SLLS040H - AUGUST 1987 - REVISED JUNE 2000

- Meet or Exceed the Requirements of TIA/EIA-422-B, TIA/EIA-485-A[†] and ITU Recommendations V.11 and X.27
- Operate at Data Rates up to 35 Mbaud
- Four Skew Limits Available:

SN65ALS176...15 ns SN75ALS176...10 ns SN75ALS176A...7.5 ns SN75ALS176B...5 ns

- Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments
- Low Supply-Current Requirements
 ... 30 mA Max
- Wide Positive and Negative Input/Output Bus-Voltage Ranges
- Thermal Shutdown Protection
- Driver Positive and Negative Current Limiting
- Receiver Input Hysteresis
- Glitch-Free Power-Up and Power-Down Protection
- Receiver Open-Circuit Fail-Safe Design

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

description

The SN65ALS176 and SN75ALS176 series differential bus transceivers are designed for bidirectional data communication on multipoint bus transmission lines. They are designed for balanced transmission lines and meet TIA/EIA-422-B, TIA/EIA-485-A, and ITU Recommendations V.11 and X.27.

The SN65ALS176 and SN75ALS176 series combine a 3-state, differential line driver and a differential input line receiver, both of which operate from a single 5-V power supply. The driver and receiver have active-high and active-low enables, respectively, that can be connected together externally to function as a direction control. The driver differential outputs and the receiver differential inputs are connected internally to form a differential input/output (I/O) bus port that is designed to offer minimum loading to the bus when the driver is disabled or $V_{CC} = 0$. This port features wide positive and negative common-mode voltage ranges, making the device suitable for party-line applications.

The SN65ALS176 is characterized for operation from -40° C to 85° C. The SN75ALS176 series is characterized for operation from 0° C to 70° C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

† These devices meet or exceed the requirements of TIA/EIA-485-A, except for the Generator Contention Test (para. 3.4.2) and the Generator Current Limit (para. 3.4.3). The applied test voltage ranges are –6 V to 8 V for the SN75ALS176, SN75ALS176A, and SN75ALS176B and –4 V to 8 V for the SN65ALS180.

SLLS040H - AUGUST 1987 - REVISED JUNE 2000

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw

AVAILABLE OPTIONS

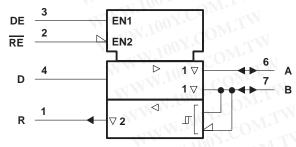
· CO	W	PACKAGED	DEVICES
TA CO	^t sk(lim) [†]	SMALL OUTLINE (D) [‡]	PLASTIC DIP (P)
0°C to 70°C	<mark>10</mark> 7.5 5	SN75ALS176D SN75ALS176AD SN75ALS176BD	SN75ALS176P SN75ALS176AP SN75ALS176BP
-40°C to 85°C	15	SN65ALS176D	SN65ALS176P

[†] This is the maximum range that the driver or receiver delay times vary over temperature, V_{CC}, and process (device to device).

Function Tables

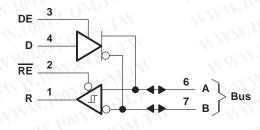
DRIVER

INPUT	ENABLE	OUTI	PUTS
D	DE	Α	В
H	Н	Н	L
N. L	Y.H	L/	Н
X	LCO	Z	χZ

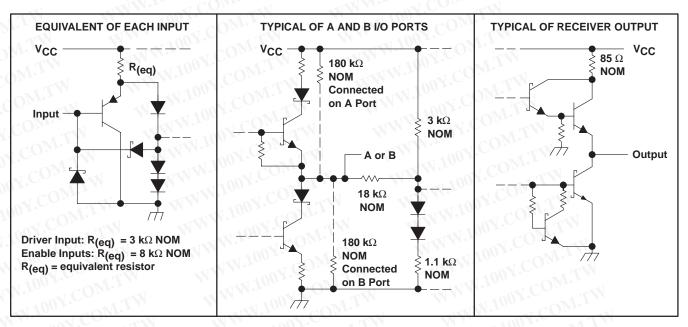

H = high level, L = low level, X = irrelevant, Z = high impedance

RECEIVER

	DIFFERENTIAL INPUTS A-B	ENABLE RE	OUTPUT R
	V _{ID} ≥ 0.2 V	M.Co.	HV
	$-0.2 \text{ V} < \text{V}_{\text{ID}} < 0.2 \text{ V}$	F CC	?
	V _{ID} ≤ -0.2 V	00 F	ONE
1	X	Н	Z
	Inputs open	Loy.	H


H = high level, L = low level, X = irrelevant, Z = high impedance

logic symbol§


§ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

[‡] The D package is available taped and reeled. Add the suffix R to the device type (e.g., SN75ALS176DR).

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)	7 V
Voltage range at any bus terminal	
Enable input voltage, V _I	5.5 V
Package thermal impedance, θ _{JA} (see Note 2): D package	97°C/W
P package	85°C/W
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds .	260°C
Storage temperature range, T _{stq}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential I/O bus voltage, are with respect to network ground terminal

2. The package thermal impedance is calculated in accordance with JESD 51.

SLLS040H - AUGUST 1987 - REVISED JUNE 2000

WWW.100Y.C

recommended operating conditions (unless otherwise noted)

TW WWW. 100Y. CONTROL	WW. 211007.	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	MALL	4.75	5	5.25	V
Input voltage at any bus terminal (separately or common mode), V _I or	No MAN. TO COM.	TV		12	٧/
input voltage at any bus terminal (separately of common mode), vpor	VIC WY 100 CON	1.1		-7	V
High-level input voltage, VIH	D, DE, and RE	2			V
Low-level input voltage, V _{IL}	D, DE, and RE	TI		0.8	V
Differential input voltage, V _{ID} (see Note 3)	WWW. CY.C	DIAT	W	±12	V
High love of althout assessed Last	Driver	OM.		-60	mA
High-level output current, IOH	Receiver	Mos	J.A.	-400	μΑ
TON COMMENT	Driver		TW	60	A
Low-level output current, IOL	Receiver	$I.CO_{D}$	TV	8	mA
Operating free sixtemporative T	SN65ALS176	-40	Mir	85	°C
Operating free-air temperature, T _A	SN75ALS176 series	0	J.M.	70	-0

NOTE 3: Differential input/output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B. WWW.100Y.CO WWW.100Y.CO! WWW.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100Y.COM.TW

100Y.COM.TW

WWW.100Y.COM.TW WWW.100Y.COM.TW 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www.100y.com.tw

WWW.100Y.COM.TW

DRIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature range (unless otherwise noted)

WIIN	PARAMETER	TEST CO	ONDITIONS†	MIN	TYP‡	MAX	UNIT
VIK	Input clamp voltage	I _I = -18 mA	N 11 100 Y.C.	WIN		-1.5	V
Vo	Output voltage	IO = 0	MANTER	0		6	V
VOD1	Differential output voltage	IO = 0	WWW.	1.5		6	V
IV _{OD2} I	Differential output voltage	R _L = 100 Ω,	See Figure 1	1/2V _{OD1} or 2§			V
I CON		$R_L = 54 \Omega$,	See Figure 1	1.5	2.5	5	V
V _{OD3}	Differential output voltage	$V_{test} = -7 V \text{ to } 12 V,$	See Figure 2	1.5	XX	5	V
$\Delta V_{OD} $	Change in magnitude of differential output voltage¶	$R_L = 54 \Omega \text{ or } 100 \Omega,$	See Figure 1	COM.	TW	±0.2	V
Voc	Common-mode output voltage	$R_L = 54 \Omega \text{ or } 100 \Omega,$	See Figure 1	ON CON	I.TW	3 –1	V
Δ Vocl	Change in magnitude of common-mode output voltage¶	$R_L = 54 \Omega \text{ or } 100 \Omega,$	See Figure 1	TOON CO	M.TV	±0.2	V
100		Outputs disabled	V _O = 12 V	100	$0_{M^{*}r}$	1	A
10	Output current	(see Note 4)	V _O = -7 V	M 100 Y.	Mo	-0.8	mA
liн	High-level input current	V _I = 2.4 V	WW WY	100Y.	, N	20	μΑ
JEW A	Low-level input current	V _I = 0.4 V	With Miles	W.I	$C_{O_{2a}}$	-400	μΑ
-TXN .	TOO Y. CONT. I.A.	V _O = -4 V	SN65ALS176	V.M. 100		-250	NT.
		V _O = -6 V	SN75ALS176	100	1.0	-250	
los	Short-circuit output current#	V _O = 0	V	1111	N.C.	-150	mA
		VO = VCC	OM	W. T.	ov.C	250	
M.	W.1007.	V _O = 8 V	COM.	TWW.	VO - <1 (250	- 1
loo	Supply current	No load	Outputs enabled	WY TANL	23	30	mA
ICC	Supply Culterit	INO IOAU	Outputs disabled	MAN	19	26	ША

[†] The power-off measurement in TIA/EIA-422-B applies to disabled outputs only and is not applied to combined inputs and outputs.

NOTE 4: This applies for power on and power off. Refer to TIA/EIA-485-A for exact conditions. The TIA/EIA-422-B limit does not apply for a combined driver and receiver terminal.

[‡] All typical values are at $V_{CC} = 5 \text{ V}$ and $T_A = 25^{\circ}\text{C}$.

[§] The minimum V_{OD2} with a 100- Ω load is either 1/2 V_{OD1} or 2 V, whichever is greater.

[¶] Δ|V_{OD}| and Δ|V_{OC}| are the changes in magnitude of V_{OD} and V_{OC}, respectively, that occur when the input is changed from one logic state to the other.

[#] Duration of the short circuit should not exceed one second for this test.

SLLS040H - AUGUST 1987 - REVISED JUNE 2000

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

switching characteristics over recommended ranges of supply voltage and operating free-air temperature range (unless otherwise noted)

SN65ALS176

COMP.	PARAMETER	OM	TEST CONDITIO	NS	MIN TYPT	MAX	UNIT
td(OD)	Differential output delay time	$R_L = 54 \Omega$,	C _L = 50 pF,	See Figure 3	I. I	15	ns
t _{sk(p)}	Pulse skew [‡]	$R_L = 54 \Omega$,	$C_L = 50 pF$,	See Figure 3	0	2	ns
tsk(lim)	Pulse skew§	$R_L = 54 \Omega$,	$C_L = 50 pF$,	See Figure 3	TIM	15	ns
t _t (OD)	Differential output transition time	$R_L = 54 \Omega$,	C _L = 50 pF,	See Figure 3	8		ns
t _{PZH}	Output enable time to high level	$R_L = 110 \Omega$,	C _L = 50 pF,	See Figure 4	OM	80	ns
tPZL	Output enable time to low level	$R_L = 110 \Omega$,	C _L = 50 pF,	See Figure 5	COM.	30	ns
t _{PHZ}	Output disable time from high level	$R_L = 110 \Omega$,	C _L = 50 pF,	See Figure 4	MIM	50	ns
tPLZ	Output disable time from low level	$R_{I} = 110 \Omega$	C _L = 50 pF,	See Figure 5	CO	30	ns

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

SN75ALS176, SN75ALS176A, SN75ALS176B

	PARAMETER	3	W.100	TEST CONDITIO	NS .	MIN T	YP†	MAX	UNIT																									
VV .	100Y.	'ALS176	1007.	OMITH	W.	3	8	13	- 1																									
td(OD)	Differential output delay time	'ALS176A	$R_L = 54 \Omega$, $C_L = 50 pF$, See Figure 3	$R_L = 54 \Omega$, $C_L = 50 pF$, See Figure 3	$R_L = 54 \Omega$, $C_L = 50 pF$, See Figure 3	$R_L = 54 \Omega$, $C_L = 50 pF$, See Figure 3		$R_L = 54 \Omega$, $C_L = 50 pF$, See Figure 3	$C_L = 50 \text{ pF},$ See I	C _L = 50 pF, See Figure 3	C _L = 50 pF, See Figure 3	$R_L = 54 \Omega$, $C_L = 50 pF$, See Figure 3	$R_L = 54 \Omega$, $C_L = 50 pF$, See Figure 3	$R_L = 54 \Omega$, $C_L = 50 pF$, See Figure 3	$R_L = 54 \Omega$, $C_L = 50 pF$, See Figure 3	$R_L = 54 \Omega$, $C_L = 50 pF$, See Figure 3	$R_L = 54 \Omega$, $C_L = 50 pF$, See Figure 3	$R_L = 54 \Omega$, $C_L = 50 pF$, See Figure 3	$R_L = 54 \Omega$, $C_L = 50 pF$, See Figure 3	$R_L = 54 \Omega$, $C_L = 50 pF$, See Figure 3	$R_L = 54 \Omega$, $C_L = 50 pF$, See Figure 3	$R_L = 54 \Omega$, $C_L = 50 pF$, See Figure 3	$R_L = 54 \Omega$, $C_L = 50 pF$, See Figure 3	$R_L = 54 \Omega$, $C_L = 50 pF$, See Figure 3	$R_L = 54 \Omega$, $C_L = 50 pF$, See Figure 3	$C_L = 50 \text{ pF},$ See Figure 3	$R_L = 54 \Omega$, $C_L = 50 pF$, See Figure 3	= 54 Ω , C _L = 50 pF, See Figure 3	$R_L = 54 \Omega$, $C_L = 50 pF$, See Figure 3	_ = 50 pF, See Figure 3	4	7	11.5	ns
	delay time	'ALS176B	5	8	10																													
tsk(p)	Pulse skew [‡]	.1	$R_L = 54 \Omega$,	C _L = 50 pF,	See Figure 3	M.In.	0	2	ns																									
MA	1007.	'ALS176	W . 10	ON'I	44	VIV.100		10	1																									
tsk(lim)	Pulse skew§	'ALS176A	$R_L = 54 \Omega$	C _L = 50 pF, See Figure 3	$R_L = 54 \Omega$, $C_L = 50 pF$, See Figure 3	$R_L = 54 \Omega$, $C_L = 50 pF$, See Figure 3	$R_L = 54 \Omega$, $C_L = 50 pF$, See Figure 3	10	01.	7.5	ns																							
	IMM.IO. CO	'ALS176B	MMM.,	OON.COM	V WT		OOY	5																										
t _t (OD)	Differential output trai	nsition time	$R_L = 54 \Omega$,	C _L = 50 pF,	See Figure 3	MW.	8	V.CO	ns																									
^t PZH	Output enable time to	high level	$R_L = 110 \Omega$,	C _L = 50 pF,	See Figure 4	W. W.	23	50	ns																									
tPZL	Output enable time to	low level	$R_L = 110 \Omega$,	C _L = 50 pF,	See Figure 5	W T	14	20	ns																									
^t PHZ	Output disable time fr	om high level	$R_L = 110 \Omega$,	C _L = 50 pF,	See Figure 4	MM	20	35	ns																									
^t PLZ	Output disable time fr	om low level	$R_L = 110 \Omega$,	$C_L = 50 \text{ pF},$	See Figure 5	WW	8	17	ns																									

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

SYMBOL EQUIVALENTS

DATA-SHEET PARAMETER	TIA/EIA-422-B	TIA/EIA-485-A
\sim \sim \sim	V _{oa} , V _{ob}	V _{oa} , V _{ob}
VOD1	V _o	Vo. COM
IV _{OD2} I	$V_t (R_L = 100 \Omega)$	$V_t (R_L = 54 \Omega)$
IV _{OD3} I	None	V _t (test termination measurement 2)
ΔIVODI	$ V_t - \overline{V}_t $	$ V_t - \overline{V}_t $
Voc	V _{os}	V _{os}
ΔIVOCI	$ V_{OS} - \overline{V}_{OS} $	$ V_{OS} - \overline{V}_{OS} $
los	I _{sa} , I _{sb}	None
l ₀	I _{xa} , I _{xb}	l _{ia} , l _{ib}

[‡] Pulse skew is defined as the |tpLH - tpHL| of each channel of the same device.

[§] Skew limit is the maximum difference in propagation delay times between any two channels of any two devices.

[‡] Pulse skew is defined as the |tpLH - tpHL| of each channel of the same device.

[§] Skew limit is the maximum difference in propagation delay times between any two channels of any two devices.

RECEIVER SECTION

electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature range (unless otherwise noted)

1.	PARAMETER	TEST	CONDITIONS	MIN	TYP [†]	MAX	UNIT
V _{IT+}	Positive-going input threshold voltage	$V_0 = 2.7 \text{ V},$	$I_0 = -0.4 \text{ mA}$			0.2	V
V _{IT} -	Negative-going input threshold voltage	$V_{O} = 0.5 \text{ V},$	I _O = 8 mA	-0.2‡			V
V _{hys}	Hysteresis voltage (V _{IT+} – V _{IT} –)	TIM	N 1 1007.	LA	60		mV
VIK	Enable-input clamp voltage	I _I = -18 mA	MM	WT		-1.5	V
Vон	High-level output voltage	V _{ID} = 200 mV, See Figure 6	$I_{OH} = -400 \mu A,$	2.7	7		٧
VOL	Low-level output voltage	V _{ID} = -200 mV, See Figure 6	I _{OL} = 8 mA,	$o_{M}T^{V}$		0.45	V
loz	High-impedance-state output current	V _O = 0.4 V to 2.4 V	W.100	$-0_{M^{*}r}$	-31	±20	μΑ
W.Y.	Line into Towns	Other input = 0 V	V _I = 12 V	Mo	LA	1	A
VI	Line input current	(see Note 5)	V _I = −7 V	- 1	TW	-0.8	mA
lіН	High-level-enable input current	V _{IH} = 2.7 V	MMM.	«COn		20	μΑ
1 <u> </u> [00	Low-level-enable input current	V _{IL} = 0.4 V	I INW.In	-1 CO	11.	-100	μΑ
r _L	Input resistance	100Y.	W.10	12	20		kΩ
los	Short-circuit output current	V _{ID} = 200 mV,	V _O = 0	-15	~11.	-85	mA
loo	Supply current	No load	Outputs enabled	any.C	23	30	mA
ICC	Supply current	Outputs dis		. 100	19	26	IIIA

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

NOTE 5: This applies for power on and power off. Refer to TIA/EIA-485-A for exact conditions.

[‡] The algebraic convention, in which the less positive (more negative) limit is designated minimum, is used in this data sheet for common-mode input voltage and threshold voltage levels only.

SLLS040H - AUGUST 1987 - REVISED JUNE 2000

switching characteristics over recommended ranges of supply voltage and operating free-air temperature range (unless otherwise noted)

SN65ALS176

PARAMETER		PARAMETER TEST CONDITIONS		MIN TYPT	MAX	UNIT
tpd	Propagation time	$V_{ID} = -1.5 \text{ V to } 1.5 \text{ V},$ See Figure 7	C _L = 15 pF,	V.TV	25	ns
tsk(p)	Pulse skew§	$V_{ID} = -1.5 \text{ V to } 1.5 \text{ V},$ See Figure 7	C _L = 15 pF,	M.TW 0	2	ns
t _{sk(lim)}	Pulse skew¶	$R_L = 54 \Omega$, See Figure 3	C _L = 50 pF,	OM.TW	15	ns
^t PZH	Output enable time to high level	C _L = 15 pF,	See Figure 8	CON 11	18	ns
tpzL	Output enable time to low level	C _L = 15 pF,	See Figure 8	COM 11	18	ns
tPHZ	Output disable time from high level	C _L = 15 pF,	See Figure 8	OMIT	50	ns
tPLZ	Output disable time from low level	C _L = 15 pF,	See Figure 8	Y.Con T	30	ns

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

SN75ALS176, SN75ALS176A, SN75ALS176B

THE WAR	PARAMETER	-1	TEST CO	ONDITIONS	WWW	MIN	TYP [†]	MAX	UNIT	
	11001. OM.	'ALS176	COM			9	14	19	- 1	
tpd	Propagation time	'ALS176A	$V_{ID} = -1.5 \text{ V to } 1.5 \text{ V},$ See Figure 7	$C_L = 15 pF$,		10.5	14	18	ns	
WW		'ALS176B See Figure 7			11.5	13	16.5			
t _{sk(p)}	Pulse skew [‡]	M.TW	$V_{ID} = -1.5 \text{ V to } 1.5 \text{ V},$ See Figure 7	C _L = 15 pF,	W	MAN	1000	2	ns	
W	Pulse skew§	MMM	'ALS176	MM. 100X.	TIME			1 1007	10	V_{IA}
tsk(lim)		se skew§ $R_L = 54 \Omega$, $C_L = 50 pF$, See Figure 3	o0 p⊦,		100	7.5	ns			
` ′		'ALS176B	See rigure 3			TAT VI	M.r	5		
^t PZH	Output enable time t	o high level	C _L = 15 pF,	See Figure 8	- 1		7	14	ns	
tPZL	Output enable time t	o low level	C _L = 15 pF,	See Figure 8	V	M	20	35	ns	
t _{PHZ}	Output disable time	from high level	C _L = 15 pF,	See Figure 8	N	W	20	35	ns	
tPLZ	Output disable time	from low level	C _L = 15 pF,	See Figure 8	-XX		8	17	ns	

 $[\]overline{\dagger}$ All typical values are at V_{CC} = 5 V, T_A = 25°C.

PARAMETER MEASUREMENT INFORMATION

V_{OD2}

Figure 1. Driver V_{OD2} and V_{OC}

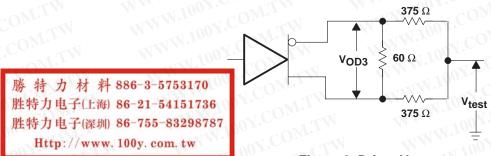
[§] Pulse skew is defined as the |tpLH - tpHL| of each channel of the same device.

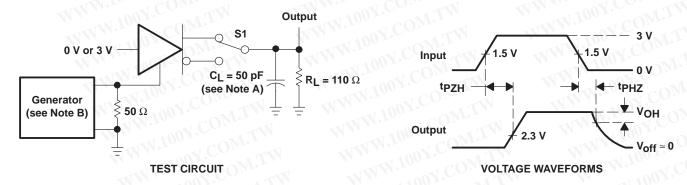
 $[\]P$ Skew limit is the maximum difference in propagation delay times between any two channels of any two devices.

[‡]Pulse skew is defined as the |tplh - tphl| of each channel of the same device.

[§] Skew limit is the maximum difference in propagation delay times between any two channels of any two devices.

PARAMETER MEASUREMENT INFORMATION





Figure 2. Driver V_{OD3}

NOTES: A. C_L includes probe and jig capacitance.

- B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_r \leq$ 6 ns, $t_f \leq$ 6 ns, $Z_O = 50 \Omega$.
- C. $t_{d(OD)} = t_{d(ODH)}$ or $t_{d(ODL)}$

Figure 3. Driver Test Circuit and Voltage Waveforms

NOTES: A. C_L includes probe and jig capacitance.

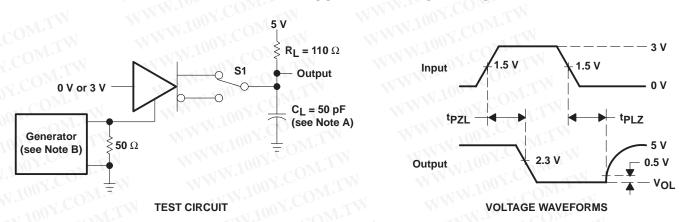

B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_{\text{f}} \leq$ 6 ns, $t_{\text{f}} \leq$ 7 ns, $t_{\text{f}} \leq$ 8 ns, $t_{\text{f}} \leq$ 9 ns, $t_{\text{f}} \leq$

Figure 4. Driver Test Circuit and Voltage Waveforms

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

B. The input pulse is supplied by a generator having the following characteristics: $PRR \le 1 \text{ MHz}$, 50% duty cycle, $t_r \le 6 \text{ ns}$, $t_f \le 6 \text{ ns}$, $Z_{O} = 50 \Omega$.

Figure 5. Driver Test Circuit and Voltage Waveforms

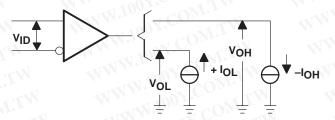
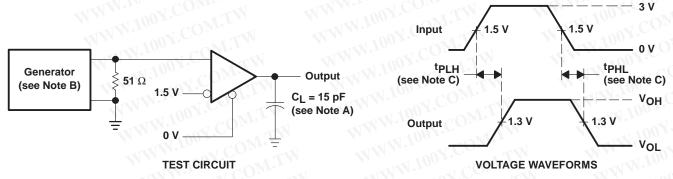
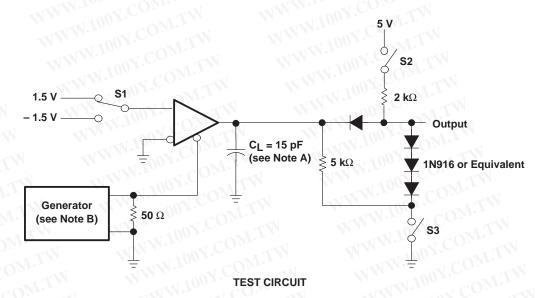



Figure 6. Receiver VOH and VOL Test Circuit


NOTES: A. C_I includes probe and jig capacitance.

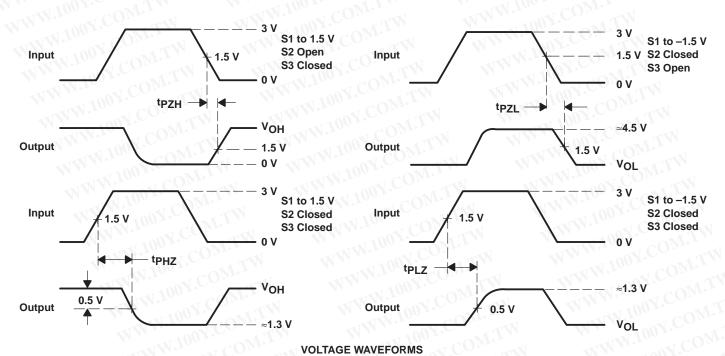
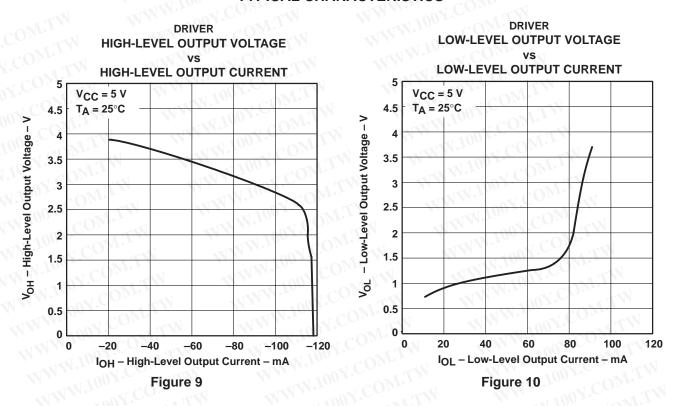
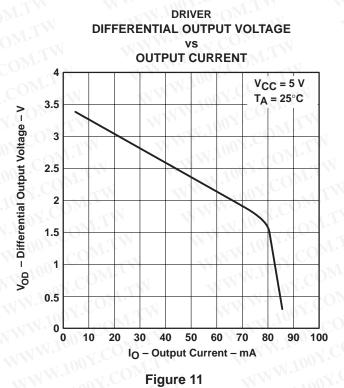

- B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_f \leq$ 6 ns, $t_f \leq$ 6 ns, $Z_O = 50 \Omega$.
- C. $t_{pd} = t_{PLH}$ or t_{PHL}

Figure 7. Receiver Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

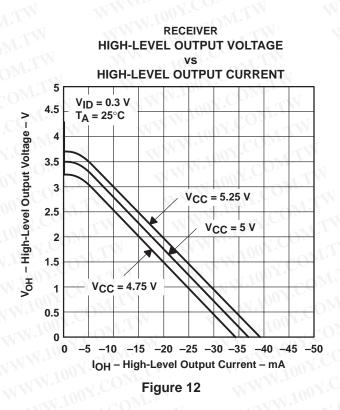


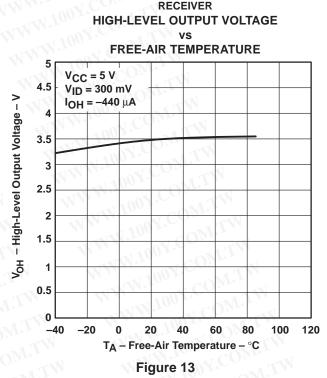

NOTES: A. C_I includes probe and jig capacitance.

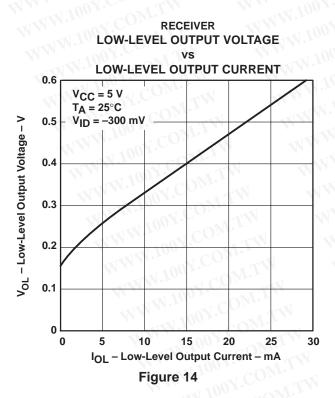
B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_r \leq$ 6 ns, $t_f \leq$ 7 ns, $t_f \leq$ 8 ns, $t_f \leq$ 8 ns, $t_f \leq$ 9 ns

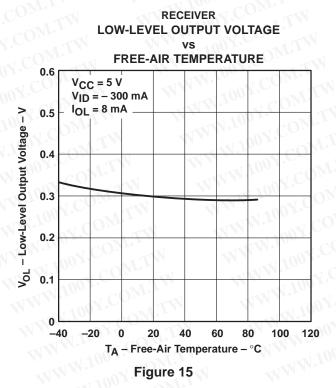
Figure 8. Receiver Test Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS[†]




勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw


† Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.



RECEIVER TYPICAL CHARACTERISTICS[†]

[†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

TYPICAL CHARACTERISTICS[†]

[†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

APPLICATION INFORMATION

Up to 53 Transceivers

NOTE A: The line should terminate at both ends in its characteristic impedance (R_T = Z_O). Stub lengths off the main line should be kept as short as possible.

Figure 18. Typical Application Circuit

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp
SN65ALS176D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN65ALS176DE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLII
SN65ALS176DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN65ALS176DR	ACTIVE	SOIC	O I D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN65ALS176DRE4	ACTIVE	SOIC	O D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN65ALS176DRG4	ACTIVE	SOIC	COD	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN65ALS176P	OBSOLETE	PDIP	Y. P	8		TBD	Call TI	Call TI
SN75ALS176AD	ACTIVE	SOIC	O. DOW	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN75ALS176ADE4	ACTIVE	SOIC	00 X D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN75ALS176ADG4	ACTIVE	SOIC	100 P.	0/8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN75ALS176ADR	ACTIVE	SOIC	1.100 Y.	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN75ALS176ADRE4	ACTIVE	SOIC	D D Y	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN75ALS176ADRG4	ACTIVE	SOIC	D100	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLII
SN75ALS176AP	ACTIVE	PDIP	P 10	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN75ALS176APE4	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN75ALS176BD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN75ALS176BDE4	ACTIVE	SOIC	D	80	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN75ALS176BDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN75ALS176BDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN75ALS176BDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN75ALS176BDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLII
SN75ALS176BP	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN75ALS176BPE4	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN75ALS176D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLII
SN75ALS176DE4	ACTIVE	SOIC	D	8	75	Green (RoHS &	CU NIPDAU	Level-1-260C-UNLI

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

23-Apr-2007

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins Packa Qty	ige Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN75ALS176DG4	ACTIVE	SOIC	D	8 75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75ALS176DR	ACTIVE	SOIC	TWD	8 250	O Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75ALS176DRE4	ACTIVE	SOIC	I.T D	8 250	O Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75ALS176DRG4	ACTIVE	SOIC	D	8 250	O Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75ALS176P	ACTIVE	PDIP	ON P	8 50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN75ALS176PE4	ACTIVE	PDIP	OP	8 50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

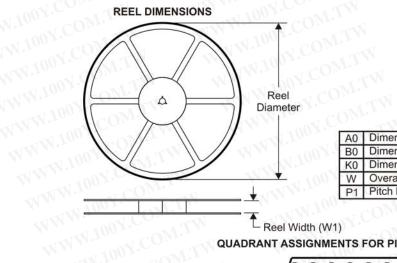
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

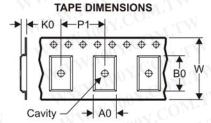
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

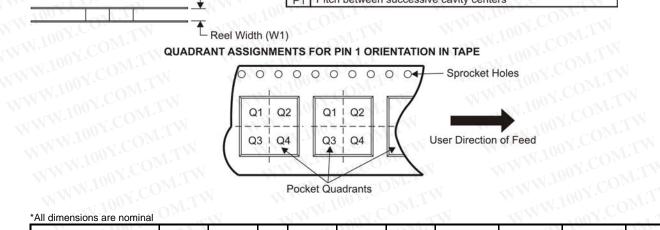
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

> 特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw


> > W.100Y.COM.


WWW.100Y.COM.T

100Y.COM.TW



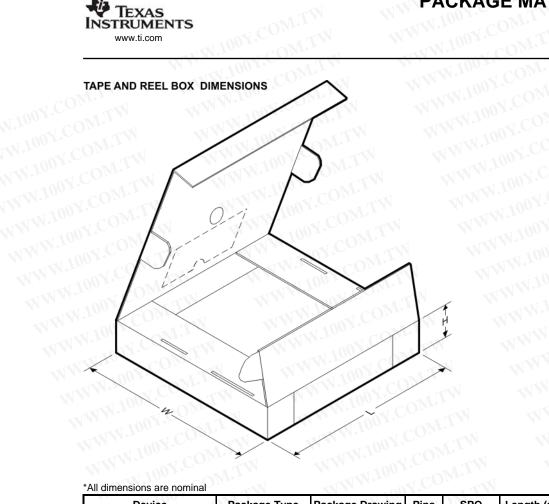
TAPE AND REEL INFORMATION

		Dimension designed to accommodate the component width
١	B0	Dimension designed to accommodate the component length
7	K0	Dimension designed to accommodate the component thickness
H	W	Overall width of the carrier tape
	P1	Pitch between successive cavity centers

WWW.100Y.COM.TW ne -

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadran
SN65ALS176DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SN75ALS176ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SN75ALS176BDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q 1
SN75ALS176DR	SOIC	D	. 8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 WWW.100Y.COM 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw WWW.100Y.COM.TW


WWW.100Y.COM

#100Y.COM.TW

COM.TW

WWW.100Y.COM.TW

*All dimensions are nominal

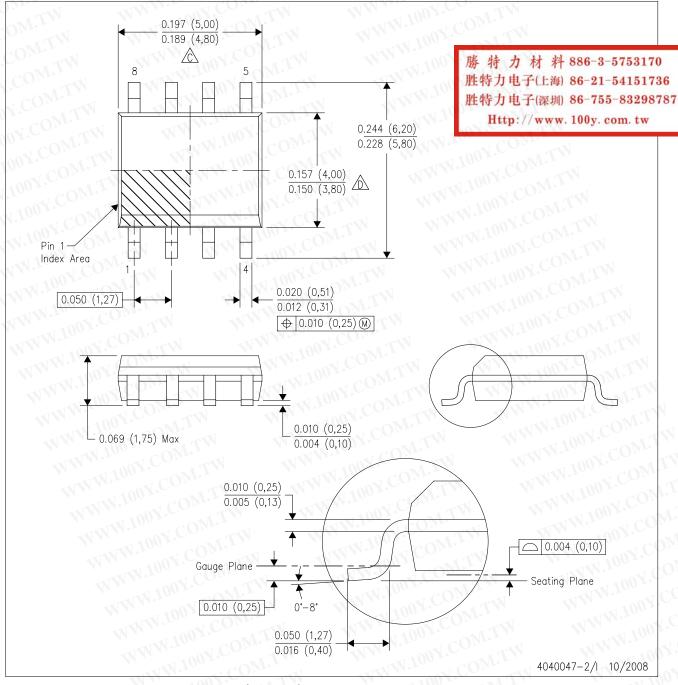
nensions are nominal	TATE	100	Y.C			1007	TW
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65ALS176DR	SOIC	D	8	2500	340.5	338.1	20.6
N75ALS176ADR	SOIC	D	8	2500	340.5	338.1	20.6
N75ALS176BDR	SOIC	D	8	2500	340.5	338.1	20.6
SN75ALS176DR	SOIC	D	8	2500	340.5	338.1	20.6

勝特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 WWW.100Y.COM.TW 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw

WWW.100 Y.C.

WWW.100Y.CO.

WWW.100Y.COM.TW


WWW.

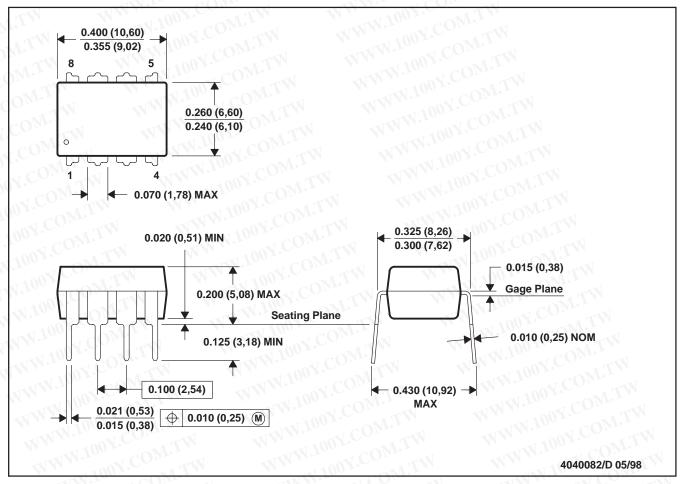
WWW.100Y.COM.TW

100Y.COM.TW

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:


- All linear dimensions are in inches (millimeters).
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end. WWW.100Y.COM
- Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.
- E. Reference JEDEC MS-012 variation AA.

WWW.100Y.C

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm

