

DS89C21

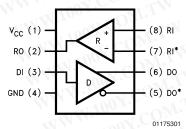
Differential CMOS Line Driver and Receiver Pair

General Description

The DS89C21 is a differential CMOS line driver and receiver pair, designed to meet the requirements of TIA/EIA-422-A (RS-422) electrical characteristics interface standard. The DS89C21 provides one driver and one receiver in a minimum footprint. The device is offered in an 8-pin SOIC pack-

The CMOS design minimizes the supply current to 6 mA, making the device ideal for use in battery powered or power conscious applications.

The driver features a fast transition time specified at 2.2 ns. and a maximum differential skew of 2 ns making the driver ideal for use in high speed applications operating above


The receiver can detect signals as low as 200 mV, and also incorporates hysteresis for noise rejection. Skew is specified at 4 ns maximum.

The DS89C21 is compatible with TTL and CMOS levels (DI and RO).

Features

- Meets TIA/EIA-422-A (RS-422) and CCITT V.11 recommendation
- LOW POWER design 15 mW typical
- Guaranteed AC parameters:
 - Maximum driver skew 2.0 ns
 - Maximum receiver skew 4.0 ns
- Extended temperature range: -40°C to +85°C
- Available in SOIC packaging
- Operates over 20 Mbps
- Receiver OPEN input failsafe feature

Connection Diagram

Order Number DS89C21TM See NS Package Number M08A

W.100Y.CO **Truth Tables**

特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

Driver

abics			胜特) H	
		Driver	100 X .C.	
	Input	Outputs		
	C DI	DO	DO*	
	COH	H	FCOM.	
	CENT	L	N. M. CON	

Receiver

Inputs	Output
RI–RI*	RO
V _{DIFF} ≥ +200 mV	H ₁ 100 3
V _{DIFF} ≤ -200 mV	11/1/L 1001
OPEN†	H

†Non-terminated

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V_{CC}) 7V Driver Input Voltage (DI) -1.5V to V_{CC} + 1.5V

Driver Output Voltage (DO,

DO) -0.5V to +7V

Receiver Input Voltage - V

CM

(RI, RI*) ±14V Differential Receiver Input ±14V

Voltage—V_{DIFF} (RI, RI^{*}) Receiver Output Voltage

(RO) -0.5V to $V_{CC} + 0.5V$

Receiver Output Current

(RO) ±25 m/s

Storage Temperature

Range

 (T_{STG}) $-65^{\circ}C$ to $+150^{\circ}C$

Lead Temperature (T_L) +260°C

(Soldering 4 sec.)
Maximum Junction

Temperature 150°C

Maximum Package Power Dissipation @+25°C

M Package 714 mW

Derate M Package 5.7 mW/°C above

+25°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	4.50	5.50	V
Operating Temperature (T _A)	-40	+85	°C
Input Rise or Fall Time (DI)		500	ns

Electrical Characteristics (Notes 2, 3)

Over recommended supply voltage and operating temperature ranges, unless otherwise specified.

Symbol	Parameter	Conditions		Pin	Min	Тур	Max	Units
DRIVER C	HARACTERISTICS	ON COM	M MMM	100	Y.Co	TI	N	
V _{IH}	Input Voltage HIGH	I TOO TO TO THE TOWN		1.10	2.0	O_{Mr}	V _{cc}	V
V _{IL}	Input Voltage LOW	11001. COM.	LA. A.	DI	GND	·MO	0.8	V
I _{IH} , I _{IL}	Input Current	$V_{IN} = V_{CC}$, GND, 2	.0V, 0.8V	T-x1 1	00 X	0.05	±10	μΑ
V _{CL}	Input Clamp Voltage	$I_{IN} = -18 \text{ mA}$	W W	10.	.007	Cox	-1.5	V
V _{OD1}	Unloaded Output Voltage	No Load	1.1	DO,	In	4.2	6.0	V
V _{OD2}	Differential Output Voltage	$R_L = 100\Omega$	$M.I{M}$	DO*	2.0	3.0	Mir	V
ΔV_{OD2}	Change in Magnitude of V _{OD2} for Complementary Output States	WWW.100Y.COM.TW			N.10	5.0	400	mV
V _{OD3}	Differential Output Voltage	R _L = 150Ω			2.1	3.1	CO_{Mr}	V
V_{OD4}	Differential Output Voltage	$R_{\perp} = 3.9 \text{ k}\Omega$		1 1/1 1	-111	4.0	6.0	V
Voc	Common Mode Voltage	$R_L = 100\Omega$ $V_{OUT} = 0V$		1	44	2.0	3.0	٧
ΔV _{oc}	Change in Magnitude of V _{OC} for Complementary Output States					2.0	400	mV
I _{OSD}	Output Short Circuit Current			1	-30	-115	-150	mA
I _{OFF}	Output Leakage Current	V _{CC} = 0V	$V_{OUT} = +6V$	1	11/1	0.03	+100	μΑ
	LINW.100 COM. I	WW.	$V_{OUT} = -0.25V$	7	11	-0.08	-100	μA
RECEIVER	CHARACTERISTICS	- TW	Ton	e 1		WW	Too	1 CO
V _{TL} , V _{TH}	Differential Thresholds	$V_{IN} = +7V, 0V, -7V$	100 M.T.	RI,	-200	±25	+200	mV
V _{HYS}	Hysteresis	V _{CM} = 0V		RI*	20	50	- 100	mV
R _{IN}	Input Impedance	V _{IN} = -7V, +7V, Other = 0V			5.0	9.5	M.F.	kΩ
I _{IN}	Input Current	Other Input = 0V,	$V_{IN} = +10V$			+1.0	+1.5	mA
	MAN WILLIAM STORY	$V_{CC} = 5.5V$ and	$V_{IN} = +3.0V$	TW	0	+0.22		mA
	MMM.IO. COM	$V_{CC} = 0V$	$V_{IN} = +0.5V$	TV		-0.04	MAL	mA
	NW.100 CO		$V_{IN} = -3V$	11.	0	-0.41	NWW	mA
	11007.0	M.T.W	$V_{IN} = -10V$	M.T	4.4	-1.25	-2.5	mA

Electrical Characteristics (Notes 2, 3) (Continued)

Over recommended supply voltage and operating temperature ranges, unless otherwise specified.

Symbol	Parameter	Conditions		Pin	Min	Тур	Max	Units		
RECEIVER CHARACTERISTICS										
V _{OH}	Output HIGH Voltage	$I_{OH} = -6 \text{ mA}$	$V_{DIFF} = +1V$	RO	3.8	4.9		V		
	IN MAN 100X	WILLIAM.	V _{DIFF} = OPEN		3.8	4.9		V		
V _{OL}	Output LOW Voltage	$I_{OL} = +6 \text{ mA}, V_{DIFF} = -1V$		COR	TT	0.08	0.3	V		
I _{OSR}	Output Short Circuit Current	V _{OUT} = 0V	TWW.In		-25	-85	-150	mA		
DRIVER A	ND RECEIVER CHARACTERIST	ics	11.100	- ($M_{i,j}$	-1				
Icc	Supply Current	No Load	DI = V _{CC} or GND	V _{cc}		3.0	6	mA		
T CC	Mr.	COM.	DI = 2.4V or 0.5V	NY.C	OF	3.8	12	mA		

Switching Characteristics (Note 3)

Over recommended supply voltage and operating temperature ranges, unless otherwise specified.

Symbol	Parameter	LOON.CO.	Conditions	Min	Тур	Max	Units
DIFFEREN	TIAL DRIVER CHARACTERISTICS	Vian COL	WWW WWW	V. P	CO ₂	TW	
t _{PLHD}	Propagation Delay LOW to HIGH	$R_L = 100\Omega$	(Figures 2, 3)	2	4.9	10	ns
t _{PHLD}	Propagation Delay HIGH to LOW	C _L = 50 pF	M.TW WY	2	4.5	10	ns
t _{SKD}	Skew, It _{PLHD} -t _{PHLD} I	M. OOX.C	WY WY	10	0.4	2.0	ns
t _{TLH}	Transition Time LOW to HIGH	WW.100	(Figures 2, 4)	MMIL	2.2	9	(ns
t _{THL}	Transition Time HIGH to LOW	100 x	COWIT	1.W.1	2.1	9	ns
RECEIVE	R CHARACTERISTICS	N N 1003	······································	N	100 x.	Mon	IM
t _{PLH}	Propagation Delay LOW to HIGH	C _L = 50 pF	(Figures 5, 6)	6	18	30	ns
t _{PHL}	Propagation Delay HIGH to LOW	$V_{DIFF} = 2.5V$ $V_{CM} = 0V$	COM.	6	17.5	30	ns
t _{sk}	Skew, It _{PLH} -t _{PHL} I		0.0M.I.		0.5	4.0	ns
t _r	Rise Time	WW	(Figure 7)	M. A.	2.5	9	ns
t _f	Fall Time	MW.	COM		2.1	9	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.

Note 2: Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground unless otherwise specified.

Note 3: All typicals are given for $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$.

Note 4: f = 1 MHz, t_r and $t_f \le 6$ ns.

Note 5: ESD Rating: HBM (1.5 k Ω , 100 pF) all pins \geq 2000V.

EIAJ (0 Ω , 200 pF) \geq 250V

Parameter Measurement Information

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

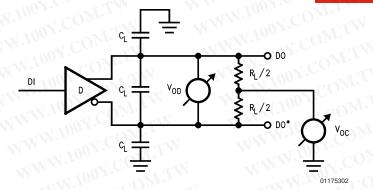


FIGURE 1. V_{OD} and V_{OC} Test Circuit

I.COM.TW W.COM.TW

box.COM.TW

100Y.COM.TW

W.100Y.COW.TW

WW.100Y.COM.TW

WWW.100Y.COM.TW

Parameter Measurement Information (Continued)

特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

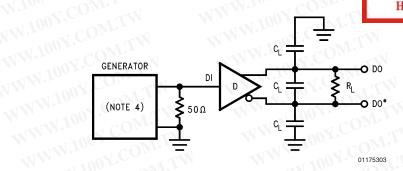


FIGURE 2. Driver Propagation Delay Test Circuit

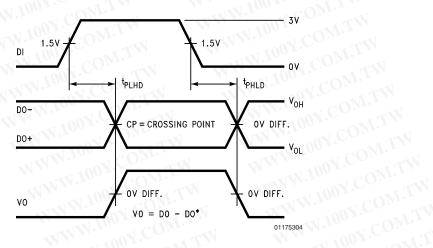


FIGURE 3. Driver Differential Propagation Delay Timing

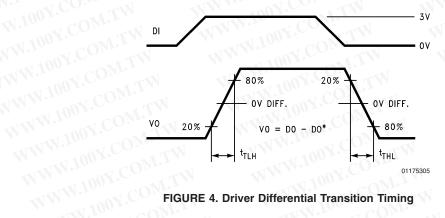


FIGURE 4. Driver Differential Transition Timing

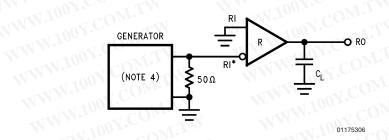


FIGURE 5. Receiver Propagation Delay Test Circuit

WWW.100Y.COM.7 MMM.100 www.national.com TANTA 100Y.COM.TW

Parameter Measurement Information (Continued)

W.100Y.COM.TW

IW.100 K.COM.TW

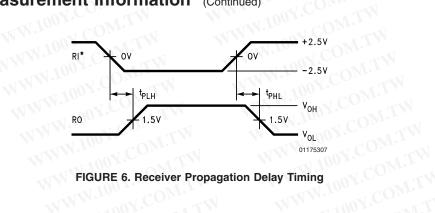
WW.10 N.COM.TW

WWW 100Y.COM.TW

WWV

DOY.COM.TW

N.100Y.COM.TW


VW.100Y.COM.TW

WW.100Y.COM.TW

VWW.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100X.C

100Y.COM.TW

FIGURE 6. Receiver Propagation Delay Timing

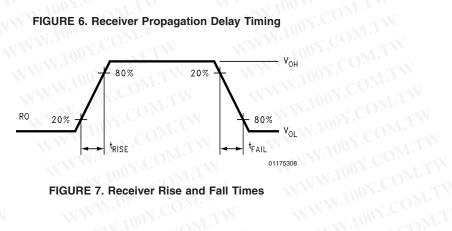


FIGURE 7. Receiver Rise and Fall Times WWW.100Y.CO

WWW.100Y.COM.TW WWW.100Y.COM.TW 特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.COM.

WWW.100

WWW.100Y.

W.100Y.COM.TW WW.100Y.COM.TW COM.TW WWW.100Y.CC5W.T TOTAL INNV.COM.TW www.national.com

WWW.100Y.COM.T

WWW.100Y.COM

WWW.100X.CON

WWW.100Y.C0

WWW.100Y.Q

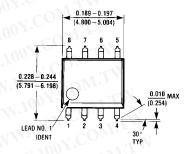
WWW.100Y

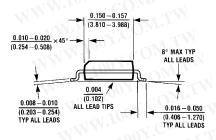
WWW.1007

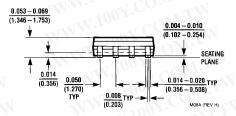
WWW.100Y.COVI.TW

M.TW

OM.TW


.COM.TW


WWW.100X.COM.TW


WW

WWW.110Y.COM.TW WWW.100Y.COM.TV WWW.100Y.COM.T WWW.100Y.COM. W.100Y.COM

Physical Dimensions inches (millimeters) unless otherwise noted

Order Number DS89C21TM **NS Package Number M08A**

料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com

Tel: 1-800-272-9959

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com **National Semiconductor** Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560