clock polarity = 0)	0.25t _{c(SPC)} M-10	4 4 4	0.5t _{c(SPC)} M-10	7	
O.Y.	t _v (spcl-somi)M	Valid time, SPISOMI data valid after SPICLK low (clock polarity = 1)	0.25t _{c(SPC)} M-10	NV	0.5t _c (SPC)M-10	M.T OM COM	<u>e</u>


料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

† The MASTER/SLAVE bit (SPICTL.2) is set and the CLOCK PHASE bit (SPICTL.3) is set.

 $^{\ddagger}t_{c(SPC)} = SPI \text{ clock cycle time} = \frac{LSPCLK}{4} \text{ or } \frac{LSPCLK}{(SPIBRR + 1)}$ $t_{c(LCO)} = LSPCLK \text{ cycle time}$

The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).

NOTE: Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate: Master mode transmit: 20 MHz MAX, master mode receive 12.5 MHz MAX Slave mode transmit 12.5 MHz MAX, slave mode receive 12.5 MHz MAX.

[†] In the master mode, SPISTE goes active 0.5t_{c(SPC)} before valid SPI clock edge. On the trailing end of the word, the SPISTE will go inactive 0.5t_{c(SPC)} after the receiving edge (SPICLK) of the last data bit, except that SPISTE stays active between back-to-back transmit words in both FIFO and non-FIFO modes.

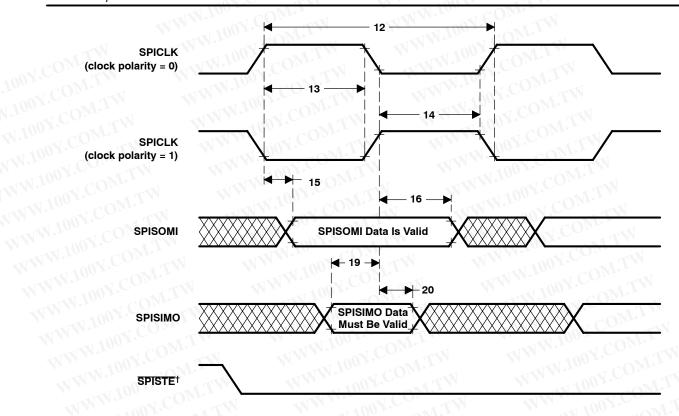
Figure 6-27. SPI Master External Timing (Clock Phase = 1)

6.22 SPI Slave Mode Timing

Table 6-26. SPI Slave Mode External Timing (Clock Phase = 0)^{†‡}

NO.	M. Alla	11001. W.TW.	MIN	MAX	UNIT
12	t _{c(SPC)S}	Cycle time, SPICLK	4t _{c(LCO)} ‡		ns
30.6	t _{w(SPCH)S}	Pulse duration, SPICLK high (clock polarity = 0)	0.5t _{c(SPC)S} -10	0.5t _{c(SPC)S}	
13 [§]	t _{w(SPCL)S}	Pulse duration, SPICLK low (clock polarity = 1)	0.5t _{c(SPC)S} -10	0.5t _{c(SPC)S}	ns
14§	t _{w(SPCL)S}	Pulse duration, SPICLK low (clock polarity = 0)	0.5t _{c(SPC)S} -10	0.5t _{c(SPC)S}	
148	t _{w(SPCH)S}	Pulse duration, SPICLK high (clock polarity = 1)	0.5t _{c(SPC)S} -10	0.5t _{c(SPC)S}	ns
15 [§]	t _d (SPCH-SOMI)S	Delay time, SPICLK high to SPISOMI valid (clock polarity = 0)	0.375t _{c(SPC)S} -10		ns
	t _{d(SPCL-SOMI)S} Delay time, SPICLK low to SPISOMI valid (clock polarity = 1)		0.375t _{c(SPC)S} -10		
07.	t _{v(SPCL-SOMI)S}	Valid time, SPISOMI data valid after SPICLK low (clock polarity =0)	0.75t _{c(SPC)S}		
16 [§]	t _v (SPCH-SOMI)S	Valid time, SPISOMI data valid after SPICLK high (clock polarity =1)	0.75t _{c(SPC)S}	TW	ns
100	t _{su(SIMO-SPCL)S}	Setup time, SPISIMO before SPICLK low (clock polarity = 0)	N. TO. OCO.		
19 [§]	t _{su(SIMO-SPCH)S}	Setup time, SPISIMO before SPICLK high (clock polarity = 1)	W.100 0 CON	1.1	ns
300	t _{v(SPCL-SIMO)S}	Valid time, SPISIMO data valid after SPICLK low (clock polarity = 0)	0.5t _{c(SPC)S}	M.TW	
20§	t _{v(SPCH-SIMO)S}	Valid time, SPISIMO data valid after SPICLK high (clock polarity = 1)	0.5t _{c(SPC)S}	M.TW	ns

[†] The MASTER/SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is cleared.


NOTE: Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:

Master mode transmit: 20 MHz MAX, master mode receive 12.5 MHz MAX Slave mode transmit 12.5 MHz MAX, slave mode receive 12.5 MHz MAX.

 $^{^{\}ddagger}$ t_{c(SPC)} = SPI clock cycle time = $\frac{LSPCLK}{4}$ or $\frac{LSPCLK}{(SPIBRR + 1)}$

 $t_{c(LCO)}$ = LSPCLK cycle time

[§] The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).

[†] In the slave mode, the SPISTE signal should be asserted low at least 0.5t_{c(SPC)} before the valid SPI clock edge and remain low for at least 0.5t_{c(SPC)} after the receiving edge (SPICLK) of the last data bit.

Figure 6-28. SPI Slave Mode External Timing (Clock Phase = 0)

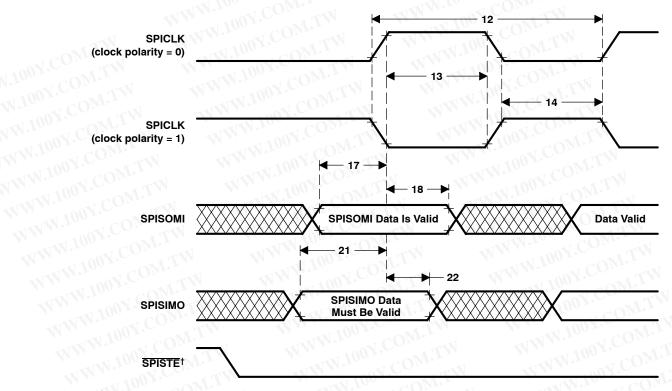
Table 6-27. SPI Slave Mode External Timing (Clock Phase = 1)^{†‡}

NO.	MAN	1100X. SILTW W. 1100X.	MIN MAX	UNIT	
12	t _{c(SPC)S}	Cycle time, SPICLK	8t _{c(LCO)}	ns	
4.08	t _{w(SPCH)S}	Pulse duration, SPICLK high (clock polarity = 0)	0.5t _{c(SPC)S} -10 0.5t _{c(SPC)S}	3	
13 [§]	t _{w(SPCL)S}	Pulse duration, SPICLK low (clock polarity = 1)	0.5t _{c(SPC)S} -10 0.5t _{c(SPC)S}	ns	
14§	t _{w(SPCL)S}	Pulse duration, SPICLK low (clock polarity = 0)	0.5t _{c(SPC)S} -10 0.5t _{c(SPC)S}	3	
14 ⁸	t _{w(SPCH)S}	Pulse duration, SPICLK high (clock polarity = 1)	0.5t _{c(SPC)S} -10 0.5t _{c(SPC)S}	ns	
	t _{su(SOMI-SPCH)S}	Setup time, SPISOMI before SPICLK high (clock polarity = 0)	0.125t _{c(SPC)S}		
17§	t _{su(SOMI-SPCL)S}	Setup time, SPISOMI before SPICLK low (clock polarity = 1)	0.125t _{c(SPC)S}	ns	
1.6	Valid time, SPISOMI data valid after SPICLK high (clock polarity =0)		0.75t _{c(SPC)S}		
18 [§]	t _{v(SPCL-SOMI)S}	Valid time, SPISOMI data valid after SPICLK low (clock polarity =1)	0.75t _{c(SPC)S}	ns	
- 6	t _{su(SIMO-SPCH)S}	Setup time, SPISIMO before SPICLK high (clock polarity = 0)	O TW		
21 [§]	t _{su(SIMO-SPCL)S}	Setup time, SPISIMO before SPICLK low (clock polarity = 1)	CO	ns	
(300	t _{v(SPCH-SIMO)S}	Valid time, SPISIMO data valid after SPICLK high (clock polarity = 0)	0.5t _{c(SPC)S}	- ns	
22 [§]	t _v (SPCL-SIMO)S	Valid time, SPISIMO data valid after SPICLK low (clock polarity = 1) 0.5t _{c(SPC)S}			

[†] The MASTER/SLAVE bit (SPICTL.2) is cleared and the CLOCK PHASE bit (SPICTL.3) is set.

NOTE: Internal clock prescalers must be adjusted such that the SPI clock speed is limited to the following SPI clock rate:

Master mode transmit: 20 MHz MAX, master mode receive 12.5 MHz MAX Slave mode transmit 12.5 MHz MAX, slave mode receive 12.5 MHz MAX.


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

100Y.COM.TW

 $^{^{\}ddagger}$ t_{c(SPC)} = SPI clock cycle time = $\frac{LSPCLK}{4}$ or $\frac{LSPCLK}{(SPIBRR + 1)}$

 $t_{c(LCO)}$ = LSPCLK cycle time

[§] The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPICCR.6).

[†] In the slave mode, the SPISTE signal should be asserted low at least 0.5t_{c(SPC)} before the valid SPI clock edge and remain low for at least 0.5t_{c(SPC)} after the receiving edge (SPICLK) of the last data bit.

Figure 6-29. SPI Slave Mode External Timing (Clock Phase = 1)

6.23 External Interface (XINTF) Timing

Each XINTF access consists of three parts: Lead, Active, and Trail. The user configures the Lead/Active/Trail wait states in the XTIMING registers. There is one XTIMING register for each XINTF zone. Table 6–28 shows the relationship between the parameters configured in the XTIMING register and the duration of the pulse in terms of XTIMCLK cycles.

Table 6-28. Relationship Between Parameters Configured in XTIMING and Duration of Pulse^{†‡}

	· V	DURA	ATION (ns)
	DESCRIPTION	X2TIMING = 0	X2TIMING = 1
LR	Lead period, read access	XRDLEAD × t _{c(XTIM)}	(XRDLEAD × 2) × t _{c(XTIM)}
AR	Active period, read access	(XRDACTIVE + WS + 1) × t _{c(XTIM)}	(XRDACTIVE × 2 + WS + 1) × t _{c(XTIM)}
TR	Trail period, read access	XRDTRAIL × t _{c(XTIM)}	(XRDTRAIL × 2) × t _{c(XTIM)}
LW	Lead period, write access	XWRLEAD × t _{c(XTIM)}	$(XWRLEAD \times 2) \times t_{c(XTIM)}$
AW	Active period, write access	(XWRACTIVE + WS + 1) × t _{c(XTIM)}	(XWRACTIVE \times 2 + WS + 1) \times t _{c(XTIM)}
TW	Trail period, write access	XWRTRAIL × t _{c(XTIM)}	$(XWRTRAIL \times 2) \times t_{c(XTIM)}$

 $^{^{\}dagger}$ $t_{c(\mbox{\scriptsize XTIM}\mbox{\scriptsize IM}\mbox{\scriptsize M}}$ – Cycle time, XTIMCLK

Minimum wait state requirements must be met when configuring each zone's XTIMING register. These requirements are in addition to any timing requirements as specified by that device's data sheet. No internal device hardware is included to detect illegal settings.

If the XREADY signal is ignored (USEREADY = 0), then:

1. Lead:
$$LR \ge t_{c(XTIM)}$$

$$LW \ge t_{c(XTIM)}$$

These requirements result in the following XTIMING register configuration restrictions§:

XRDLEAD	XRDACTIVE	XRDTRAIL	XWRLEAD	XWRACTIVE	XWRTRAIL	X2TIMING
≥1	100 ≥ 0	≥ 0	≥1	≥ 0	≥ 0	0, 1

[§] No hardware to detect illegal XTIMING configurations

Examples of valid and invalid timing when not sampling XREADY§:

	XRDLEAD	XRDACTIVE	XRDTRAIL	XWRLEAD	XWRACTIVE	XWRTRAIL	X2TIMING
Invalid	0 100	0	0	100	0	0	0, 1
Valid	W 1 100	1.00	0	1007	0	0	0, 1

[§] No hardware to detect illegal XTIMING configurations

^{*} WS refers to the number of wait states inserted by hardware when using XREADY. If the zone is configured to ignore XREADY (USEREADY = 0), then WS = 0.

• If the XREADY signal is sampled in the synchronous mode (USEREADY = 1, READYMODE = 0), then:

LR ≥ t_{c(XTIM)}

 $LW \ge t_{c(XTIM)}$

2. Active: $AR \ge 2 \times t_{c(XTIM)}$

 $AW \ge 2 \times t_{c(XTIM)}$

NOTE: Restriction does not include external hardware wait states

These requirements result in the following XTIMING register configuration restrictions[†]:

XRDLEAD	XRDACTIVE	XRDTRAIL	XWRLEAD	XWRACTIVE	XWRTRAIL	X2TIMING
≥1	≥1	≥ 0	≥1	≥1	≥ 0	0, 1

[†] No hardware to detect illegal XTIMING configurations

Examples of valid and invalid timing when using synchronous XREADY[†]:

M. CC	XRDLEAD	XRDACTIVE	XRDTRAIL	XWRLEAD	XWRACTIVE	XWRTRAIL	X2TIMING
Invalid	0	0	o CO	0	0	.CO	0, 1
Invalid	T.I	0	V.100 0 CO	1	0	0.0	0, 1
Valid	TIME	1	100		1	0 0	0, 1

[†] No hardware to detect illegal XTIMING configurations

If the XREADY signal is sampled in the asynchronous mode (USEREADY = 1, READYMODE = 1), then:

1. Lead: $LR \ge t_{c(XTIM)}$

 $LW \ge t_{c(XTIM)}$

2. Active: $AR \ge 2 \times t_{c(XTIM)}$

 $AW \geq 2 \times t_{c(XTIM)}$

NOTE: Restriction does not include external hardware wait states

3. Lead + Active: LR + AR \geq 4 × t_{c(XTIM)}

 $LW + AW \ge 4 \times t_{c(XTIM)}$

NOTE: Restriction does not include external hardware wait states

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

These requirements result in the following XTIMING register configuration restrictions[†]:

XRDLEAD	XRDACTIVE	XRDTRAIL	XWRLEAD	XWRACTIVE	XWRTRAIL	X2TIMING
≥ 1	≥ 2	0	≥1	≥ 2	0	0, 1

[†] No hardware to detect illegal XTIMING configurations

or[†]

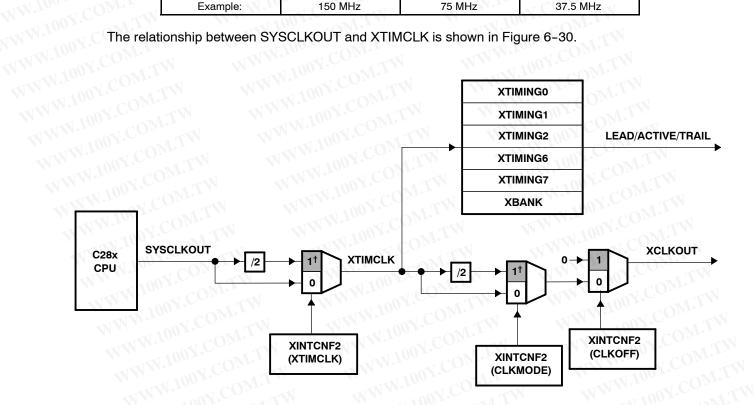
XRDLEAD	XRDACTIVE	XRDTRAIL	XWRLEAD	XWRACTIVE	XWRTRAIL	X2TIMING
≥ 2	≥1	0	≥ 2	≥1	0	0, 1

[†] No hardware to detect illegal XTIMING configurations

Examples of valid and invalid timing when using asynchronous XREADY[†]:

	XRDLEAD	XRDACTIVE	XRDTRAIL	XWRLEAD	XWRACTIVE	XWRTRAIL	X2TIMING
Invalid	0	0	0 0	0	0,00	0	0, 1
Invalid	1	0007	0	1	100	0	0, 1
Invalid	1	1,007	0	1 1	1010	0	0
Valid	1	WWW.	COO	1 1	Lov.C	0	4////
Valid	1	2	0	1 1	2	ONO	0, 1
Valid	2	1 100	0	2	TXX1100	0	0, 1

[†] No hardware to detect illegal XTIMING configurations



Unless otherwise specified, all XINTF timing is applicable for the clock configurations shown in Table 6-29.

Table 6-29. XINTF Clock Configurations

MODE	SYSCLKOUT	XTIMCLK	XCLKOUT
1	150 MHz	SYSCLKOUT	SYSCLKOUT
Example:		150 MHz	150 MHz
2	150 MHz	SYSCLKOUT	1/2 SYSCLKOUT
Example:		150 MHz	75 MHz
3	150 MHz	1/2 SYSCLKOUT	1/2 SYSCLKOUT
Example:		75 MHz	75 MHz
4	150 MHz	1/2 SYSCLKOUT	1/4 SYSCLKOUT
Example:		75 MHz	37.5 MHz

WWW.100Y.COM.TW WWW.100Y.COM.TW

† Default Value after reset

Figure 6-30. Relationship Between XTIMCLK and SYSCLKOUT

料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw WWW.100Y.COM.TW

WWW.100Y.COM.T

特力材料886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw

XINTF Signal Alignment to XCLKOUT

For each XINTF access, the number of lead, active, and trail cycles is based on the internal clock XTIMCLK. Strobes such as XRD, XWE, and zone chip-select (XZCS) change state in relationship to the rising edge of XTIMCLK. The external clock, XCLKOUT, can be configured to be either equal to or one-half the frequency of XTIMCLK.

For the case where XCLKOUT = XTIMCLK, all of the XINTF strobes will change state with respect to the rising edge of XCLKOUT. For the case where XCLKOUT = one-half XTIMCLK, some strobes will change state either on the rising edge of XCLKOUT or the falling edge of XCLKOUT. In the XINTF timing tables, the notation XCOHL is used to indicate that the parameter is with respect to either case; XCLKOUT rising edge (high) or XCLKOUT falling edge (low). If the parameter is always with respect to the rising edge of XCLKOUT, the notation XCOH is used.

For the case where XCLKOUT = one-half XTIMCLK, the XCLKOUT edge with which the change will be aligned can be determined based on the number of XTIMCLK cycles from the start of the access to the point at which the signal changes. If this number of XTIMCLK cycles is even, the alignment will be with respect to the rising edge of XCLKOUT. If this number is odd, then the signal will change with respect to the falling edge of XCLKOUT. Examples include the following:

Strobes that change at the beginning of an access always align to the rising edge of XCLKOUT. This is because all XINTF accesses begin with respect to the rising edge of XCLKOUT.

Examples: XZCSL Zone chip-select active low

> XRNWI XR/W active low

Strobes that change at the beginning of the active period will align to the rising edge of XCLKOUT if the total number of lead XTIMCLK cycles for the access is even. If the number of lead XTIMCLK cycles is odd, then the alignment will be with respect to the falling edge of XCLKOUT.

Examples: XRDL XRD active low

> XWFL XWE active low

Strobes that change at the beginning of the trail period will align to the rising edge of XCLKOUT if the total number of lead + active XTIMCLK cycles (including hardware waitstates) for the access is even. If the number of lead + active XTIMCLK cycles (including hardware waitstates) is odd, then the alignment will be with respect to the falling edge of XCLKOUT.

Examples: XRDH XRD inactive high

> **XWEH** XWE inactive high

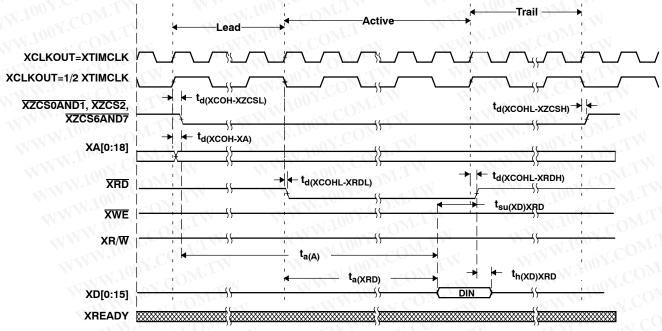
Strobes that change at the end of the access will align to the rising edge of XCLKOUT if the total number of lead + active + trail XTIMCLK cycles (including hardware waitstates) is even. If the number of lead + active + trail XTIMCLK cycles (including hardware waitstates) is odd, then the alignment will be with respect to the falling edge of XCLKOUT.

Zone chip-select inactive high Examples: **XZCSH**

> XR/W inactive high **XRNWH**

6.25 External Interface Read Timing

Table 6-30. External Memory Interface Read Switching Characteristics


W	PARAMETER	MIN	MAX	UNIT
t _{d(XCOH-XZCSL)}	Delay time, XCLKOUT high to zone chip-select active low	W	1	ns
t _{d(XCOHL-XZCSH)}	Delay time, XCLKOUT high/low to zone chip-select inactive high	-2	3	ns
t _d (XCOH-XA)	Delay time, XCLKOUT high to address valid	01/11	2	ns
t _d (XCOHL-XRDL)	Delay time, XCLKOUT high/low to XRD active low	TIME	1	ns
t _d (XCOHL-XRDH	Delay time, XCLKOUT high/low to XRD inactive high	-2	1	ns
t _{h(XA)} XZCSH	Hold time, address valid after zone chip-select inactive high	COMP		ns
t _{h(XA)XRD}	Hold time, address valid after XRD inactive high	ONIT		ns

[†] During inactive cycles, the XINTF address bus will always hold the last address put out on the bus. This includes alignment cycles.

Table 6-31. External Memory Interface Read Timing Requirements

COM	WWW. COM TW WWW.	MIN MAX	UNIT
t _{a(A)}	Access time, read data from address valid	(LR + AR) - 14 [‡]	ns
t _{a(XRD)}	Access time, read data valid from XRD active low	AR - 12 [‡]	ns
t _{su(XD)} XRD	Setup time, read data valid before XRD strobe inactive high	12	ns
t _{h(XD)XRD}	Hold time, read data valid after XRD inactive high	000	ns

[‡] LR = Lead period, read access. AR = Active period, read access. See Table 6-28.

NOTES: A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device will insert an alignment cycle before an access to meet this requirement.

- B. During alignment cycles, all signals will transition to their inactive state.
- C. For USEREADY = 0, the external XREADY input signal is ignored.
- D. XA[0:18] will hold the last address put on the bus during inactive cycles, including alignment cycles.

Figure 6-31. Example Read Access

XTIMING register parameters used for this example:

XRDLEAD	XRDACTIVE	XRDTRAIL	USEREADY	X2TIMING	XWRLEAD	XWRACTIVE	XWRTRAIL	READYMODE
≥1	≥0	≥0	0	0	N/A [†]	N/A [†]	N/A [†]	N/A [†]

[†] N/A = "Don't care" for this example

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

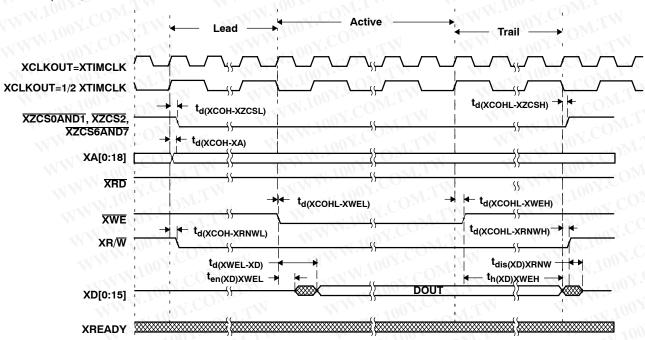

6.26 External Interface Write Timing

Table 6-32. External Memory Interface Write Switching Characteristics

	PARAMETER	MIN	MAX	UNIT
t _{d(XCOH-XZCSL)}	Delay time, XCLKOUT high to zone chip-select active low	TV	1	ns
t _d (XCOHL-XZCSH)	Delay time, XCLKOUT high or low to zone chip-select inactive high	-2	3	ns
t _d (XCOH-XA)	Delay time, XCLKOUT high to address valid	T.N	2	ns
t _d (XCOHL-XWEL)	Delay time, XCLKOUT high/low to XWE low	M. F	2	ns
t _d (XCOHL-XWEH)	Delay time, XCLKOUT high/low to XWE high	OM.TW	2	ns
t _d (XCOH-XRNWL)	Delay time, XCLKOUT high to XR/ $\overline{ m W}$ low	WTIL	1	ns
t _{d(XCOHL-XRNWH)}	Delay time, XCLKOUT high/low to XR/₩ high	-2	1	ns
t _{en(XD)} XWEL	Enable time, data bus driven from XWE low	CC O	N	ns
t _d (XWEL-XD)	Delay time, data valid after XWE active low	COMIT	4	ns
t _{h(XA)} XZCSH	Hold time, address valid after zone chip-select inactive high	†	A	ns
t _{h(XD)} XWE	Hold time, write data valid after XWE inactive high	TW-2 [‡]	TW	ns
t _{dis(XD)} XRNW	Maximum time for DSP to release the data bus after XR/W inactive high	COL	4	ns

[†] During inactive cycles, the XINTF address bus will always hold the last address put out on the bus. This includes alignment cycles.

[‡] TW = Trail period, write access. See Table 6-28.

NOTES: A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device will insert an alignment cycle before an access to meet this requirement.

- B. During alignment cycles, all signals will transition to their inactive state.
- C. For USEREADY = 0, the external XREADY input signal is ignored.
- D. XA[0:18] will hold the last address put on the bus during inactive cycles, including alignment cycles.

Figure 6-32. Example Write Access

XTIMING register parameters used for this example:

XRDLEAD	XRDACTIVE	XRDTRAIL	USEREADY	X2TIMING	XWRLEAD	XWRACTIVE	XWRTRAIL	READYMODE
N/A [†]	N/A [†]	N/A [†]	1000	0	≥1	≥0	≥0	N/A [†]

[†] N/A = "Don't care" for this example

6.27 External Interface Ready-on-Read Timing With One External Wait State

Table 6-33. External Memory Interface Read Switching Characteristics (Ready-on-Read, 1 Wait State)

A.T.W	PARAMETER	MIN	MAX	UNIT
t _d (XCOH-XZCSL)	Delay time, XCLKOUT high to zone chip-select active low		1	ns
t _d (XCOHL-XZCSH)	Delay time, XCLKOUT high/low to zone chip-select inactive high	-2	3	ns
t _d (XCOH-XA)	Delay time, XCLKOUT high to address valid		2	ns
t _d (XCOHL-XRDL)	Delay time, XCLKOUT high/low to XRD active low		1	ns
t _d (XCOHL-XRDH	Delay time, XCLKOUT high/low to XRD inactive high	-2	1	ns
t _{h(XA)} XZCSH	Hold time, address valid after zone chip-select inactive high	†		ns
t _{h(XA)XRD}	Hold time, address valid after XRD inactive high	†		ns

[†] During inactive cycles, the XINTF address bus will always hold the last address put out on the bus. This includes alignment cycles.

Table 6-34. External Memory Interface Read Timing Requirements (Ready-on-Read, 1 Wait State)

001.	TW WILLIAM WILLIAM	MIN MAX	UNIT
t _{a(A)}	Access time, read data from address valid	(LR + AR) - 14	‡ ns
t _{a(XRD)}	Access time, read data valid from XRD active low	AR - 12	‡ ns
t _{su(XD)XRD}	Setup time, read data valid before XRD strobe inactive high	12	ns
t _{h(XD)XRD}	Hold time, read data valid after XRD inactive high	alMi o com.	ns

[‡] LR = Lead period, read access. AR = Active period, read access. See Table 6-28.

Table 6-35. Synchronous XREADY Timing Requirements (Ready-on-Read, 1 Wait State)§

1007.Co	TH WWW. 100X.CONTH WWW. 100X	MIN	MAX	UNIT
t _{su(XRDYsynchL)} XCOHL	Setup time, XREADY (synchronous) low before XCLKOUT high/low	15	TI	ns
th(XRDYsynchL)	Hold time, XREADY (synchronous) low	12	1	ns
t _{e(XRDYsynchH)}	Earliest time XREADY (synchronous) can go high before the sampling XCLKOUT edge	00Y.C	3	ns
t _{su(XRDYsynchH)} XCOHL	Setup time, XREADY (synchronous) high before XCLKOUT high/low	15	COP	ns
t _{h(XRDYsynchH)} XZCSH	Hold time, XREADY (synchronous) held high after zone chip select high	0	$CO_{\overline{D}}$	ns

[§] The first XREADY (synchronous) sample occurs with respect to E in Figure 6-33:

When first sampled, if XREADY (synchronous) is found to be high, then the access will complete. If XREADY (synchronous) is found to be low it will be sampled again each $t_{c(XTIM)}$ until it is found to be high.

For each sample (n) the setup time (D) with respect to the beginning of the access can be calculated as:

where n is the sample number: n = 1, 2, 3, and so forth.

Table 6-36. Asynchronous XREADY Timing Requirements (Ready-on-Read, 1 Wait State)

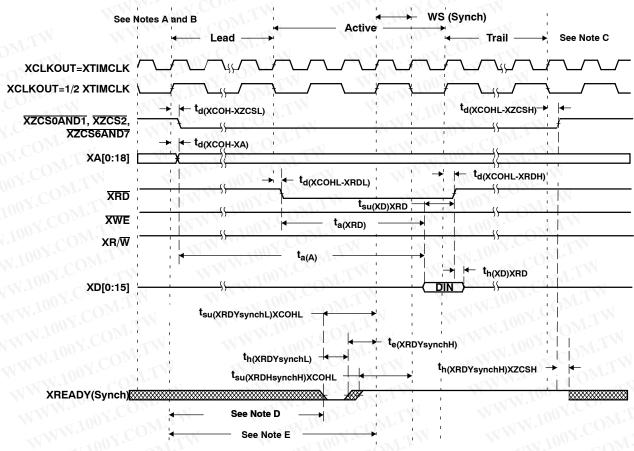
V	The COM'T	MIN	MAX	UNIT
t _{su(XRDYAsynchL)} XCOHL	Setup time, XREADY (asynchronous) low before XCLKOUT high/low	11	M'In.	ns
th(XRDYAsynchL)	Hold time, XREADY (asynchronous) low	8	JAN 1	ns
t _{e(XRDYAsynchH)}	Earliest time XREADY (asynchronous) can go high before the sampling XCLKOUT edge	W	3	ns
t _{su(XRDYAsynchH)} XCOHL	Setup time, XREADY (asynchronous) high before XCLKOUT high/low	11		ns
th(XRDYasynchH)XZCSH	Hold time, XREADY (asynchronous) held high after zone chip select high	0	MA	ns

The first XREADY (asynchronous) sample occurs with respect to E in Figure 6-34:

When first sampled, if XREADY (asynchronous) is found to be high, then the access will complete. If XREADY (asynchronous) is found to be low, it will be sampled again each $t_{c(XTIM)}$ until it is found to be high.

For each sample, setup time from the beginning of the access can be calculated as:

 $D = (XRDLEAD + XRDACTIVE - 3 + n) \ t_{c(XTIM)} - t_{su(XRDYasynchL)XCOHL}$


where n is the sample number: n = 1, 2, 3, and so forth.

 $E = (XRDLEAD + XRDACTIVE) t_{c(XTIM)}$

 $D = (XRDLEAD + XRDACTIVE + n - 1) t_{c(XTIM)} - t_{su(XRDYsynchL)XCOHL}$

 $E = (XRDLEAD + XRDACTIVE -2) t_{c(XTIM)}$

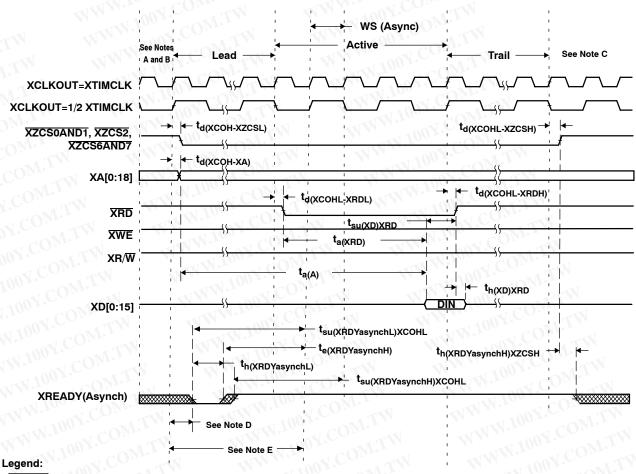
Legend:

= Don't care. Signal can be high or low during this time.

NOTES: A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device will insert an alignment cycle before an access to meet this requirement.

- B. During alignment cycles, all signals will transition to their inactive state.
- During inactive cycles, the XINTF address bus will always hold the last address put out on the bus. This includes alignment cycles.
- D. For each sample, setup time from the beginning of the access (D) can be calculated as: $D = (XRDLEAD + XRDACTIVE + n - 1) t_{c(XTIM)} - t_{su(XRDYsynchL)XCOHL}$
- E. Reference for the first sample is with respect to this point $E = (XRDLEAD + XRDACTIVE) t_{c(XTIM)}$ where n is the sample number: n = 1, 2, 3, and so forth.

特力材料886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw


Figure 6-33. Example Read With Synchronous XREADY Access

XTIMING register parameters used for this example:

KTIMING reg	gister paramet	ters used for	r this exampl	e: V				
XRDLEAD	XRDACTIVE	XRDTRAIL	USEREADY	X2TIMING	XWRLEAD	XWRACTIVE	XWRTRAIL	READYMODE
≥1	3	≥1	1001.CO	0	N/A [†]	N/A [†]	N/A [†]	0 = XREADY (Synch)

[†] N/A = "Don't care" for this example

= Don't care. Signal can be high or low during this time.

- NOTES: A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device will insert an alignment cycle before an access to meet this requirement.
 - B. During alignment cycles, all signals will transition to their inactive state.
 - C. During inactive cycles, the XINTF address bus will always hold the last address put out on the bus. This includes alignment cycles.
 - D. For each sample, setup time from the beginning of the access can be calculated as:
 - D = (XRDLEAD + XRDACTIVE -3 +n) $t_{c(XTIM)}$ $t_{su(XRDYasynchL)XCOHL}$
 - where n is the sample number: n = 1, 2, 3, and so forth.
 - E. Reference for the first sample is with respect to this point:
 - $E = (XRDLEAD + XRDACTIVE -2) t_{C(XTIM)}$

Figure 6-34. Example Read With Asynchronous XREADY Access

XTIMING register parameters used for this example:

XRDLEAD	XRDACTIVE	XRDTRAIL	USEREADY	X2TIMING	XWRLEAD	XWRACTIVE	XWRTRAIL	READYMODE
≥1	3	≥1	1	0	N/A [†]	N/A [†]	N/A [†]	1 = XREADY (Async)

[†] N/A = "Don't care" for this example

6.28 External Interface Ready-on-Write Timing With One External Wait State

Table 6-37. External Memory Interface Write Switching Characteristics (Ready-on-Write, 1 Wait State)

COM	PARAMETER	MIN	MAX	UNIT
t _d (XCOH-XZCSL)	Delay time, XCLKOUT high to zone chip-select active low	-10	1	ns
t _d (XCOHL-XZCSH)	Delay time, XCLKOUT high or low to zone chip-select inactive high	-2	3	ns
t _d (XCOH-XA)	Delay time, XCLKOUT high to address valid	W.T.W	2	ns
t _d (XCOHL-XWEL)	Delay time, XCLKOUT high/low to XWE low	W	2	ns
t _{d(XCOHL-XWEH)}	Delay time, XCLKOUT high/low to XWE high	OM	2	ns
t _d (XCOH-XRNWL)	Delay time, XCLKOUT high to XR/ $\overline{\mathbf{W}}$ low	011.1	1	ns
t _d (XCOHL-XRNWH)	Delay time, XCLKOUT high/low to XR/₩ high	-2	1	ns
t _{en(XD)} XWEL	Enable time, data bus driven from XWE low	0		ns
t _d (XWEL-XD)	Delay time, data valid after XWE active low	V.COPPE T	4	ns
t _{h(XA)} XZCSH	Hold time, address valid after zone chip-select inactive high	CONT	-XXI	ns
t _{h(XD)} XWE	Hold time, write data valid after XWE inactive high	TW-2 [‡]	1	ns
t _{dis(XD)} XRNW	Maximum time for DSP to release the data bus after XR/W inactive high	003	4	ns

[†] During inactive cycles, the XINTF address bus will always hold the last address put out on the bus. This includes alignment cycles.

Table 6-38. Synchronous XREADY Timing Requirements (Ready-on-Write, 1 Wait State)§

	OM., AMMINON COM.	MIN	MAX	UNIT
t _{su(XRDYsynchL)} XCOHL	Setup time, XREADY (synchronous) low before XCLKOUT high/low	15	CO_{M_I}	ns
th(XRDYsynchL)	Hold time, XREADY (synchronous) low	12	c01	ns
t _{e(XRDYsynchH)}	Earliest time XREADY (synchronous) can go high before the sampling XCLKOUT edge	1.1005	3	ns
t _{su(XRDYsynchH)} XCOHL	Setup time, XREADY (synchronous) high before XCLKOUT high/low	15	-101	ns
t _{h(XRDYsynchH)} XZCSH	Hold time, XREADY (synchronous) held high after zone chip select high	0	101.	ns

[§] The first XREADY (synchronous) sample occurs with respect to E in Figure 6-35:

When first sampled, if XREADY (synchronous) is found to be high, then the access will complete. If XREADY (synchronous) is found to be low, it will be sampled again each $t_{c(XTIM)}$ until it is found to be high.

For each sample, setup time from the beginning of the access can be calculated as:

where n is the sample number: n = 1, 2, 3, and so forth.

Table 6-39. Asynchronous XREADY Timing Requirements (Ready-on-Write, 1 Wait State) ¶

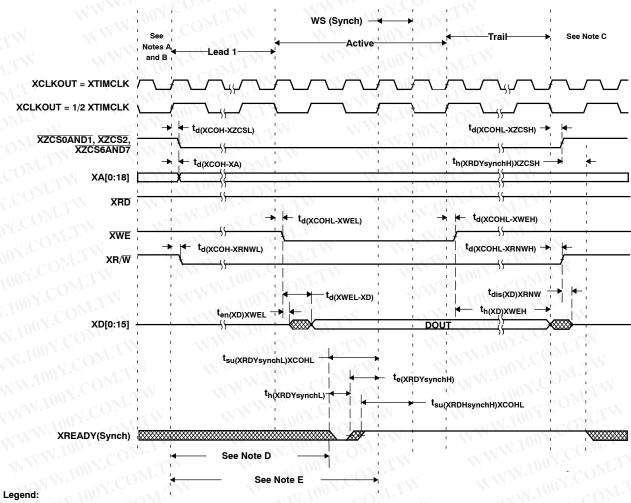
W.	M. Ing. COM. I. COM.	MIN	MAX	UNIT
t _{su(XRDYasynchL)} XCOHL	Setup time, XREADY (asynchronous) low before XCLKOUT high/low	11	- TANK	ns
t _{h(XRDYasynchL)}	Hold time, XREADY (asynchronous) low	8	- T	ns
t _{e(XRDYasynchH)}	Earliest time XREADY (asynchronous) can go high before the sampling XCLKOUT edge	1	3	ns
t _{su(XRDYasynchH)} XCOHL	Setup time, XREADY (asynchronous) high before XCLKOUT high/low	11	A4 .	ns
t _{h(XRDYasynchH)} XZCSH	Hold time, XREADY (asynchronous) held high after zone chip select high	0	1	ns

[¶] The first XREADY (synchronous) sample occurs with respect to E in Figure 6-36:

When first sampled, if XREADY (asynchronous) is found to be high, then the access will complete. If XREADY (asynchronous) is found to be low, it will be sampled again each t_{c(XTIM)} until it is found to be high.

For each sample, setup time from the beginning of the access can be calculated as:

where n is the sample number: n = 1, 2, 3, and so forth.


[‡] TW = trail period, write access (see Table 6-28)

 $E = (XWRLEAD + XWRACTIVE) t_{C(XTIM)}$

D = (XWRLEAD + XWRACTIVE +n - 1) $t_{c(XTIM)} - t_{su(XRDYsynchL)XCOHL}$

 $E = (XWRLEAD + XWRACTIVE - 2) t_{c(XTIM)}$

 $D = (XWRLEAD + XWRACTIVE - 3 + n) t_{c(XTIM)} - t_{su(XRDYasynchL)XCOHL}$

= Don't care. Signal can be high or low during this time.

NOTES: All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device will insert an alignment cycle before an access to meet this requirement.

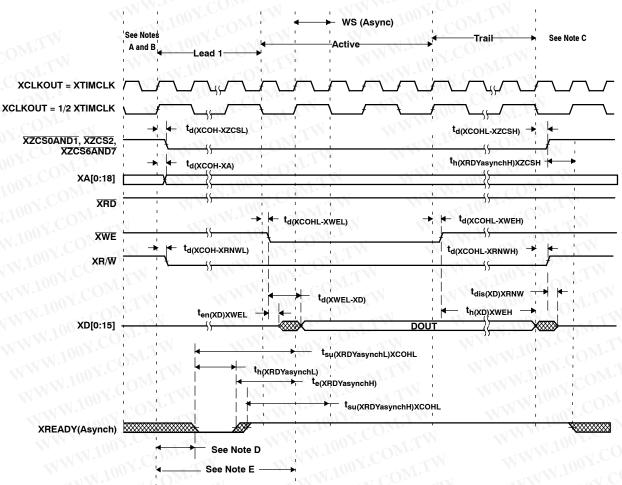

- B. During alignment cycles, all signals will transition to their inactive state.
- C. During inactive cycles, the XINTF address bus will always hold the last address put out on the bus. This includes alignment cycles.
- For each sample, setup time from the beginning of the access can be calculated as $D = (XWRLEAD + XWRACTIVE + n - 1) t_{c(XTIM)} - t_{su(XRDYsynchL)XCOHL}$ where n is the sample number: n = 1, 2, 3 and so forth.
- E. Reference for the first sample is with respect to this point $E = (XWRLEAD + XWRACTIVE) t_{c(XTIM)}$

Figure 6-35. Write With Synchronous XREADY Access

XTIMING register parameters used for this example:

XRDLEAD	XRDACTIVE	XRDTRAIL	USEREADY	X2TIMING	XWRLEAD	XWRACTIVE	XWRTRAIL	READYMODE
N/A [†]	N/A [†]	N/A†	OMTW	0	≥1	CO/3	≥1	0 = XREADY (Synch)

Legend:

= Don't care. Signal can be high or low during this time.

NOTES: A. All XINTF accesses (lead period) begin on the rising edge of XCLKOUT. When necessary, the device will insert an alignment cycle before an access to meet this requirement.

- B. During alignment cycles, all signals will transition to their inactive state.
- C. During inactive cycles, the XINTF address bus will always hold the last address put out on the bus. This includes alignment cycles.
- D. For each sample, setup time from the beginning of the access can be calculated as:
 - $D = (XWRLEAD + XWRACTIVE 3 + n) t_{c(XTIM)} t_{su(XRDYasynchL)XCOHL}$ where n is the sample number: n = 1, 2, 3 and so forth.
- E. Reference for the first sample is with respect to this point
 - $E = (XWRLEAD + XWRACTIVE -2) t_{C(XTIM)}$

Figure 6-36. Write With Asynchronous XREADY Access

XTIMING register parameters used for this example:

XRDLEAD	XRDACTIVE	XRDTRAIL	USEREADY	X2TIMING	XWRLEAD	XWRACTIVE	XWRTRAIL	READYMODE
N/A [†]	N/A [†]	N/A [†]	WOD.Y	0	≥1	3CON	≥1	1 = XREADY (Async)
N/A = "Don't c	care" for this exa	mple			勝特	力材料8	86-3-57531	.70
					胜特	力电子(上海) 8	6-21-34970	699

[†] N/A = "Don't care" for this example

6.29 XHOLD and XHOLDA

If the HOLD mode bit is set while \overline{XHOLD} and \overline{XHOLDA} are both low (external bus accesses granted), the \overline{XHOLDA} signal is forced high (at the end of the current cycle) and the external interface is taken out of high-impedance mode.

On a reset (\overline{XRS}), the HOLD mode bit is set to 0. If the \overline{XHOLD} signal is active low on a system reset, the bus and all signal strobes must be in high-impedance mode, and the \overline{XHOLDA} signal is also driven active low.

When HOLD mode is enabled and XHOLDA is active low (external bus grant active), the CPU can still execute code from internal memory. If an access is made to the external interface, the CPU is stalled until the XHOLD signal is removed.

An external DMA request, when granted, places the following signals in a high-impedance mode:

XA[18:0]	XZCS0AND1
XD[15:0]	XZCS2
XWE, XRD	XZCS6AND7
XR/W	

All other signals not listed in this group remain in their default or functional operational modes during these signal events.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM.T

6.30 XHOLD/XHOLDA Timing

Table 6-40. XHOLD/XHOLDA Timing Requirements (XCLKOUT = XTIMCLK)^{†‡}

MIM	M. 2100x W.IM. M. 2N.100x.	MIN	MAX	UNIT
t _{d(HL-HiZ)}	Delay time, XHOLD low to Hi-Z on all Address, Data, and Control	TW	4t _{c(XTIM)}	ns
t _{d(HL-HAL)}	Delay time, XHOLD low to XHOLDA low	TW	5t _{c(XTIM)}	ns
t _{d(HH-HAH)}	Delay time, XHOLD high to XHOLDA high	COM	3t _{c(XTIM)}	ns
t _{d(HH-BV)}	Delay time, XHOLD high to Bus valid	COM	4t _{c(XTIM)}	ns

[†] When a low signal is detected on XHOLD, all pending XINTF accesses will be completed before the bus is placed in a high-impedance state.

[‡] The state of XHOLD is latched on the rising edge of XTIMCLK.

NOTES: A. All pending XINTF accesses are completed.

B. Normal XINTF operation resumes.

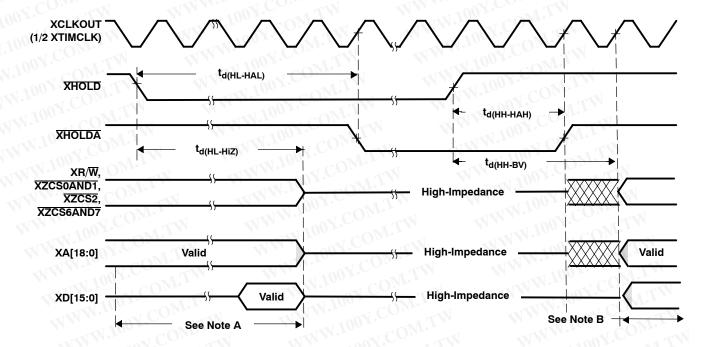

Figure 6-37. External Interface Hold Waveform

Table 6-41. XHOLD/XHOLDA Timing Requirements (XCLKOUT = 1/2 XTIMCLK)^{†‡§}

WT	WW. 100x. COM.TW WW. 100x. COM	MIN	MAX	UNIT
t _{d(HL-HiZ)}	Delay time, XHOLD low to Hi-Z on all Address, Data, and Control		4t _{c(XTIM)+} t _{c(XCO)}	ns
t _{d(HL-HAL)}	Delay time, XHOLD low to XHOLDA low	W	4t _{c(XTIM} +2t _{c(XCO)}	ns
t _{d(HH-HAH)}	Delay time, XHOLD high to XHOLDA high	OMICE	4t _{c(XTIM)}	ns
t _{d(HH-BV)}	Delay time, XHOLD high to Bus valid	W.L.	6t _{c(XTIM)}	ns

[†] When a low signal is detected on XHOLD, all pending XINTF accesses will be completed before the bus is placed in a high-impedance state.

[§] After the XHOLD is detected low or high, all bus transitions and XHOLDA transitions will occur with respect to the rising edge of XCLKOUT. Thus, for this mode where XCLKOUT = 1/2 XTIMCLK, the transitions can occur up to 1 XTIMCLK cycle earlier than the maximum value specified.

NOTES: A All pending XINTF accesses are completed.

B Normal XINTF operation resumes.

Figure 6-38. XHOLD/XHOLDA Timing Requirements (XCLKOUT = 1/2 XTIMCLK)

[‡] The state of XHOLD is latched on the rising edge of XTIMCLK.

On-Chip Analog-to-Digital Converter

6.31.1 ADC Absolute Maximum Ratings†

Supply voltage range,	V_{SSA1}/V_{SSA2} to $V_{DDA1}/V_{DDA2}/AV_{DDREFBG}$	\dots –0.3 V to 4.6 V
	V _{SS1} to V _{DD1}	0.3 V to 2.5 V
Analog Input (ADCIN) Cla	mp Current, total (max)	±20 mA [‡]

[†] Unless otherwise noted, the list of absolute maximum ratings are specified over operating conditions. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

WWW.100Y.COM.

WWW.100Y.COM 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw WWW.100Y.COM.

WWW.100Y.COM.TW

WWW.100Y.COM.TW

[‡] The analog inputs have an internal clamping circuit that clamps the voltage to a diode drop above V_{DDA} or below V_{SS}. The continuous clamp current per pin is ±2 mA.

6.31.2 ADC Electrical Characteristics Over Recommended Operating Conditions

Table 6-42. DC Specifications (See Note 1)

PARAME	TER WWW.	MIN	TYP	MAX	UNIT
Resolution	COM COM	12			Bits
ADO alasti (Oss Nata O)	J. W. 100 COL	1			kHz
ADC clock (See Note 2)	MAN TOOK	WILL		25	MHz
M. To SICO	ACCURACY	W			-
INL (Integral nonlinearity) (See Note 3)	1-18.75 MHz ADC clock	UM.	eT.	±1.5	LSB
DNL (Differential nonlinearity) (See Note 3)	1-18.75 MHz ADC clock	TIM		±1	LSB
Offset error (See Note 4)	O'Y WWW. OOK!	-80	W	80	LSB
Overall gain error with internal reference	F281x	-200	- 1	200	LSB
(See Note 5)	C281x	-80	LA	80	LSB
Overall gain error with external reference (See Note 6)	If ADCREFP-ADCREFM = 1 V ±0.1%	-50	TW	50	LSB
Channel-to-channel offset variation	T. M.TW WY 10	7.	±8		LSB
Channel-to-channel Gain variation	N.Co. TW	any.Cu	±8		LSB
a. COMIT	ANALOG INPUT	as C	Mr.	N	•
Analog input voltage (ADCINx to ADCLO) (See Note 7)	MY.COM.IA WAM	00	OM.	3	٧
ADCLO	In COM.	-5	CO_0	5	mV
Input capacitance	11001.	N.100 x	10		pF
Input leakage current	TW WW	1100	3	±5	μΑ
INTERN.	AL VOLTAGE REFERENCE (See Note 5)	1111	V.CO	TV	
Accuracy, ADCV _{REFP}	1100 - CONT.	1.9	2	2.1	v V
Accuracy, ADCV _{REFM}	TION.	0.95	1	1.05	V
Voltage difference, ADCREFP - ADCREFM	M. W. CO.	M. M.	MY	. 1	
Temperature coefficient	M.In. COM.	TINN.	50	CO_{Mr}	PPM/°
Reference noise	11001. W.I.	W.	100	Mon	μV
EXTERN	NAL VOLTAGE REFERENCE (See Note 6)	MAN	- 100		NT
Accuracy, ADCV _{REFP}	M.M. TO COMP.	1.9	2	2.1	V
Accuracy, ADCV _{REFM}	11 - 11 100 1 CONT. 1	0.95	W.190	1.05	V
Input voltage difference, ADCREFP - ADCREFM	WW. JON. CO. TW	0.99	10	1.01	V

- NOTES: 1. Tested at 12.5-MHz ADCCLK
 - 2. If SYSCLKOUT ≤ 25 MHz, ADC clock ≤ SYSCLKOUT/2
 - 3. The INL degrades for frequencies beyond 18.75 MHz 25 MHz. Applications that require these sampling rates should use a 20K-resistor as bias resistor on the ADCRESEXT pin. This improves overall linearity and typical current drawn by the ADC will be a few mA more than 24.9 k Ω bias. The ADC module in C281x devices can operate at 24.9k bias on ADCRESEXT pin for the full range 1-25MHz
 - 4. 1 LSB has the weighted value of 3.0/4096 = 0.732 mV.
 - 5. A single internal band gap reference (±5% accuracy) sources both ADCREFP and ADCREFM signals, and hence, these voltages track together. The ADC converter uses the difference between these two as its reference. The total gain error will be the combination of the gain error shown here and the voltage reference accuracy (ADCREFP - ADCREFM). A software-based calibration procedure is recommended for better accuracy. See F2810, F2811, and F2812 ADC Calibration Application Report (literature number SPRA989) and Section 5.2, Documentation Support, for relevant documents.
 - 6. In this mode, the accuracy of external reference is critical for overall gain. The voltage difference (ADCREFP-ADCREFM) will determine the overall accuracy.
 - 7. Voltages above V_{DDA} + 0.3 V or below V_{SS} 0.3 V applied to an analog input pin may temporarily affect the conversion of another pin. To avoid this, the analog inputs should be kept within these limits.

Table 6-43. AC Specifications

W	PARAMETER	MIN	TYP	MAX	UNIT
SINAD	Signal-to-noise ratio + distortion	OV.COM	62		dB
SNR	Signal-to-noise ratio	COM	62		dB
THD (100 kHz)	Total harmonic distortion	001.	-68		dB
ENOB (SNR)	Effective number of bits	100Y.Co. 1.TV	10.1		Bits
SFDR	Spurious free dynamic range	. CO	N 69		dB

6.31.3 Current Consumption for Different ADC Configurations (at 25-MHz ADCCLK)‡

I _{DDA} (TYP)§	I _{DDAIO} (TYP)	I _{DD1} (TYP)	ADC OPERATING MODE/CONDITIONS
40 mA	1 μΑ	0.5 mA	Mode A (Operational Mode): - BG and REF enabled - PWD disabled
7 mA	TW O WY	5 μΑ	Mode B: - ADC clock enabled - BG and REF enabled - PWD enabled
1 μΑ	M.TVO	5 μΑ	Mode C: - ADC clock enabled - BG and REF disabled - PWD enabled
1 μΑ	CONT. TW	WWW.100	Mode D: - ADC clock disabled - BG and REF disabled - PWD enabled

SYSCLKOUT = 150 MHz [‡] Test Conditions:

WWW.100Y.COM

WWW.100Y.COM.TW 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw WWW.100Y.COM.TW

 $[\]$ I_{DDA} – includes current into V_{DDA1}/V_{DDA2} and $AV_{DDREFBG}$

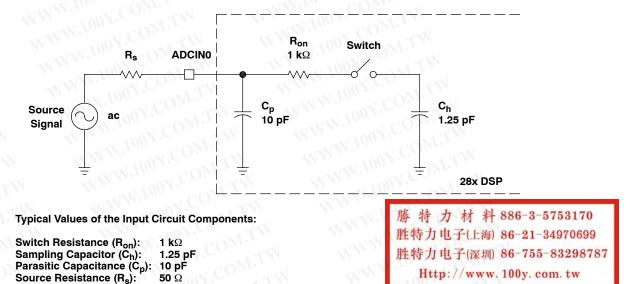


Figure 6-39. ADC Analog Input Impedance Model

ADC Power-Up Control Bit Timing

50 Ω

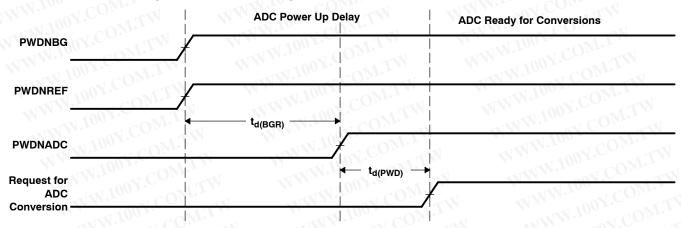


Figure 6-40. ADC Power-Up Control Bit Timing

Table 6-44. ADC Power-Up Delays[†]

	WILLIAM WILLIAM TONITH	MIN	TYP	MAX	UNIT
t _{d(BGR)}	Delay time for band gap reference to be stable. Bits 7 and 6 of the ADCTRL3 register (ADCBGRFDN1/0) are to be set to 1 before the ADCPWDN bit is enabled.	7	8	10	ms
	Delay time for power-down control to be stable. Bit 5 of the ADCTRL3 register	20	50	WW.	μS
t _d (PWD)	(ADCPWDN) is to be set to 1 before any ADC conversions are initiated.			1	ms

[†] These delays are necessary and recommended to make the ADC analog reference circuit stable before conversions are initiated. If conversions are started without these delays, the ADC results will show a higher gain. For power down, all three bits can be cleared at the same time.

6.31.5 Detailed Description

6.31.5.1 Reference Voltage

The on-chip ADC has a built-in reference, which provides the reference voltages for the ADC. ADCVREFP is set to 2.0 V and ADCVREFM is set to 1.0 V.

6.31.5.2 Analog Inputs

The on-chip ADC consists of 16 analog inputs, which are sampled either one at a time or two channels at a time. These inputs are software-selectable.

6.31.5.3 Converter

The on-chip ADC uses a 12-bit four-stage pipeline architecture, which achieves a high sample rate with low power consumption.

6.31.5.4 Conversion Modes

The conversion can be performed in two different conversion modes:

- Sequential sampling mode (SMODE = 0)
- Simultaneous sampling mode (SMODE = 1)

6.31.6 Sequential Sampling Mode (Single-Channel) (SMODE = 0)

In sequential sampling mode, the ADC can continuously convert input signals on any of the channels (Ax to Bx). The ADC can start conversions on event triggers from the Event Managers (EVA/EVB), software trigger, or from an external ADCSOC signal. If the SMODE bit is 0, the ADC will do conversions on the selected channel on every Sample/Hold pulse. The conversion time and latency of the Result register update are explained below. The ADC interrupt flags are set a few SYSCLKOUT cycles after the Result register update. The selected channels will be sampled at every falling edge of the Sample/Hold pulse. The Sample/Hold pulse width can be programmed to be 1 ADC clock wide (minimum) or 16 ADC clocks wide (maximum).

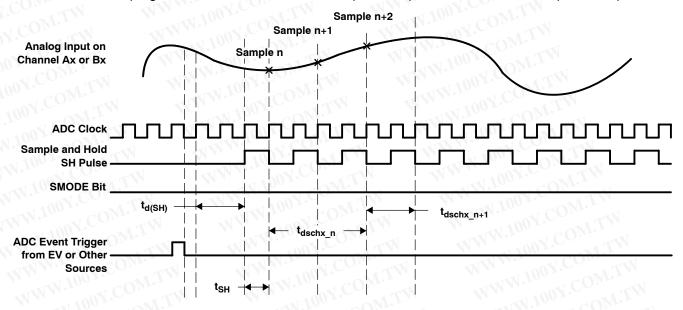


Figure 6-41. Sequential Sampling Mode (Single-Channel) Timing

W	MM.100X.COM.T.	SAMPLE n	SAMPLE n + 1	AT 25-MHz ADC CLOCK, t _{c(ADCCLK)} = 40 ns	REMARKS
t _{d(SH)}	Delay time from event trigger to sampling	2.5t _{c(ADCCLK)}	V.100Y.COM.TW	WW	M.1007.COM.
t _{SH}	Sample/Hold width/ Acquisition width	(1 + Acqps) * t _{c(ADCCLK)}	W.100Y.COM.	40 ns with Acqps = 0	Acqps value = 0-15 ADCTRL1[8:11]
t _{d(schx_n)}	Delay time for first result to appear in the Result register	4t _{c(ADCCLK)}	WW.100Y.COM.T	160 ns	MM:100X:CC
t _{d(schx_n+1)}	Delay time for successive results to appear in the Result register	COWLIN	(2 + Acqps) * t _{c(ADCCLK)}	80 ns	MMM.100X.

Table 6-45. Sequential Sampling Mode Timing

Http://www.100y.com.tw

Simultaneous Sampling Mode (Dual-Channel) (SMODE = 1) 6.31.7

In simultaneous mode, the ADC can continuously convert input signals on any one pair of channels (A0/B0 to A7/B7). The ADC can start conversions on event triggers from the Event Managers (EVA/EVB), software trigger, or from an external ADCSOC signal. If the SMODE bit is 1, the ADC will do conversions on two selected channels on every Sample/Hold pulse. The conversion time and latency of the Result register update are explained below. The ADC interrupt flags are set a few SYSCLKOUT cycles after the Result register update. The selected channels will be sampled simultaneously at the falling edge of the Sample/Hold pulse. The Sample/Hold pulse width can be programmed to be 1 ADC clock wide (minimum) or 16 ADC clocks wide (maximum).

NOTE: In Simultaneous mode, the ADCIN channel pair select has to be A0/B0, A1/B1, ..., A7/B7, and not in other combinations (such as A1/B3, etc.).

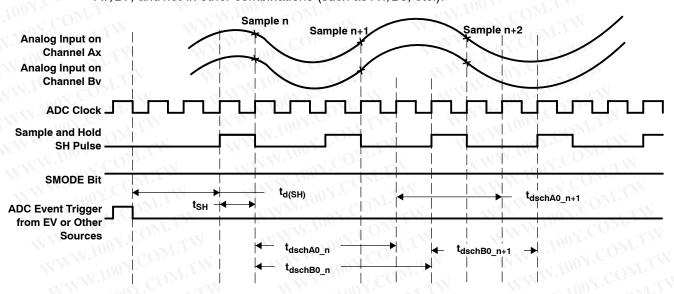


Figure 6-42. Simultaneous Sampling Mode Timing

Table 6-46. Simultaneous Sampling Mode Timing

	WWW.100Y.CO	SAMPLE n	SAMPLE n + 1	AT 25-MHz ADC CLOCK, t _{c(ADCCLK)} = 40 ns	REMARKS
t _{d(SH)}	Delay time from event trigger to sampling	2.5t _{c(ADCCLK)}	MMM.Too.Y.COV	UIN	MMM.100X
t _{SH}	Sample/Hold width/ Acquisition Width	(1 + Acqps) * t _{c(ADCCLK)}	WWW.100X.CO	40 ns with Acqps = 0	Acqps value = 0-15 ADCTRL1[8:11]
t _{d(schA0_n)}	Delay time for first result to appear in Result register	4t _{c(ADCCLK)}	MMM.100X.C	160 ns	MMM.10
t _{d(schB0_n)}	Delay time for first result to appear in Result register	5t _{c(ADCCLK)}	MMM.100x	200 ns	MMM.
t _{d(sch} A0_n+1)	Delay time for successive results to appear in Result register	.100Y.COM.TW	(3 + Acqps) * t _{c(ADCCLK)}	120 ns	M MM
t _{d(schB0_n+1)}	Delay time for successive results to appear in Result register	W.100Y.COM.T	(3 + Acqps) * t _{c(ADCCLK)}	120 ns	TW WY

6.31.8 Definitions of Specifications and Terminology

Integral Nonlinearity

Integral nonlinearity refers to the deviation of each individual code from a line drawn from zero through full scale. The point used as zero occurs 1/2 LSB before the first code transition. The full-scale point is defined as level 1/2 LSB beyond the last code transition. The deviation is measured from the center of each particular code to the true straight line between these two points.

Differential Nonlinearity

An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. A differential nonlinearity error of less than ±1 LSB ensures no missing codes.

Zero Offset

The major carry transition should occur when the analog input is at zero volts. Zero error is defined as the deviation of the actual transition from that point.

Gain Error

The first code transition should occur at an analog value 1/2 LSB above negative full scale. The last transition should occur at an analog value 1 1/2 LSB below the nominal full scale. Gain error is the deviation of the actual difference between first and last code transitions and the ideal difference between first and last code transitions.

Signal-to-Noise Ratio + Distortion (SINAD)

SINAD is the ratio of the rms value of the measured input signal to the rms sum of all other spectral components below the Nyquist frequency, including harmonics but excluding dc. The value for SINAD is expressed in decibels.

Effective Number of Bits (ENOB)

For a sine wave, SINAD can be expressed in terms of the number of bits. Using the following formula,

$$N = \frac{(SINAD - 1.76)}{6.02}$$

it is possible to get a measure of performance expressed as N, the effective number of bits. Thus, effective number of bits for a device for sine wave inputs at a given input frequency can be calculated directly from its measured SINAD.

Total Harmonic Distortion (THD)

THD is the ratio of the rms sum of the first six harmonic components to the rms value of the measured input signal and is expressed as a percentage or in decibels.

Spurious Free Dynamic Range (SFDR)

SFDR is the difference in dB between the rms amplitude of the input signal and the peak spurious signal.

6.32 Multichannel Buffered Serial Port (McBSP) Timing

6.32.1 McBSP Transmit and Receive Timing

Table 6-47. McBSP Timing Requirements^{†‡}

NO.	MIN	M. 100x. W.L. M. 101	COMIT	MIN	MAX	UNIT
Co	WT	MAROR WALLAND COLLOR OLLOW	DOY. COMITW	1		kHz
	DMT	McBSP module clock (CLKG, CLKX, CLKR) range			20§	MHz
. (OMIT	M BODY WILL COME ON OUR OUR	Too COM.	50		ns
	WIM	McBSP module cycle time (CLKG, CLKX, CLKR) range		-7	1	ms
M11	t _{c(CKRX)}	Cycle time, CLKR/X	CLKR/X ext	2P		ns
M12	t _{w(CKRX)}	Pulse duration, CLKR/X high or CLKR/X low	CLKR/X ext	P-7		ns
M13	t _{r(CKRX)}	Rise time, CLKR/X	CLKR/X ext	-XX	7	ns
M14	t _{f(CKRX)}	Fall time, CLKR/X	CLKR/X ext	T. I.	7	ns
N (. ANY CO	M MM TODY OF THE M	CLKR int	18		
M15	t _{su(FRH-CKRL)}	Setup time, external FSR high before CLKR low	CLKR ext	2		ns
w.W.	Ing COM	· COM	CLKR int	0		
M16	t _h (CKRL-FRH)	Hold time, external FSR high after CLKR low	CLKR ext	6	-31	ns
M	-100X.CO	The Mariantin	CLKR int	18	JA	
M17	t _{su(DRV-CKRL)}	Setup time, DR valid before CLKR low	CLKR ext	2	TIN	ns
14461	1. 100 - C	DATE OF THE STATE OF COMP.	CLKR int	(O	- 177	V
M18	t _{h(CKRL-DRV)}	Hold time, DR valid after CLKR low	CLKR ext	6	Mr	ns
MAG	W. 1007.	24.00	CLKX int	18	oM.	41
M19	t _{su(FXH-CKXL)}	Setup time, external FSX high before CLKX low	CLKX ext	2	11	ns
1400		COMPANIE LENGTH OF OLIVER COMPANIE	CLKX int	0	$Co_{\mathbb{P}_2}$	TV
M20	th(CKXL-FXH)	Hold time, external FSX high after CLKX low	CLKX ext	6	COL	ns

[†] Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that signal are also inverted.

 $^{^{\}ddagger}$ 2P = 1/CLKG in ns. CLKG is the output of sample rate generator mux. CLKG = $\frac{\text{CLKSRG}}{(1 + \text{CLKGDV})}$.

CLKSRG can be LSPCLK, CLKX, CLKR as source. CLKSRG ≤ (SYSCLKOUT/2). McBSP performance is limited by I/O buffer switching speed. § Internal clock prescalers must be adjusted such that the McBSP clock (CLKG, CLKX, CLKR) speeds are not greater than the I/O buffer speed limit (20 MHz).

Table 6-48. McBSP Switching Characteristics^{†‡}

NO.	WWW	PARAMETER	Y.Co	LM	MIN	MAX	UNIT
M1	t _{c(CKRX)}	Cycle time, CLKR/X	W.Con	CLKR/X int	2P		ns
M2	t _{w(CKRXH)}	Pulse duration, CLKR/X high	I CON	CLKR/X int	D-5§	D+5§	ns
МЗ	t _{w(CKRXL)}	Pulse duration, CLKR/X low	00,1	CLKR/X int	C-5§	C+5§	ns
M4	W WY	Delay time CLIVD high to internal ESD valid	100Y.	CLKR int	0	4	ns
IVI4	t _d (CKRH-FRV)	Delay time, CLKR high to internal FSR valid	· Covice	CLKR ext	3	27	ns
M5	+	Delay time, CLKX high to internal FSX valid		CLKX int	0	4	ns
IVIO	t _d (CKXH-FXV)	Delay time, CERA high to internal 1 3A valid	W.100 1.	CLKX ext	3	27	115
M6	t F (2)241 2)417	Disable time, CLKX high to DX high impedance		CLKX int		8	ns
IVIO	t _{dis} (CKXH-DXHZ)	following last data bit	111111111111111111111111111111111111111	CLKX ext	N	14	113
-1 C	OW.	Delay time, CLKX high to DX valid.		CLKX int	N.	9	
01.	OMITW	This applies to all bits except the first bit transmitte	ed. 100	CLKX ext		28	
OOY.	TW	WW. TI 100Y. COM.TW	DXENA = 0	CLKX int	IN	8	
M7	t _d (CKXH-DXV)	Delay time, CLKX high to DX valid	DXENA = 0	CLKX ext	TW	14	ns
100	CONT.	MANN TO COMP.	MAIN	CLKX int	WT	P + 8	
N.100	T. COM.TV	Only applies to first bit transmitted when in Data Delay 1 or 2 (XDATDLY=01b or 10b) modes	DXENA = 1	CLKX ext	Na.	P + 14	1
W.10	D. COMIL	N. M. Too COM.		CLKX int	0	N	
	DOX.COM.TV	Enable time, CLKX high to DX driven	DXENA = 0	CLKX ext	0/16	-41	
M8	t _{en(CKXH-DX)}	N Colombia Colombia		CLKX int	P	LA	ns
WW	TOON.COM	Only applies to first bit transmitted when in Data Delay 1 or 2 (XDATDLY=01b or 10b) modes	DXENA = 1	CLKX ext	P + 6	IM	
NW	W. COm	TW WWW.100Y.CO.TW		FSX int	V.Co	8	
- 3J.W	M.Jus. CON	Delay time, FSX high to DX valid	DXENA = 0	FSX ext	ON.Co.	14	· [
M9	t _d (FXH-DXV)		Ø	FSX int	oov.CO	P + 8	ns
	MW.100 X.	Only applies to first bit transmitted when in Data Delay 0 (XDATDLY=00b) mode.	DXENA = 1	FSX ext	ov.C	P + 14	
V	1001.0	047.14 M. M. 100 . COM		FSX int	100 0	OM.	- 1
<	WW 100Y.C	Enable time, FSX high to DX driven	DXENA = 0	FSX ext	6	COM	1.11
M10	t _{en(FXH-DX)}	Cally and the first his transmitted than 2	u.TN	FSX int	W.10P)		ns
	WWW.Look	Only applies to first bit transmitted when in Data Delay 0 (XDATDLY=00b) mode	DXENA = 1	FSX ext	P + 6	A.C.	TI

[†] Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that signal are also inverted.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.COM

WWW.100Y.COM.TW

100Y.COM.TW

WWW.100Y.COM.TW

[‡] 2P = 1/CLKG in ns.

D=CLKRX high pulse width = P § C=CLKRX low pulse width = P WWW.100Y.COM.TW

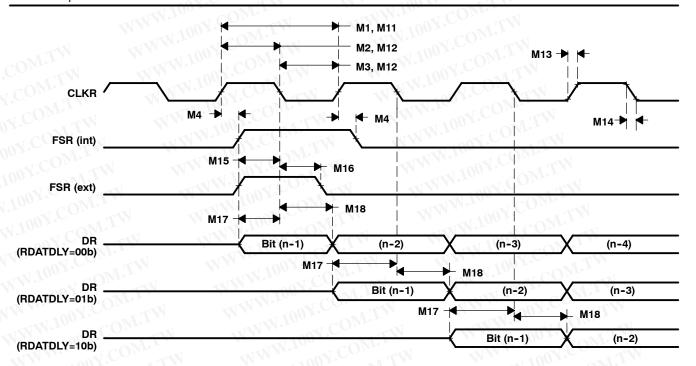


Figure 6-43. McBSP Receive Timing

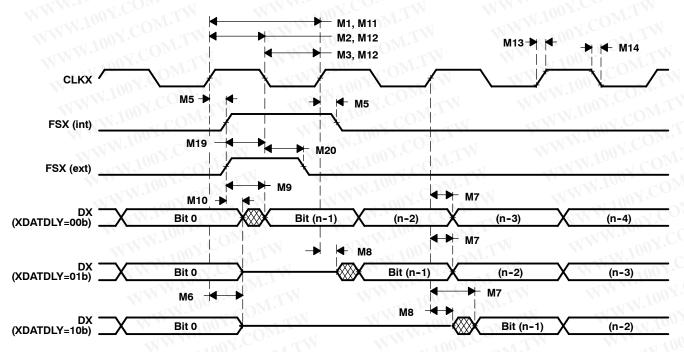


Figure 6-44. McBSP Transmit Timing

6.32.2 McBSP as SPI Master or Slave Timing

Table 6-49. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 0)

Viol	MMA	TOOY.CO. TW WWW.	MASTER	SLAVE	
NO.	WWV		MIN MAX	MIN MAX	UNIT
M30	t _{su(DRV-CKXL)}	Setup time, DR valid before CLKX low	30	8P-10	ns
M31	t _{h(CKXL-DRV)}	Hold time, DR valid after CLKX low	OM. COMP.	8P-10	ns
M32	t _{su(BFXL-CKXH)}	Setup time, FSX low before CLKX high	1001 COM.TW	8P+10	ns
M33	t _{c(CKX)}	Cycle time, CLKX	2P	16P	ns

Table 6-50. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 0)[†]

(CO)	O. PARAMETER	MAS	TER	SLAVE		
NO.	M. T	PARAMETER	MIN	MAX	MIN MAX	UNIT
M24	th(CKXL-FXL)	Hold time, FSX low after CLKX low	2P	CO_{N_1}		ns
M25	t _{d(FXL-CKXH)}	Delay time, FSX low to CLKX high	10P	c01	T.T.	ns
M28	t _{dis(FXH-DXHZ)}	Disable time, DX high impedance following last data bit from FSX high	N.16	Y.CC	6P + 6	ns
M29	t _{d(FXL-DXV)}	Delay time, FSX low to DX valid	6	-1 C	4P + 6	ns

^{† 2}P = 1/CLKG

For all SPI slave modes, CLKX has to be minimum 8 CLKG cycles. Also CLKG should be LSPCLK/2 by setting CLKSM = CLKGDV = 1. With maximum LSPCLK speed of 75 MHz, CLKX maximum frequency will be LSPCLK/16, that is 4.6875 MHz and P =13.3 ns.

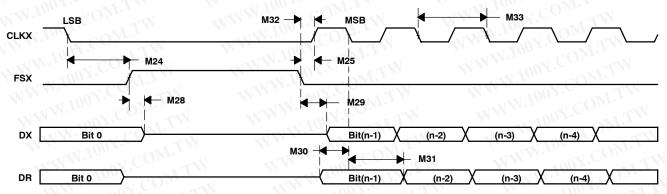


Figure 6-45. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM.TW

100Y.COM.TW

WWW.100Y.COM.

Table 6-51. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 0)[†]

No 1	WT W	WALL TON TON	MAS	MASTER		SLAVE	
NO.			MIN	MAX	MIN	MAX	UNIT
M39	t _{su(DRV-CKXH)}	Setup time, DR valid before CLKX high	30)Mr.	8P-10		ns
M40	t _{h(CKXH-DRV)}	Hold time, DR valid after CLKX high	W.100 1	OM.	8P-10		ns
M41	t _{su(FXL-CKXH)}	Setup time, FSX low before CLKX high	100 X.	Mos	16P+10		ns
M42	t _{c(CKX)}	Cycle time, CLKX	2P		16P		ns

Table 6-52. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 0)[†]

NO	COM	MMM, CO. TW.	MASTER	SLAVE	LINUT	
NO.	COM	PARAMETER	MIN MAX	MIN MAX	UNIT	
M34	t _{h(CKXL-FXL)}	Hold time, FSX low after CLKX low	P	O_{M_1}	ns	
M35	t _{d(FXL-CKXH)}	Delay time, FSX low to CLKX high	2P	OWIT	ns	
M37	t _{dis(CKXL-DXHZ)}	Disable time, DX high impedance following last data bit from CLKX low	P+6	7P+6	ns	
M38	t _{d(FXL-DXV)}	Delay time, FSX low to DX valid	6	4P + 6	ns	

^{† 2}P = 1/CLKG

For all SPI slave modes, CLKX has to be minimum 8 CLKG cycles. Also CLKG should be LSPCLK/2 by setting CLKSM = CLKGDV = 1. With maximum LSPCLK speed of 75 MHz, CLKX maximum frequency will be LSPCLK/16, that is 4.6875 MHz and P =13.3 ns.

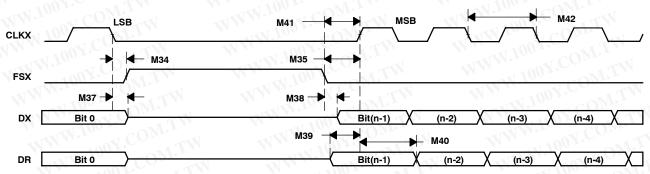


Figure 6-46. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0

Table 6-53. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 1)[†]

TIM	MMA	OUX.CO. LAN MALITON.	MASTER	SLAVE		
NO.	WW		MIN MAX	MIN MAX	UNIT	
M49	t _{su(DRV-CKXH)}	Setup time, DR valid before CLKX high	30	8P-10	ns	
M50	t _{h(CKXH-DRV)}	Hold time, DR valid after CLKX high	COM	8P-10	ns	
M51	t _{su(FXL-CKXL)}	Setup time, FSX low before CLKX low	Or. OMITH	8P+10	ns	
M52	t _{c(CKX)}	Cycle time, CLKX	2P	16P	ns	

Table 6-54. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 1)[†]

COA	W	MAN, CON TAN MAN, TO		MASTER		SLAVE	
NO.		PARAMETER		MAX	MIN	MAX	UNIT
M43	th(CKXH-FXL)	Hold time, FSX low after CLKX high	2P	CO_{Mr}	-33		ns
M44	t _d (FXL-CKXL)	Delay time, FSX low to CLKX low	P	c01			ns
M47	t _{dis(FXH-DXHZ)}	Disable time, DX high impedance following last data bit from FSX high	106	A CO	6P + 6		ns
M48	t _{d(FXL-DXV)}	Delay time, FSX low to DX valid	6	-100	4P + 6	J	ns

^{† 2}P = 1/CLKG

For all SPI slave modes, CLKX has to be minimum 8 CLKG cycles. Also CLKG should be LSPCLK/2 by setting CLKSM = CLKGDV = 1. With maximum LSPCLK speed of 75 MHz, CLKX maximum frequency will be LSPCLK/16, that is 4.6875 MHz and P =13.3 ns.

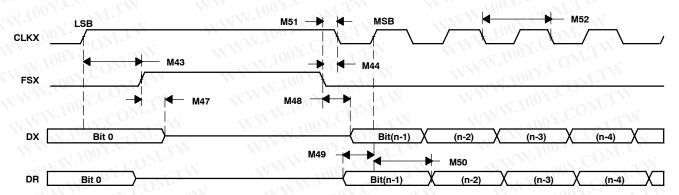


Figure 6-47. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1

Table 6-55. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 1)[†]

No 1	W W	MALLON TON	MASTER	SLAVE	
NO.	-XXI		MIN MAX	MIN MAX	UNIT
M58	t _{su(DRV-CKXL)}	Setup time, DR valid before CLKX low	30	8P - 10	ns
M59	t _{h(CKXL-DRV)}	Hold time, DR valid after CLKX low	10M.10	8P - 10	ns
M60	t _{su(FXL-CKXL)}	Setup time, FSX low before CLKX low	TALL DOY.	16P + 10	ns
M61	t _{c(CKX)}	Cycle time, CLKX	2P	16P	ns

Table 6-56. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 1)[†]

ON CURT		THE WAY TO THE WAY TO THE		SLAVE	
NO.	PARAMETER		MIN MAX	MIN MAX	UNIT
M53	t _{h(CKXH-FXL)}	Hold time, FSX low after CLKX high	P	DIVI	ns
M54	t _{d(FXL-CKXL)}	Delay time, FSX low to CLKX low	2P	$O_{M,I}$	ns
M56	t _{dis(CKXH-DXHZ)}	Disable time, DX high impedance following last data bit from CLKX high	P + 6	7P + 6	ns
M57	t _{d(FXL-DXV)}	Delay time, FSX low to DX valid	6	4P + 6	ns

^{† 2}P = 1/CLKG

For all SPI slave modes, CLKX has to be minimum 8 CLKG cycles. Also CLKG should be LSPCLK/2 by setting CLKSM = CLKGDV = 1. With maximum LSPCLK speed of 75 MHz, CLKX maximum frequency will be LSPCLK/16, that is 4.6875 MHz and P = 13.3 ns.

- [‡] C = CLKX low pulse width = P
- D = CLKX high pulse width = P

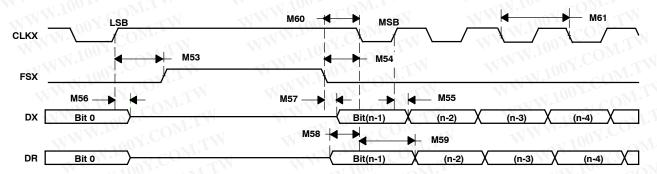


Figure 6-48. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1

料 886-3-5753170 材 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw

6.33 Flash Timing (F281x Only)

Table 6-57. Flash Endurance for A and S Temperature Material[†]

	Table 6-57. Flash Endurance for A and S Temperature						
ANT.CO	TW	WWW.100Y.Co. T.TW	MAL TOOK	MIN	TYP	MAX	UNIT
N. Ina Co	N _f	Flash endurance for the array (Write/erase cycles)	0°C to 85°C (ambient)	20000	50000		cycles
W.100 1.	N _{OTP}	OTP endurance for the array (Write cycles)	0°C to 85°C (ambient)			1	write

[†] Write/erase operations outside of the temperature ranges indicated are not specified and may affect the endurance numbers.

Table 6-58. Flash Endurance for Q Temperature Material[‡]

N_f	Flash endurance for the array (Write/erase cycles)	-40°C to 125°C (ambient)	20000	50000	
Note	OTP endurance for the array (Write cycles)	-40°C to 125°C (ambient)	CODY	-11	

Table 6-59. Flash Parameters at 150-MHz SYSCLKOUT§

	PARAMETER			MIN TYP MAX	UNIT
100 Y.C.	CTW V	Using Flash API v1 [¶]		35	μS
Program Time	16-Bit Word	Using Flash API v2.10		50	μs
	Using Flash API v1 [¶]		170 N	ms	
	8K Sector	Using Flash API v2.10	Using Flash API v2.10		ms
	W.T.A.Sur.	Using Flash API v1 [¶]		320	ms
	16K Sector	Using Flash API v2.10		500	ms
N. Inc	8K Sector	MM. TO COME THE WINN		10	s
Erase Time	16K Sector	CON.	T TW	W. To Cal	S
100	Y. OM.TW	M. 1003.	Erase		mA
I _{DD3VFLP}	V _{DD3VFL} current cons	sumption during the Erase/Program cycle	Program	35	mA
I _{DDP}	V _{DD} current consump	otion during Erase/Program cycle	W W	140	mA
I _{DDIOP}	V _{DDIO} current consur	√ _{DDIO} current consumption during Erase/Program cycle		20	mA

[§] Typical parameters as seen at room temperature including function call overhead, with all peripherals off.

Table 6-60. Flash/OTP Access Timing

	PARAMETER	MIN MAX	UNIT
t _{a(fp)}	Paged Flash access time	36	ns
t _{a(fr)}	Random Flash access time	36	ns
t _{a(OTP)}	OTP access time		ns

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM.TW

U 100Y.COM.TW

[¶] Flash API v1.00 is useable on rev. C silicon only.

Table 6-61. Minimum Required Flash Wait-States at Different Frequencies (F281x devices)

SYSCLKOUT (MHz)	SYSCLKOUT (ns)	PAGE WAIT-STATE†	RANDOM WAIT STATE ^{†‡}	ОТР
150	6.67	5	50	8
120	8.33	4	W.100 4 OM.1	7
100	10	3	3	5
75	13.33	2	2.00	4
50	20	OM	MM. To Ty COM.	2
30	33.33	TOW. I'M	COM	1
25	40	0	1107.	1
C 15	66.67	CONTON	WWW 100Y.CO	TW 1
4)	250	COMO	TIMN 1 CO	1

[†] Formulas to compute page wait state and random wait state:

Flash Page Wait State
$$= \left[\left(\frac{t_{a(fp)}}{t_{c(SCO)}} \right) - 1 \right]$$
 (round up to the next highest integer), or 0 whichever is larger

Flash Random Wait State =
$$\left[\left(\frac{t_{a(fr)}}{t_{c(SCO)}} \right) - 1 \right]$$
 (round up to the next highest integer), or 1 whichever is larger

OTP Wait State =
$$\left[\left(\frac{t_{a(OTP)}}{t_{c(SCO)}} \right) - 1 \right]$$
 (round up to the next highest integer), or 1 whichever is larger

[‡] Random wait state must be greater than or equal to 1

6.34 ROM Timing (C281x only)

Table 6-62. ROM Access Timing

WIL	PARAMETER	M. TAN TOO T. COM. T.	T	MIN MAX	UNIT
t _{a(rp)}	Paged ROM access time	WW. 1007.	1/1	23	ns
t _{a(rr)}	Random ROM access time	M.M. OOX.CO.		23	ns
t _{a(ROM)}	ROM (OTP area) access time (see Note 1)	MAN. ICOM.	TV	60	ns

NOTE 1: In C281x devices, a 1K x 16 ROM block replaces the OTP block found in Flash devices.

Table 6-63. Minimum Required ROM Wait-States at Different Frequencies (C281x devices)

SYSCLKOUT (MHz)	SYSCLKOUT (ns)	PAGE WAIT-STATE†	RANDOM WAIT STATE†‡
150	6.67	3	3
120	8.33	2	2
100	10 CO	2	2
75	13.33	1,100	
50	20	14 14 100;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C 30	33.33	0///	M.T.W
25	40 COM	O WWW.	N.COM TIN
15	66.67	0	CONL
1007.4	250	0	Mr. CONT.

[†] Formulas to compute page wait state and random wait state:

ROM Page Wait State =
$$\left[\left(\frac{t_{a(rp)}}{t_{c(SCO)}} \right) - 1 \right]$$
 (round up to the next highest integer), or 0 whichever is larger

ROM Random Wait State
$$= \left[\left(\frac{t_{a(rr)}}{t_{c(SCO)}} \right) - 1 \right]$$
 (round up to the next highest integer), or 1 whichever is larger

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM.T

[‡] Random wait state must be greater than or equal to 1

Migrating From F281x Devices to C281x Devices

The migration issues to be considered while migrating from the F281x devices to C281x devices are as follows:

- The 1K OTP memory available in F281x devices has been replaced by 1K ROM C281x devices.
- Power sequencing is not needed for C281x devices. In other words, 3.3-V and 1.8-V (or 1.9-V) can ramp together. C281x can also be used on boards that have F281x power sequencing implemented; however, if the 1.8-V (or 1.9-V) rail lags the 3.3-V rail, the GPIO pins are undefined until the 1.8-V rail reaches at least 1 V.
- Current consumption differs for F281x and C281x devices for all four possible modes. See the appropriate electrical section for exact numbers.
- The V_{DD3VFL} pin is the 3.3-V flash core power pin in F281x devices but is a V_{DDIO} pin in C281x devices.
- F281x and C281x devices are pin-compatible and code-compatible; however, they are electrically different with different EMI/ESD profiles. Before ramping production with c281x devices, evaluate performance of the hardware design with both devices
- Addresses 0x3D7BFC through 0x3D7BFF in the OTP and addresses 0x3F7FF2 through 0x3F7FF5 in the main ROM array are reserved for ROM part-specific information and are not available for user applications.
- The ADC module in C281x devices can operate at 24.9k bias on ADCRESEXT pin for the full range 1-25MHz. While migrating the F281x designs to C281x, use a 24.9k resistor for biasing the ADC.
- The paged and random wait-state specifications for the flash and ROM parts are different. While migrating from flash to ROM parts, the same wait-state values must be used for best performance compatibility (for example, in applications that use software delay loops or where precise interrupt latencies are critical).
- The PART-ID register value is different for Flash and ROM parts.

For errata applicable to 281x devices, see the TMS320F2810, TMS320F2811, TMS320F2812, TMS320C2810, TMS320C2811, TMS320C2812 DSP Silicon Errata (literature number SPRZ193).

WWW.100Y.COM. 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw WWW.100Y.COM.TW

7 Mechanical Data

Table 7-1 through Table 7-4 provide the thermal resistance characteristics for the various packages.

Table 7-1. Thermal Resistance Characteristics for 179-Ball GHH

PARAMETER	179-GHH PACKAGE	CUNIT
Psi _{JT}	0.658	°C/W
Θ_{JA}	42.57	°C/W
$\Theta_{\sf JC}$	16.08	°C/W

Table 7-2. Thermal Resistance Characteristics for 179-Ball ZHH

PARAMETER	179-ZHH PACKAGE	UNIT
Psi _{JT}	0.658	°C/W
Θ_{JA}	42.57	°C/W
ΘJC	16.08	°C/W

Table 7-3. Thermal Resistance Characteristics for 176-Pin PGF

PARAMETER	176-PGF PACKAGE	UNIT
Psi _{JT}	0.247	°C/W
Θ_{JA}	41.88	°C/W
$\Theta_{\sf JC}$	9.73	°C/W

Table 7-4. Thermal Resistance Characteristics for 128-Pin PBK

128-PBK PACKAGE	UNIT
0.271	°C/W
41.65	°C/W
10.76	°C/W
	0.271 41.65

The following mechanical package diagram(s) reflect the most current released mechanical data available for the designated device(s).

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Amplifiers amplifier.ti.com **Data Converters** dataconverter.ti.com DLP® Products www.dlp.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com **RFID** www.ti-rfid.com RF/IF and ZigBee® Solutions www.ti.com/lprf

Applications Audio www.ti.com/audio Automotive www.ti.com/automotive Broadband www.ti.com/broadband Digital Control www.ti.com/digitalcontrol Medical www.ti.com/medical Military www.ti.com/military Optical Networking www.ti.com/opticalnetwork Security www.ti.com/security Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless

WWW.100Y.COM.T

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated