
Abstract

General Description The MAX891L／MAX892L smart，low－voltage，P－channel， MOSFET power switches are intended for high－side load－switching applications．These switches operate with inputs from 2.7 V to 5.5 V ，making them ideal for both 3 V and 5 V systems．Internal current－limiting circuitry protects the input supply against overload．Thermal－ overload protection limits power dissipation and junc－ tion temperatures． The MAX891L／MAX892L＇s maximum current limits are 500 mA and 250 mA ，respectively．The current limit through the switch is programmed with a resistor from SET to ground．When the switch is on，the quiescent supply current is a low $13 \mu \mathrm{~A}$ ．When the switch is off，the quiescent current decreases to $0.1 \mu \mathrm{~A}$ ． The MAX891L／MAX892L are available in 8－pin μ MAX packages．

Applications
PCMCIA Slots
Access Bus Slots
Portable Equipment
－Ultra－Small μ MAX Package—Only 1.11 mm High
－2．7V to 5．5V Input Range
－Programmable Current Limit
－Low $13 \mu \mathrm{~A}$ Quiescent Current at $\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$ ， $0.1 \mu \mathrm{~A}$ Switch Off
－Thermal Shutdown
－$\overline{\text { FAULT }}$ Indicator Output
－On－Resistances：
0.12Ω（MAX891L）
0.25Ω（MAX892L）

Ordering Information

PART	TEMP． RANGE	PIN－ PACKAGE	CURRENT LIMIT
MAX891LC／D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dic＊＊	500 mA
MAX891LEUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	500 mA
MAX892LC／D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice＊＊	250 mA
MAX892LEUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	250 mA

＊To order these units in tape and reel，add $(-T)$ to the end of the part number．
${ }^{* *}$ Dice are tested at $T_{A}=+25^{\circ} \mathrm{C}$ ．

Pin Configuration
Pin Configuration

TOP VIEW

Current-Limited, High-Side P-Channel Switches with Thermal Shutdown

\author{
ABSOLUTE MAXIMUM RATINGS

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{I N}=3 V, T_{A}=0^{\circ} \mathbf{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
Operating Voltage				2.7		5.5	V
Quiescent Current	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \overline{\mathrm{ON}}=\mathrm{GND}, \mathrm{IOUT}=0 \mathrm{~mA}$				13	20	$\mu \mathrm{A}$
Off-Supply Current	$\overline{\mathrm{ON}}=\mathrm{IN}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$				0.02	1	$\mu \mathrm{A}$
Off-Switch Current	$\overline{\mathrm{ON}}=\mathrm{IN}, \mathrm{V}$ IN $=5.5 \mathrm{~V}, \mathrm{~V}$ OUT $=0 \mathrm{~V}$				0.02	3	$\mu \mathrm{A}$
Undervoltage Lockout	Rising edge, 1% hysteresis			2.0	2.3	2.6	V
On-Resistance	$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$	MAX891L			120	225	$\mathrm{m} \Omega$
		MAX892L			250	420	
	$\mathrm{V}_{\mathrm{IN}}=3.0 \mathrm{~V}$	MAX891L			150	300	$\mathrm{m} \Omega$
		MAX892L			300	500	
Current-Limit-Amplifier Accuracy	VSET required to turn the switch off (Note 1)			1.178	1.240	1.302	V
Maximum Output Current	MAX891L				500		mA
	MAX892L				250		
Iout to ISET Current Ratio	VOUT $=1.6 \mathrm{~V}$ to 2.8 V	MAX891L, Iout $=250 \mathrm{~mA}$		840	965	1130	A/A
		MAX892L, lout $=125 \mathrm{~mA}$		840	965	1130	
$\overline{\mathrm{ON}}$ Input Low Voltage	$\mathrm{V} \mathrm{IN}=2.7 \mathrm{~V}$ to 5.5 V					0.8	V
$\overline{\text { ON }}$ Input High Voltage	V IN $=2.7 \mathrm{~V}$ to 3.6 V			2.0			V
	$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$ to 5.5 V			2.4			
$\overline{\mathrm{ON}}$ Input Leakage	$\mathrm{V} \overline{\mathrm{ON}}=5.5 \mathrm{~V}$			-1	0.01	1	$\mu \mathrm{A}$
ISET Bias Current	VSET $=1.24 \mathrm{~V}$, I OUT $=0 \mathrm{~mA}$				0.5	3	$\mu \mathrm{A}$
FAULT Logic Output Low Voltage	ISINK $=1 \mathrm{~mA}, \mathrm{~V}_{\text {SET }}=1.4 \mathrm{~V}$					0.4	V
FAULT Logic Output High Leakage	$\mathrm{V} \overline{\mathrm{FAULT}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {SET }}=1 \mathrm{~V}$				0.05	1	$\mu \mathrm{A}$
Slow-Current-Loop Response Time	20\% current overdrive, V IN $=5 \mathrm{~V}$				5		$\mu \mathrm{s}$
Fast-Current-Loop Response Time					2		$\mu \mathrm{s}$
Turn-On Time	$\text { IOUT }=250 \mathrm{~mA}(\text { MAX891L), or } 125 \mathrm{~mA}$ (MAX892L)		V IN $=5 \mathrm{~V}$		100	200	$\mu \mathrm{s}$
			V IN $=3 \mathrm{~V}$		150		
Turn-Off Time	VIN $=5 \mathrm{~V}$			0.8	2	20	$\mu \mathrm{s}$

Current-Limited, High-Side

 P-Channel Switches with Thermal Shutdown
ELECTRICAL CHARACTERISTICS

PARAMETER	CONDITIONS		MIN	TYP MAX	UNITS
Operating Voltage			3.0	5.5	V
Quiescent Current	V IN $=5 \mathrm{~V}, \overline{\mathrm{ON}}=\mathrm{GND}$, IOUT $=0 \mathrm{~mA}$			50	$\mu \mathrm{A}$
Off-Supply Current	$\overline{\mathrm{ON}}=\mathrm{IN}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$			2.2	$\mu \mathrm{A}$
Off-Switch Current	$\overline{\mathrm{ON}}=\mathrm{IN}, \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$			8	$\mu \mathrm{A}$
Undervoltage Lockout	Rising edge, 1% hysteresis		2.0	2.9	V
On-Resistance	$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$	MAX891L		225	$\mathrm{m} \Omega$
		MAX892L		420	
	$\mathrm{V}_{\mathrm{IN}}=3.0 \mathrm{~V}$	MAX891L		300	$\mathrm{m} \Omega$
		MAX892L		500	
Current-Limit-Amplifier Accuracy	$\mathrm{V}_{\text {SET }}$ required to turn the switch off (Note 1)		1.14	1.34	V
Iout to IsET Current Ratio	VOUT $=1.6 \mathrm{~V}$ to 2.8 V	MAX891L, IOUT $=250 \mathrm{~mA}$	805	1210	A/A
		MAX892L, IOUT $=125 \mathrm{~mA}$	805	1210	
$\overline{\text { FAULT Logic Output Low Voltage }}$	I SINK $=1 \mathrm{~mA}, \mathrm{~V}_{\text {SET }}=1.4 \mathrm{~V}$			0.4	V
Turn-On Time	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$			200	$\mu \mathrm{S}$
Turn-Off Time	VIN $=5 \mathrm{~V}$		0.25	20	$\mu \mathrm{s}$

Note 1: Tested with lout $=50 \mathrm{~mA}$ for the MAX891L, 25 mA for the MAX892L, and $\mathrm{V}_{\text {SET }}$ raised until $\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\text {OUT }} \geq 0.8 \mathrm{~V}$.
Note 2: Parameters to $-40^{\circ} \mathrm{C}$ are guaranteed by design, not production tested.

Current-Limited, High-Side P-Channel Switches with Thermal Shutdown

OFF-SWITCH LEAKAGE CURRENT vs. TEMPERATURE

NORM ALIZED OUTPUT CURRENT vs. OUTPUT VOLTAGE

Typical Operating Characteristics
(Typical Operating Circuit, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

NORM ALIZED ON-RESISTANCE
vs. TEM PERATURE

TURN-ON TIME vs. TEM PERATURE

OFF-SUPPLY CURRENT vs. TEM PERATURE

Iout/Iset RATIO vs. lumit

TURN-OFF TIME vs. TEM PERATURE

Current-Limited, High-Side P-Channel Switches with Thermal Shutdown

Typical Operating Characteristics (continued)

Current-Limited, High-Side P-Channel Switches with Thermal Shutdown

PIN	NAME	FUNCTION
1,2	IN	Input. P-channel MOSFET source. Bypass IN with a 1μ F capacitor to ground.
3	$\overline{\mathrm{ON}}$	Active-Low Switch On Input. A logic low turns the switch on.
4	GND	Ground
5	SET	Set Current-Limit Input. A resistor from SET to ground sets the current limit for the switch. See Setting the Current Limit section.
6	$\overline{\text { FAULT }}$	Fault-Indicator Output. This open-drain output goes low when in current limit or when the die temperature exceeds $+135^{\circ} \mathrm{C}$.
7,8	OUT	Switch Output. P-channel MOSFET drain. Bypass OUT with a 0.1 $\mu \mathrm{F}$ capacitor to ground.

Detailed Description

The MAX891L/MAX892L P-channel MOSFET power switches limit output current to a user-programmed level. When the output current is increased beyond the set current level, the current is also increased through the replica switch (Iout/965) and through RSET (Figure 1). The current-limit error amplifier compares the voltage across RSET to the internal 1.24 V reference and regulates the current back to the lesser of the programmed current limit (lІІмit) or the maximum current limit (IMAX).
These switches are not bidirectional; therefore, the input voltage must be higher than the output voltage.

Setting the Current Limit

The MAX891L/MAX892L feature internal current-limiting circuitry with maximum programmable values (IMAX) of 500 mA and 250 mA , respectively. For best performance, set the current limit (ILIMIT) between 0.2 IMAX 5 ILIMIT \leq IMAX. This current limit remains in effect throughout the input supply-voltage range.
Program the current limit with a resistor (RSET) from SET to ground (Figure 2) as follows:

$$
\begin{aligned}
& \text { ISET }=\text { ILIMIT } / \text { IRATIO } \\
& \text { RSET }=1.240 / \text { ISET }
\end{aligned}
$$

where llimit is the desired current limit, and Iratio is the lout to ISET current ratio (965).

Short-Circuit Protection

 The MAX891L/MAX892L are short-circuit-protected switches. In the event of an output short circuit or cur-rent-overload condition, the current through the switch is limited by the internal current-limiting error amplifier to $1.5 \times$ ILIMIT. When the fault condition is removed, the replica error amplifier sets the current limit back to ILIMIT.

Figure 1. Functional Diagram

For a high $\Delta_{D S} / \Delta$ during an output short-circuit condition, the switch turns off and disconnects the input supply from the output. The current-limiting amplifier then slowly turns the switch on with the output current limited to $1.5 \times$ ILIMIT. When the fault condition is removed, the current limit is set back to ILIMIT. Refer to the CurrentLimit Response graphs in the Typical Operating Characteristics.

Current-Limited, High-Side P-Channel Switches with Thermal Shutdown

Figure 2. Setting the Current Limit
Thermal Shutdown
The MAX891L/MAX892L feature thermal shutdown. The switch turns off when the junction temperature exceeds $+135^{\circ} \mathrm{C}$. Once the device cools by $10^{\circ} \mathrm{C}$, the switch turns back on. If the fault short-circuit condition is not removed, the switch will cycle on and off, resulting in a pulsed output.

Fault Indicator
The MAX891L/MAX892L provide a fault output (FAULT). This open-drain output goes low when in current limit or when the die temperature exceeds $+135^{\circ} \mathrm{C}$. During start-up, FAULT is low until the switch is fully on and no over-current condition exists. A $100 \mathrm{k} \Omega$ pull-up resistor from FAULT to IN provides a logic-control signal.

Applications Information

Input Capacitor
To limit input voltage drop during momentary output short-circuit conditions, connect a capacitor from IN to GND. A $1 \mu \mathrm{~F}$ ceramic capacitor is adequate for most applications; however, higher capacitor values further reduce voltage drop at the input.

Output Capacitor
Connect a $0.1 \mu \mathrm{~F}$ capacitor from OUT to GND. One function of this capacitor is to prevent inductive parasitics from pulling OUT negative during turn-off.

Layout and Thermal-Dissipation

 ConsiderationTo take full advantage of the switch-response time to output short-circuit conditions, it is very important to keep all traces as short as possible to reduce the effect of undesirable parasitic inductance. Place input and output capacitors as close as possible to the device (no more than 5 mm).
Under normal operating conditions, the package dissipates and channels heat away. Calculate maximum power as follows:

$$
P=I^{2} \text { LIM } \times \text { RON }
$$

where RON is the on-resistance of the switch.
When the output is short circuited, voltage drop across the switch equals the input supply. Hence, the power dissipated across the switch increases, as does the die temperature. If the fault condition is not removed, the thermal-overload-protection circuitry turns the switch off until the die temperature falls by $10^{\circ} \mathrm{C}$. A ground plane in contact with the device helps dissipate additional heat.

Chip Information
TRANSISTOR COUNT: 396
SUBSTRATE CONNECTED TO GND

Current－Limited，High－Side

Ao $=3.1 \mathrm{~mm} \pm 0.1$
Bo $=2.7 \mathrm{~mm} \pm 0.1$
$\mathrm{Ko}=1.2 \mathrm{~mm} \pm 0.1$
NOTE：DIMENSIONS ARE IN MM．
AND FOLLOW EIA481－1 STANDARD．

O．30R MAX．

Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product．No circuit patent licenses are implied．Maxim reserves the right to change the circuitry and specifications without notice at any time．

8 \qquad Maxim Integrated Products， 120 San Gabriel Drive，Sunnyvale，CA 94086 （408）737－7600
© 1997 Maxim Integrated Products
Printed USA
MתXINI is a registered trademark of Maxim Integrated Products．

