DS78C20/DS88C20 Dual CMOS

Compatible

Differentia

Line

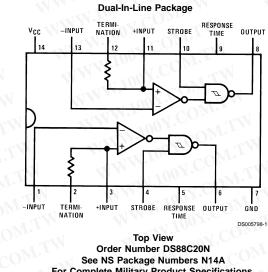
Receive

National Semiconductor

DS78C20/DS88C20 Dual CMOS Compatible Differential Line Receiver

General Description

The DS78C20 and DS88C20 are high performance, dual differential, CMOS compatible line receivers for both balanced and unbalanced digital data transmission. The inputs are compatible with EIA and Federal Standards.


Input specifications meet or exceed those of the popular DS7820/DS8820 line receiver, and the pinout is identical.

A response pin is provided for controlling sensitivity to input noise spikes with an external capacitor. Each receiver includes a 1800 terminating resistor, which may be used optionally on twisted pair lines. The DS78C20 is specified over a -55° C to $+125^{\circ}$ C operating temperature range, and the DS88C20 over a 0'C to $+70^{\circ}$ C range.

Connection Diagram

Features

- Meets requirements of EIA Standards RS-232-C RS-422 and RS-423, and Federal Standards 1020 and 1030
- Input voltage range of ±15V (differential or common-mode)
- Separate strobe input for each receiver
- $\frac{1}{2}$ V_{CC} strobe threshold for CMOS compatibility
- 5k typical input impedance
- 50 mV input hysteresis
- 200 mV input threshold
- Operation voltage range = 4.5V to 15V
- DS7830/DS8830 recommended driver

Order Number DS88C20N See NS Package Numbers N14A For Complete Military Product Specifications, refer to the appropriate SMD or MDS. Order Number DS78C20J/883 See NS Package Number J14A

© 1998 National Semiconductor Corporation DS005798

www.national.com

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage	18V
Common-Mode Voltage	±25V
Differential Input Voltage	±25V
Strobe Voltage	18V
Output Sink Current	50 mA
Maximum Power Dissipation (Note 1) at 25°C	
Cavity Package	1364 mW
Molded Package	1280 mW
Storage Temperature Range	-65°C to +150°C

Lead Temperature (Soldering, 4 seconds)

Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	4.5	15	V
Temperature (T _A)			
DS78C20	-55	+125	°C
DS88C20	0	+70	°C
Common-Mode Voltage (V _{CM})	-15	+15	V
Note 1: Derate cavity package 9.1 mW mW/°C above 25°C.	/°C; derate	molded pack	kage 10.2

WW.100Y.COM.TW

WWW.100Y.COM

WWW.100Y.COM.TW

NWW.II

LCOM.TW

260°C

Electrical Characteristics (Notes 3, 4)

Symbol	Parameter	Condition	IS	Min	Тур	Max	Units
V _{TH}	Differential Threshold	I _{OUT} = -200 μA,	$-10V \le V_{CM} \le 10V$	100	0.06	0.2	V
	Voltage	$V_{OUT} \ge V_{CC} - 1.2V$	$-15V \le V_{CM} \le 15V$	N.10	0.06	0.3	V
	WW WT	I_{OUT} = 1.6 mA, $V_{OUT} \le 0.5V$	$-10V \le V_{CM} \le 10V$	100	-0.08	-0.2	V
		W.L. COM.	$-15V \le V_{CM} \le 15V$	QVI-	-0.08	-0.3	V
R _{IN}	Input Resistance	$-15V \le V_{CM} \le 15V$.N.10	5	11.	kΩ
R _T	Line Termination Resistance	$T_A = 25^{\circ}C$	IN N	100	180	300	Ω
IIND	Data Input Current	V _{CM} = 10V	NT N		2	3.1	mA
	(Unterminated)	$V_{CM} = 0V$	- NN	W WIX	0	-0.5	mA
	WT.M	$V_{CM} = -10V$	M.T.Y		-2	-3.1	mA
V _{THB}	Input Balance	$I_{OUT} = 200 \ \mu A, \ V_{OUT} \ge V_{CC} - 1.2 V, \ R_{S} = 500 \Omega,$ (Note 6)	$-7V \le V_{CM} \le 7V$	MM	0.1	0.4	v
	X.COM.TW	I_{OUT} = 1.6 mA, $V_{OUT} \le 0.5V$, R _S = 500 Ω , (Note 6)	$-7V \le V_{CM} \le 7V$	W	-0.1	-0.4	V
V _{он}	Logical "1" Output Voltage	I _{OUT} = -200 μA, V _{DIFF} = 1V	WT	V _{cc} -1.2	V _{cc} -0.75	001	V
VOL	Logical "0" Output Voltage	$I_{OUT} = 1.6 \text{ mA}, V_{DIFF} = -1V$	1 CONT.	-	0.25	0.5	V
Icc	Power Supply Current	$15V \le V_{CM} \le -15V$,	$V_{\rm CC} = 5.5 V$		8	15	mA
	100Y.COM.TW	V _{DIFF} = -0.5V (Both Receivers)	$V_{\rm CC} = 15V$	- 1	15	30	mA
I _{IN(1)}	Logical "1" Strobe Input Current	V _{STROBE} = 15V, V _{DIFF} = 3V	V _{CC} = 15V		15	100	μA
I _{IN(0)}	Logical "0" Strobe Input Current	$V_{\text{STROBE}} = 0V, V_{\text{DIFF}} = -3V$	$V_{\rm CC} = 15V$		-0.5	-100	μA
VIH	Logical "1" Strobe Input	I_{OUT} = 1.6 mA, $V_{OL} \le 0.5V$	$V_{\rm CC} = 5V$	3.5	2.5		V
	Voltage	WW WT	V _{CC} = 10V	8.0	5.0		V
	W.W. CON	With the second second	V _{CC} = 15V	12.5	7.5	N/	V
V _{IL}	Logical "0" Strobe Input	I _{OUT} = -200 μA,	$V_{CC} = 5V$	1.1	2.5	1.5	V
	Voltage	$V_{OH} = V_{CC} - 1.2V$	V _{CC} = 10V	Wr.	5.0	2.0	V
	100 × 100 ×	MIL	V _{CC} = 15V	DVr.	7.5	2.5	V
I _{os}	Output Short-Circuit Current	$V_{OUT} = 0V, V_{CC} = 15V, V_{STR}$	_{OBE} = 0V, (Note 5)	-5	-20	-40	mA

2

COM.TW

WWW.100X.COM.

WWW.100

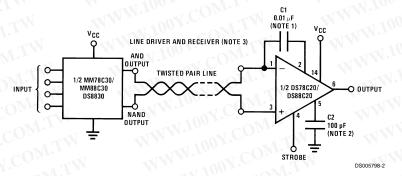
www.national.com

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

Switching Characteristics

$V_{CC} = 5V, T_A = 25^{\circ}C$						
Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd0(D)}	Differential Input to "0" Output	C _L = 50 pF		60	100	ns
t _{pd1(D)}	Differential Input to "1" Output	C _L = 50 pF	I.W.W	100	150	ns
t _{pd0(S)}	Strobe Input to "0" Output	C _L = 50 pF		30	70	ns
t _{pd1(S)}	Strobe Input to "1" Output	C _L = 50 pF	NW.	100	150	ns

Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation. Note 3: Unless otherwise specified min/max limits apply across the -55°C to +125°C temperature range for the DS78C20 and across the 0°C to +70°C range for the DS88C20. All typical values are for T_A = 25°C, V_{CC} = 5V and V_{CM} = 0V.


Note 4: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

Note 5: Only one output at a time should be shorted.

Note 6: Refer to EIA-RS-422 for exact conditions.

Typical Applications

RS-422/RS-423 Application

Note 7: (Optional internal termination resistor.)

a) Capacitor in series with internal line termination resistor, terminates the line and saves termination power. Exact value depends on line length.

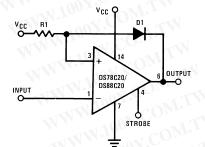
DS005798-3

WWW.100Y.COM

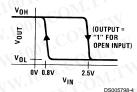
WWW.10

b) Pin 1 connected to pin 2: terminates the line.

c) Pin 2 open; no internal line termination.


d) Transmission line may be terminated elsewhere or not at all.

Note 8: Optional to control response time.


Note 9: V_{CC} 4.5V to 15V for the DS78C20. For further information on line drivers and line receivers, refer to applicaton notes AN-22, AN-83 and AN-108

RS-232-C Application with Hysteresis

3

For signals which require fail-safe or have slow rise and fall times, use R1 and D1 as shown above. Otherwise, the positive input (pin 3 or 11) may be connected to ground.

WWW.100Y.CON

L.WWW

www.national.com WWW.100X.COM

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100X.C

00Y.COM.TW

Typical Applications (Continued) WWW.100Y.CO

Vcc	R1 ±5%
5V	4,3 kΩ
10V	15 kΩ
15V	24 kΩ

100Y.COM.TW

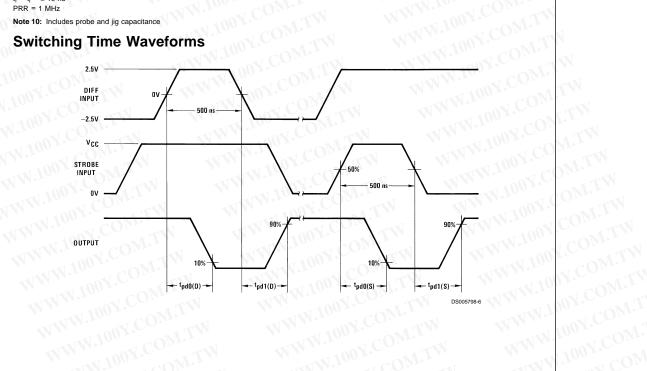
WWW.100Y.COA

WW.100Y.CO

 $t_r = t_f = \le 10 \text{ ns}$ PRR = 1 MHz

Note 10: Includes probe and jig capacitance

Switching Time Waveforms


WW.100Y.COM.TW

WWW.100Y.COM.

WWW.100

www.national.com

<u>y.C</u>OM.TW

4

LTW

M.TW

OM.TW

OM.TW

COM.TW

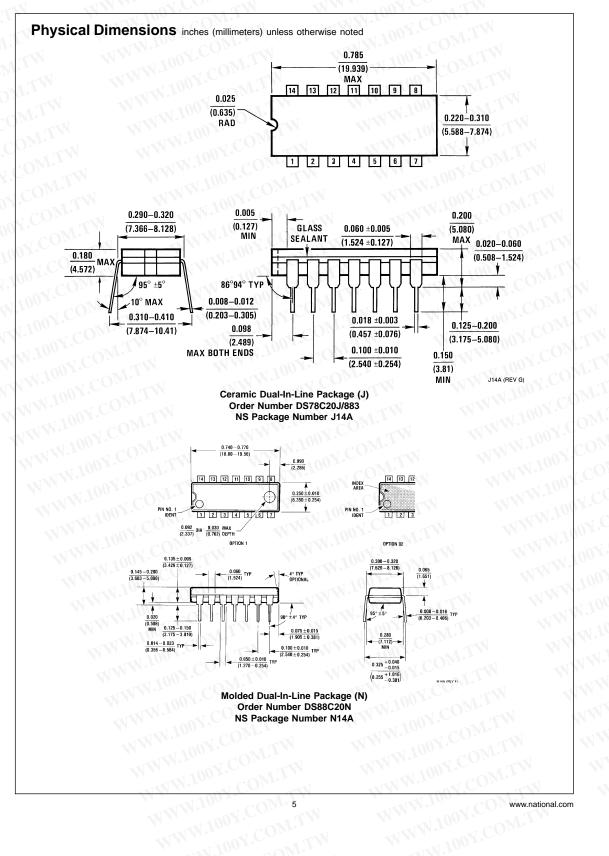
COM.TW

JOY.COM.TW

LOOY.COM.TW

100Y.COM.TV W.100Y.COM.T

W.100Y.COM.


WWW

WW.100X.COM.TW

WWW.100Y.COM.TW

WWW.100X.COM

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

www.national.com WWW.100Y.COM.

5

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

OM.TW

WWW.100Y.C

LIFE SUPPORT POLICY

WWW.

WW.100Y.CO

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor	National Semiconductor	National Semiconductor	National Semiconducto
Corporation	Europe	Asia Pacific Customer	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	Response Group	Tel: 81-3-5620-6175
Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5620-6179
Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 85 85	Fax: 65-2504466	
Email: support@nsc.com	English Tel: +49 (0) 1 80-532 78 32	Email: sea.support@nsc.com	
	Français Tel: +49 (0) 1 80-532 93 58		
vw.national.com	Italiano Tel: +49 (0) 1 80-534 16 80		

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications WWW.100Y.COM