＋3．0V to＋5．5V，1OnA，250kbps RS－232 Transceivers with $\pm 15 \mathrm{kV}$ ESD－Protected I／O and Logic Pins

General Description

The MAX3238E／MAX3248E transceivers use Maxim＇s revolutionary AutoShutdown Plus ${ }^{\text {TM }}$ feature to achieve 10nA supply current．These devices shut down the on－ board power supply and drivers when they do not sense a valid signal transition on either the receiver or transmit－ ter inputs．This occurs if the RS－232 cable is disconnect－ ed or if the transmitters of the connected peripheral are turned off．The devices turn on again when a valid transi－ tion is applied to any RS－232 receiver or transmitter input． AutoShutdown Plus automatically achieves this power savings through its on－board circuitry，as no changes are required to the existing BIOS or operating system．
All RS－232 inputs and outputs，as well as the logic I／O pins，have enhanced ESD protection to $\pm 15 \mathrm{kV}$ ．The addi－ tional ESD protection on the logic I／O pins makes the MAX3238E／MAX3248E ideal for cell phone data cable applications because it eliminates the need for costly external TransZorb ${ }^{\text {TM }}$ or protection schemes．
The MAX3238E／MAX3248E contain five drivers and three receivers and are 3V－powered EIA／TIA－232 and V．28／V． 24 communication interfaces intended for cell phones，data cables，and modem applications．A proprietary，high－effi－ ciency，dual charge－pump power supply and a low－ dropout transmitter combine to deliver true RS－232 performance from a single +3.0 V to +5.5 V supply．A guaranteed data rate of 250 kbps provides compatibility with popular software for communicating with personal computers．
The MAX3238E and the MAX3248E differ only in their input logic thresholds．The MAX3238E has standard logic thresholds，while the MAX3248E has low－level logic thresholds of 0.6 V to 1.2 V ，which are ideal for 1.8 V sys－ tems．
The transmitter inputs，FORCEON，and $\overline{\text { FORCEOFF }}$ have a $400 \mathrm{k} \Omega$ active positive feedback resistor．Once driven to a valid logic level，they will retain this level if the driving signal is removed or goes high impedance．Unused transmitter and logic inputs may be left unconnected．The MAX3238E／MAX3248E can operate with supply voltages ranging from +3.0 V to +5.5 V ．

Applications

Cellular Data Cables	Peripherals
Modems	Data Cradles
Battery－Powered Equipment	Printers
AutoShutdown Plus is a trademark of Maxim Integrated Products．	
TransZorb is a trademark of General Semiconductor Industries，Inc．	

[^0]Ordering Information

PART	TEMP．RANGE	PIN－PACKAGE
MAX3238ECAI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 SSOP
MAX3238EEAI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 SSOP
MAX3248ECAI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 SSOP
MAX3248EEAI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 SSOP

Typical Operating Circuit appears at end of data sheet．
Pin Configuration

+3.0V to +5.5V, 10nA, 250kbps RS-232 Transceivers with $\pm 15 k V$ ESD-Protected I/O and Logic Pins

ABSOLUTE MAXIMUM RATINGS

VCC... 0.3 l to +6 V	
V+ (Note 1)	-0.3V to +7V
V- (Note 1) .. 0.3 V to -7V	
V+ + IV-I (Note 1) ... 13 V	
Input Voltages	
T_IN, FORCEOFF, FORCEON-0.3V to +6V	
R_IN	$\pm 25 \mathrm{~V}$
Output Voltages	
T_OUT.. $\pm 13.2 \mathrm{~V}$	
R_OUT, INVALID	$\mathrm{V} \mathrm{Cc}+0.3 \mathrm{~V})$

Note 1: $\mathrm{V}+$ and V - can have a maximum magnitude of +7 V , but their absolute difference can not exceed +13 V .
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$(\mathrm{VCC}=+3.0 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{C} 1-\mathrm{C} 4=0.1 \mu \mathrm{~F}$ (tested at $3.3 \mathrm{~V} \pm 5 \%$), $\mathrm{C} 1-\mathrm{C} 4=0.22 \mu \mathrm{~F}$ (tested at $3.3 \mathrm{~V} \pm 10 \%$), $\mathrm{C} 1=0.047 \mu \mathrm{~F}$, and $\mathrm{C} 2-\mathrm{C} 4=0.33 \mu \mathrm{~F}$ (tested at $5.0 \mathrm{~V} \pm 10 \%$), $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
DC CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$ or $\left.+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$						
Plus	Receivers idle, T_IN = VCC or GND, FORCEON = GND, $\overline{\text { FORCEOFF }}=$ VCC			0.75	6	$\mu \mathrm{A}$
lus	$\begin{aligned} & \text { R_IN = FORCEON }=\text { GND, } \overline{\text { FORCEOFF }}=V_{C C}, \\ & \text { T_IN }=V_{C C} \text { or } G N D \end{aligned}$			10	300	nA
Supply Current, Shutdown	$\overline{\text { FORCEOFF }}=$ GND, R_IN $=$ GND, T_IN = VCC or GND			10	300	nA
Supply Current, AutoShutdown Plus Disabled	FORCEON $=\overline{\text { FORCEOFF }}=\mathrm{V}_{\text {cc }}$, no load			0.5	2.0	mA
LOGIC INPUTS AND RECEIVER OUTPUTS						
Input Logic Threshold Low	MAX3238E	T_IN (active)	0.8	1.20		V
		FORCEON, $\overline{F O R C E O F F}$, and T_IN wake-up threshold; $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	0.8	1.00		
		FORCEON, FORCEOFF, and T_IN wake-up threshold; $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	0.8	1.45		
	MAX3248E	T_IN (active)	0.6	0.7		
		FORCEON, $\overline{F O R C E O F F}$, and T_IN wake-up threshold; $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	0.6	0.85		
		FORCEON, $\overline{\text { FORCEOFF, }}$, and T_IN wake-up threshold; $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	0.6	1.0		
Input Logic Threshold High	MAX3238E	T_IN (active)		1.60	2.0	V
		FORCEON, FORCEOFF, and T_IN wake-up threshold; $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$		1.30	2.0	
		FORCEON, $\overline{F O R C E O F F}$, and T_IN wake-up threshold; $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		2.10	2.4	
	MAX3248E	T_IN (active)		1.10	1.2	
		FORCEON, $\overline{\text { FORCEOFF }}$, and T_IN wake-up threshold; $\mathrm{VCC}=3.3 \mathrm{~V}$		0.95	1.2	
		FORCEON, $\overline{F O R C E O F F}$, and T_IN wake-up threshold; $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		1.15	1.6	

+3.0V to +5.5V, 10nA, 250kbps RS-232 Transceivers with $\pm 15 \mathrm{kV}$ ESD-Protected I/O and Logic Pins

ELECTRICAL CHARACTERISTICS (continued)

$(\mathrm{VCC}=+3.0 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{C} 1-\mathrm{C} 4=0.1 \mu \mathrm{~F}$ (tested at $3.3 \mathrm{~V} \pm 5 \%$), $\mathrm{C} 1-\mathrm{C} 4=0.22 \mu \mathrm{~F}$ (tested at $3.3 \mathrm{~V} \pm 10 \%$), $\mathrm{C} 1=0.047 \mu \mathrm{~F}$, and $\mathrm{C} 2-\mathrm{C} 4=0.33 \mu \mathrm{~F}$ (tested at $5.0 \mathrm{~V} \pm 10 \%$), $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

+3.0V to +5.5V, 10nA, 250kbps RS-232 Transceivers with $\pm 15 k V$ ESD-Protected I/O and Logic Pins

ELECTRICAL CHARACTERISTICS (continued)

$(\mathrm{VCC}=+3.0 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{C} 1-\mathrm{C} 4=0.1 \mu \mathrm{~F}$ (tested at $3.3 \mathrm{~V} \pm 5 \%$), $\mathrm{C} 1-\mathrm{C} 4=0.22 \mu \mathrm{~F}$ (tested at $3.3 \mathrm{~V} \pm 10 \%$), $\mathrm{C} 1=0.047 \mu \mathrm{~F}$, and $\mathrm{C} 2-\mathrm{C} 4=0.33 \mu \mathrm{~F}$ (tested at $5.0 \mathrm{~V} \pm 10 \%$), $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	CONDITIONS		MIN TYP	MAX	UNITS	
TIMING CHARACTERISTICS						
Maximum Data Rate	$R_{L}=3 \mathrm{k} \Omega, C_{L}=1000 \mathrm{pF}$, one transmitter switching		250		kbps	
Receiver Propagation Delay	R_IN to R_OUT, $C L=150 \mathrm{pF}$	tPHL	0.15		$\mu \mathrm{s}$	
		tpLH	0.15			
Receiver Output Enable Time	Normal operation		2.6		$\mu \mathrm{s}$	
Receiver Output Disable Time	Normal operation		2.4		$\mu \mathrm{s}$	
Transmitter Skew	$\mid \text { tPHL - tPLH \| }$		50		ns	
Receiver Skew	\| tPHL- tPLH			50		ns
Transition-Region Slew Rate	$\begin{aligned} & V_{C C}=3.3 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega \text { to } 7 \mathrm{k} \Omega, \end{aligned}$ measured from +3 V to $-3 V \text { or }-3 V \text { to }+3 V$	$C L=150 \mathrm{pF}$ to 1000pF	6	30	V/us	
		$C L=150 p F$ to 2500pF	4	30		

Note 2: The transmitter inputs have an active positive feedback resistor. The input current goes to zero when the inputs are at the supply rails.
Note 3: During AutoShutdown only, a transmitter/receiver edge is defined as a transition through the transmitter/receiver input logic wake-up thresholds.

Typical Operating Characteristics
$\left(\mathrm{V} C \mathrm{C}=+3.3 \mathrm{~V}, 250 \mathrm{kbps}\right.$ data rate, $0.1 \mu \mathrm{~F}$ capacitors, all transmitters loaded with $3 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

＋3．0V to＋5．5V，10nA，250kbps RS－232 Transceivers with $\pm 15 \mathrm{kV}$ ESD－Protected I／O and Logic Pins

Typical Operating Characteristics（continued）

$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, 250 \mathrm{kbps}\right.$ data rate， $0.1 \mu \mathrm{~F}$ capacitors，all transmitters loaded with $3 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ，unless otherwise noted．）

PIN	NAME	FUNCTION
1	C2＋	Positive Terminal of Inverting Charge－Pump Capacitor
2	GND	Ground
3	C2－	Negative Terminal of Inverting Charge－Pump Capacitor
4	V－	－5．5V Generated by the Charge Pump
$5,6,7,10,12$	T＿OUT	RS－232 Transmitter Outputs（T1OUT－T50UT）
8，9， 11	R＿IN	RS－232 Receiver Inputs（R1IN－R3IN）
13	FORCEON	Force－On Input．Drive high to override AutoShutdown Plus，keeping transmitters and receivers on（FORCEOFF must be high）（Table 1）．This pin has an active positive feedback resistor．Once driven to a valid logic level，the pin retains that level if left unconnected until power is cycled．
14	FORCEOFF	Force－Off Input．Drive low to shut down transmitters，receivers（except R1OUTB），and on－ board supply．This overrides AutoShutdown Plus and FORCEON（Table 1）．This pin has an active positive feedback resistor．Once driven to a valid logic level，the pin retains that level if left unconnected until power is cycled．
15	$\overline{\text { INVALID }}$	Output of the Valid Signal Detector．A logic 1 indicates if a valid RS－232 level is present on receiver inputs．
16	R10UTB	Noninverting Complementary Receiver Output．Always active．
17，19，22，23， 24	T＿IN	TTL／CMOS Transmitter Inputs（T5IN－T1IN）．This pin has an active positive feedback resis－ tor．Once driven to a valid logic level，the pin retains that level if left unconnected until power is cycled．
18，20， 21	R＿OUT	TTL／CMOS Receiver Outputs（R3OUT－R1OUT）
25	C1－	Negative Terminal of Voltage－Doubler Charge－Pump Capacitor
26	V_{CC}	+3.0 V to＋5．5V Supply Voltage
27	V＋	＋5．5V Generated by the Charge Pump
28	C1＋	Positive Terminal of Voltage－Doubler Charge－Pump Capacitor

+3.0V to +5.5V, 10nA, 250kbps RS-232 Transceivers with $\pm 15 \mathrm{kV}$ ESD-Protected I/O and Logic Pins

Table 1. Output Control Truth Table

FORCEON	FORCEOFF	AutoShutdown Plus	OPERATION STATUS	T_OUT	R_OUT	R1OUTB
X	0	X	Shutdown (Forced Off)	High-Z	High-Z	Active
1	1	X	Normal Operation (Forced On)	Active	Active	Active
0	1	$<30 s^{*}$	Normal Operation (AutoShutdown Plus)	Active	Active	Active
0	1	$>30 s^{*}$	Shutdown (AutoShutdown Plus)	High-Z	Active	Active

X = Don't care
*Time since last receiver or transmitter input transition.

Detailed Description

Dual Charge-Pump Voltage Converter

The MAX3238E/MAX3248Es' internal power supply consists of a regulated dual charge pump that provides output voltages of +5.5 V (doubling charge pump) and -5.5 V (inverting charge pump), regardless of the input voltage (VCC) over the 3.0 V to 5.5 V range. The charge pumps operate in a discontinuous mode: if the output voltages are less than 5.5 V , the charge pumps are enabled; if the output voltages exceed 5.5 V , the charge pumps are disabled. Each charge pump requires a flying capacitor (C1, C2) and a reservoir capacitor (C3, C4) to generate the $V+$ and V - supplies.

RS-232 Transmitters

The MAX3248E transmitters are inverting level translators that convert a logic low of 0.6 V and logic high of 1.2 V to 5.0V EIA/TIA-232 levels. The MAX3238E transmitters are inverting level translators that convert CMOS-logic levels to 5.0V EIA/TIA-232 levels. The MAX3238E/MAX3248E transmitters both guarantee a 250 kbps data rate with worst-case loads of $3 \mathrm{k} \Omega$ in parallel with 1000 pF , providing compatibility with PC-to-PC communication software (such as LapLink ${ }^{\top M}$). Transmitters can be paralleled to drive multiple receivers. Figure 1 shows a complete system connection.

When FORCEOFF is driven to ground, the transmitters and receivers are disabled and the outputs go high impedance, except for R1OUTB. When the AutoShutdown Plus circuitry senses that all receiver and transmitter inputs are inactive for more than 30s, the transmitters are disabled and the outputs go into a high-impedance state, but the receivers remain active. When the power is off, the MAX3238E/MAX3248E permit the outputs to be driven up to $\pm 12 \mathrm{~V}$.
The transmitter inputs, FORCEON and FORCEOFF, have a $400 \mathrm{k} \Omega$ active positive-feedback resistor. Once driven to a valid logic level, they will retain this level if the driving signal is removed or goes high-impedance. Unused transmitter inputs may be left unconnected.

RS-232 Receivers
The receivers convert RS-232 signals to CMOS-logic output levels. All receivers have inverting three-state outputs and are inactive in shutdown (FORCEOFF) (Table 1). The MAX3238E/MAX3248E also feature an extra, always-active noninverting output, R1OUTB. This extra output monitors receiver activity while the other receivers are high impedance, allowing Ring Indicator to be monitored without forward biasing other devices connected to the receiver outputs. This is ideal for systems where $V_{c c}$ is set to 0 in shutdown to accommodate peripherals, such as UARTs (Figure 2).

[^1]
＋3．0V to＋5．5V，10nA，250kbps RS－232 Transceivers with $\pm 15 \mathrm{kV}$ ESD－Protected I／O and Logic Pins

Figure 1．Interface Under Control of PMU

AutoShutdown Plus Mode

A 10nA supply current is achieved with Maxim＇s AutoShutdown Plus feature，which operates when FORCEOFF is low and FORCEON is high．When the MAX3238E／MAX3248E sense no valid signal transitions on all receiver and transmitter inputs for 30s，the on－ board power supply and drivers are shut off，reducing supply current to $1 \mu \mathrm{~A}$ ．If the receiver inputs are in the invalid range（ $-0.3 \mathrm{~V}<\mathrm{R} _\mathrm{IN}<+0.3 \mathrm{~V}$ ）and the transmit－ ter inputs are at GND or VCC，supply current is further reduced to $10 n A$ ．This occurs if the RS－232 cable is disconnected or if the connected peripheral transmit－ ters are turned off．The system turns on again when a valid transition is applied to any RS－232 receiver or transmitter input．As a result，the system saves power without changes to the existing BIOS or operating sys－ tem．The INVALID output is high when the receivers are active．Since INVALID indicates the receiver inputs＇ condition，it can be used in any mode（Figure 3）．

ヨ8tてEXVW／ヨ8عZEXVW

Figure 2．MAX3238E／MAX3248E detect RS－232 activity when the UART and interface are shut down．

+3.0V to +5.5V, 10nA, 250kbps RS-232 Transceivers with $\pm 15 \mathrm{kV}$ ESD-Protected I/O and Logic Pins

Table 2. INVALID Truth Table

RS-232 SIGNAL PRESENT AT ANY RECEIVER INPUT	INVALID OUTPUT
Yes	H
No	L

Tables 1 and 2 and Figure 3 summarize the MAX3238E/ MAX2348Es' operating modes. FORCEON and FORCEOFF override the automatic circuitry and force the transceiver into its normal operating state or into its lowpower standby state. When neither control is asserted, the IC enters AutoShutdown Plus mode and selects between these states automatically, based on the last receiver or transmitter input edge received.
When shut down, the devices' charge pumps turn off, $\mathrm{V}+$ decays to $\mathrm{V} \mathrm{Cc}, \mathrm{V}$ - decays to ground, and the transmitter outputs are disabled (high impedance). The time required to recover from shutdown is typically $25 \mu \mathrm{~s}$ (Figure 4b).

Software-Controlled Shutdown

If direct software control is desired, use INVALID to indicate DTR or Ring Indicator signal. Tie FORCEOFF and FORCEON together to bypass the AutoShutdown Plus feature so the line acts like a SHDN input.

ESD Protection

As with all Maxim devices, ESD protection structures are incorporated to protect against electrostatic discharges (ESDs) encountered during handling and assembly. The MAX3238E/MAX3248E RS-232 transmitters and receivers, as well as the I/O have extra protection against static electricity found in normal operation. Maxim's engineers developed state-of-the-art structures to protect these pins against ESD of $\pm 15 \mathrm{kV}$ without damage. After an ESD event, the MAX3238E/ MAX3248E keep working without latchup.
ESD protection can be tested in various ways. The pins are characterized for protection to $\pm 15 \mathrm{kV}$ and $\pm 8 \mathrm{kV}$ (see Electrical Characteristics).

ESD Test Conditions Contact Maxim for a reliability report that documents test setup, methodology, and results.

Human Body Model

Figure 5a shows the Human Body Model, and Figure 5 b shows the current waveform it generates when discharged into a low impedance. This model consists of a 100 pF capacitor charged to the ESD voltage of inter-

Figure 3a. $\overline{\text { INVALID }}$ Functional Diagram, $\overline{\text { INVALID }}$ Low

INVALID DEASSERTED IF ANY RECEIVER INPUT HAS BEEN BETWEEN +2.7V AND -2.7V FOR LESS THAN $60 \mu \mathrm{~s}$.

Figure 3b. INVALID Functional Diagram, INVALID High

Figure 3c. AutoShutdown Plus Logic

[^2]Figure 3d. Power-Down Logic

＋3．0V to＋5．5V，10nA，250kbps RS－232 Transceivers with $\pm 15 \mathrm{kV}$ ESD－Protected I／O and Logic Pins

Figure 4a．Receiver Positive／Negative Thresholds for $\overline{\text { INVALID }}$
est，which is then discharged into the test device through a $1.5 \mathrm{k} \Omega$ resistor．

IEC 1000－4－2
The IEC 1000－4－2 standard covers ESD testing and per－ formance of finished equipment；it does not specifically refer to integrated circuits．The MAX3238E／MAX3248E
help you design equipment that meets Level 4 （the high－ est level）of IEC 1000－4－2，without additional ESD pro－ tection components．
The major difference between tests done using the Human Body Model and IEC 1000－4－2 is higher peak current in IEC 1000－4－2．Because series resistance is lower in the IEC 1000－4－2 ESD test model（Figure 6a）， the ESD withstand voltage measured to this standard is generally lower than that measured using the Human Body Model．Figure 6b shows the current waveform for the $\pm 8 \mathrm{kV}$ IEC 1000－4－2 Level 4 ESD Contact Discharge test．
The Air－Gap test involves approaching the device with a charged probe．The Contact Discharge method connects the probe to the device before the probe is energized．

Machine Model
The Machine Model for ESD testing uses a 200pF stor－ age capacitor and zero－discharge resistance．Its objec－ tive is to mimic the stress caused by contact that occurs with handling and assembly during manufactur－ ing．Of course，all pins（not just RS－232 inputs and out－ puts）require this protection during manufacturing．

＊ALL RECEIVERS／TRANSMITTERS INACTIVE
＊＊ANY ONE RECEIVER／TRANSMITTER BECOMES ACTIVE
FORCEON $=$ GND，$\overline{\text { FORCEOFF }}=V_{C C}$
Figure 4b．AutoShutdown Plus and INVALID Timing Diagram

+3.0V to +5.5V, 10nA, 250kbps RS-232 Transceivers with $\pm 15 \mathrm{KV}$ ESD-Protected I/O and Logic Pins

Figure 5a. Human Body ESD Test Model

Figure 6a. IEC 1000-4-2 ESD Test Model
Therefore, the Machine Model is less relevant to the I/O ports than the Human Body Model and IEC 1000-4-2.

Applications Information

Capacitor Selection

The capacitor type used for C1-C4 is not critical for proper operation; polarized or nonpolarized capacitors can be used. The charge pump requires $0.1 \mu \mathrm{~F}$ capacitors for 3.3 V operation. For other supply voltages, see Table 3 for required capacitor values. Do not use values smaller than those listed in Table 3. Increasing the capacitor values (e.g., by a factor of 2) reduces ripple on the transmitter outputs and slightly reduces power consumption. C2, C3, and C4 can be increased without changing C1's value. However, do not increase C1 without also increasing the values of C2, C3, C4, and Cbypass to maintain the proper ratios (C1 to the other capacitors).

Figure 5b. Human Body Model Current Waveform

Figure 6b. IEC 1000-4-2 ESD Generator Current Waveform
Power-Supply Decoupling
In most applications, decouple VCC to ground with a $0.1 \mu \mathrm{~F}$ capacitor. Further increasing this capacitor value reduces power-supply ripple and enhances noise margin. Connect the bypass capacitor as close to the IC as possible.

Table 3. Required Minimum Capacitance Values

Vcc $\mathbf{(V)}$	C1, CBYPAss $(\boldsymbol{\mu F})$	C2, C3, C4 $\mathbf{(\mu F)}$
3.0 to 3.6	0.22	0.22
3.15 to 3.6	0.1	0.1
4.5 to 5.5	0.047	0.33
3.0 to 5.5	0.22	1

＋3．0V to＋5．5V，10nA，250kbps RS－232 Transceivers with $\pm 15 \mathrm{KV}$ ESD－Protected I／O and Logic Pins

Figure 7．Transmitter Outputs when Recovering from Shutdown or Powering Up

＊C3 CAN BE RETURNED TO VCC OR GND
Figure 8．Loopback Test Circuit
Transmitter Outputs when Recovering from Shutdown
Figure 7 shows two transmitter outputs when recovering from shutdown mode．As they become active，the out－

Figure 9．Loopback Test Result at 120kbps

Figure 10．Loopback Test Result at 250kbps
puts are shown going to opposite RS－232 levels（one transmitter input is high，the other is low）．Each trans－ mitter is loaded with $3 k \Omega$ in parallel with 2500 pF ．The transmitter outputs display no ringing or undesirable transients as they come out of shutdown．Note that the transmitters are enabled only when the magnitude of V － exceeds approximately 3 V ．

High Data Rates
The MAX3238E／MAX3248E maintain the RS－232 $\pm 5.0 \mathrm{~V}$ minimum transmitter output voltage even at high data rates．Figure 8 shows a transmitter loopback test cir－ cuit．Figure 9 shows a loopback test result at 120kbps，

+3.0V to +5.5V, 10nA, 250kbps RS-232 Transceivers with $\pm 15 k V$ ESD-Protected I/O and Logic Pins

MAX3238E/MAX3248E

Figure 11. Data Cable Application Example

＋3．0V to＋5．5V，10nA，250kbps RS－232 Transceivers with $\pm 15 k V$ ESD－Protected I／O and Logic Pins

Typical Operating Circuit

＊C3 MAY BE RETURNED TO EITHER VCC OR GND．
and Figure 10 shows the same test at 250 kbps ．For Figure 9，all transmitters were driven simultaneously at 120 kbps into RS－232 loads in parallel with 1000 pF ．For Figure 10，a single transmitter was driven at 250 kbps ， and all transmitters were loaded with an RS－232 receiv－ er in parallel with 1000 pF ．

Data Cable Applications

The MAX3238E／MAX3248Es＇$\pm 15 \mathrm{kV}$ ESD protection on both the RS－232 I／Os as well as the logic I／Os makes them ideal candidates for data cable applications．A data cable is both an electrical connection and a level translator，allowing ultra－miniaturization of cell phones and other small portable devices．
Previous data cable approaches suffered from com－ plexity due to the required protection circuits on both the logic side of the cable as well as on the RS－232 connections．The example shown in Figure 10 shows the ease of using the MAX3238E／MAX3248E in data cable applications．
The MAX3238E／MAX3248Es＇five－transmitter and three－ receiver configuration is optimized for a data communi－ cation equipment（DCE）application，allowing full hard－ ware handshaking．The 9－pin RS－232 connector is configured for direct attachment to a PC＇s serial port．
R1OUTB is also connected to the subminiature con－ nector．This allows the remote system to shut down until the PC asserts the ready to send（RTS）signal． R1OUTB stays active when the MAX3238E／MAX3248E is shut down（FORCEOFF $=$ GND）．

Chip Information
TRANSISTOR COUNT： 2110

＋3．0V to＋5．5V，10nA，250kbps RS－232 Transceivers with $\pm 15 \mathrm{kV}$ ESD－Protected I／O and Logic Pins

| | INCHES | | MILLIMETERS | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DIM | MIN | MAX | MIN | MAX |
| A | 0.068 | 0.078 | 1.73 | 1.99 |
| A1 | 0.002 | 0.008 | 0.05 | 0.21 |
| B | 0.010 | 0.015 | 0.25 | 0.38 |
| C | 0.004 | 0.008 | 0.09 | 0.20 |
| D | SEE | | | VARIATIDNS |
| E | 0.205 | 0.209 | 5.20 | 5.38 |
| e | 0.0256 | BSC | 0.65 | BSC |
| H | 0.301 | 0.311 | 7.65 | 7.90 |
| L | 0.025 | 0.037 | 0.63 | 0.95 |
| α | 0° | 8° | 0° | 8° |

	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	N
D	0.239	0.249	6.07	6.33	14L
D	0.239	0.249	6.07	6.33	16L
D	0.278	0.289	7.07	7.33	20L
D	0.317	0.328	8.07	8.33	24L
D	0.397	0.407	10.07	10.33	28L

NDTES：
1．D\＆E DU NAT INCLUDE MGLD FLASH．
2．MILD FLASH GR PRDTRUSIONS NDT TZ EXCEED .15 mm （． $006^{\prime \prime}$ ）．
3．CONTROLLING DIMENSION：MILLIMETERS．
4．MEETS JEDEC MD150，

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product．No circuit patent licenses are implied．Maxim reserves the right to change the circuitry and specifications without notice at any time．

[^0]: －Enhanced ESD Protection on RS－232 I／O Pins and All Logic Pins $\pm 15 \mathrm{kV}$－Human Body Model $\pm 8 \mathrm{kV}$ —IEC 1000－4－2 Contact Discharge $\pm 15 k V$ —IEC 1000－4－2 Air－Gap Discharge
 －Guaranteed Data Rate：250kbps
 －10nA Low－Power Shutdown with Receivers Active
 －Schmitt Triggers on All Inputs
 －Flow－Through Pinout
 －Meets EIA／TIA－232 Specifications Down to 3．0V
 －Guaranteed 6V／μ s Slew Rate
 －Low－Level Logic Thresholds（MAX3248E）
 －RS－232－Compatible Outputs to 2．7V

[^1]: LapLink is a trademark of Traveling Software.

[^2]: * $\overline{\text { POWER DOWN IS ONLY AN INTERNAL SIGNAL. }}$

 IT CONTROLS THE OPERATIONAL STATUS OF THE TRANSMITTERS AND THE POWER SUPPLIES.

