TC358768AXBG

材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Functional Specification

N	\mathbf{O}^{r}	ΓŢ	CE	OF	D	ISCI	Δ	TN	IFR

- The material contained herein is not a license, either expressly or impliedly, to any IPR owned or controlled
- 3 by any of the authors or developers of this material or MIPI. The material contained herein is provided on
- an "AS IS" basis and to the maximum extent permitted by applicable law, this material is provided AS IS
- 5 AND WITH ALL FAULTS, and the authors and developers of this material and MIPI hereby disclaim all
- 6 other warranties and conditions, either express, implied or statutory, including, but not limited to, any (if
- any) implied warranties, duties or conditions of merchantability, of fitness for a particular purpose, of
- 8 accuracy or completeness of responses, of results, of workmanlike effort, of lack of viruses, and of lack of
- 9 negligence.
- All materials contained herein are protected by copyright laws, and may not be reproduced, republished,
- 11 distributed, transmitted, displayed, broadcast or otherwise exploited in any manner without the express
- prior written permission of MIPI Alliance. MIPI, MIPI Alliance and the dotted rainbow arch and all related
- 13 trademarks, tradenames, and other intellectual property are the exclusive property of MIPI Alliance and
- cannot be used without its express prior written permission.
- 15 ALSO, THERE IS NO WARRANTY OF CONDITION OF TITLE, QUIET ENJOYMENT, QUIET
- 16 POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD
- 17 TO THIS MATERIAL OR THE CONTENTS OF THIS DOCUMENT. IN NO EVENT WILL ANY
- 18 AUTHOR OR DEVELOPER OF THIS MATERIAL OR THE CONTENTS OF THIS DOCUMENT OR
- 19 MIPI BE LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE
- 20 GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL,
- 21 CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER
- 22 CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR
- 23 ANY OTHER AGREEMENT, SPECIFICATION OR DOCUMENT RELATING TO THIS MATERIAL.
- 24 WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH
- 25 DAMAGES.
- Without limiting the generality of this Disclaimer stated above, the user of the contents of this Document is
- 27 further notified that MIPI: (a) does not evaluate, test or verify the accuracy, soundness or credibility of the
- 28 contents of this Document; (b) does not monitor or enforce compliance with the contents of this Document;
- and (c) does not certify, test, or in any manner investigate products or services or any claims of compliance
- with the contents of this Document. The use or implementation of the contents of this Document may
- involve or require the use of intellectual property rights ("IPR") including (but not limited to) patents,
- patent applications, or copyrights owned by one or more parties, whether or not Members of MIPI. MIPI
- does not make any search or investigation for IPR, nor does MIPI require or request the disclosure of any
- 34 IPR or claims of IPR as respects the contents of this Document or otherwise.
- 35 Questions pertaining to this document, or the terms or conditions of its provision, should be addressed to:
- 36 MIPI Alliance, Inc.
- 37 c/o IEEE-ISTO
- 38 445 Hoes Lane
- 39 Piscataway, NJ 08854
- 40 Attn: Board Secretary

HISTORY

Revision	Date	Note
Rev 0.1	02/24/2012	Initial Release 1. Command parameters increases to ~1KB 2. Modify bit 0x0004[6] to turn on/off Parallel port properly with register 0x0032[15:14] 3. Remove PClk toggle requirement when RefClk is used 4. No need to toggle RefClk to get out of reset 5. Add register bit 0x0032[0] to control Hsync Polarity 6. Update Revision ID to 0x01
Rev 0.2	04/19/2012	 Rename Register 0x00E0 and its fields to reflect the meaning better Section 3.6.3 modified to add step #12 for commands > 8 parameters Update Figure 4-3, removing toggling requirement Correct register 0x0030 typo to 0x0032 Update section 3.7.3 for proper stopping/starting parallel video stream sequence to prevent 768A from hanging Replace TC358768 with TC358768A
Rev 0.3	07/01/2012	 Typo Correction Update Register 0x00E0 field description Long Command steps updated Remove bit 0x0002[1], sleep bit Update Registers 0x0140 – 0x0150 Update Table 5-1 to indicate registers' addressability Remove Tentative
		The state of the s
		24 100, CO 24 24
N. T.		AMIN TOOM COMPLETE
Mr.		

力材料886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

REFERENCES

- 1. MIPI DSI, "mipi_DSI_specification_v01-02-00, June 28, 2010"
- 2. MIPI DCS "DRAFT mipi_DCS_specification_v01-02-00_r0-02, December 2008"
- 3. MIPI D-PHY, "mipi_D-PHY_specification_v01-00-00, May 14, 2009"
- 4. I2C bus specification, version 2.1, January 2000, Philips Semiconductor

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Table of content

1	Overview	11
2		
3	External Pins	14
Ϊ,	3.1 TC358768AXBG BGA72 Pin Count Summary	
	3.2 Pin Layout	16
	3.3 System Overview	
	3.4 DSI TX Protocol	
	3.4.1 Video Mode Transmission	
	3.4.2 Pixel Format	
	3.5 DSI TX Video Packet Operation	
	3.6 DSI TX Command Packet Operation	
	3.6.1 TX Short Packet (DCS) Write Command	
	3.6.2 TX Long Packet Write Command (limited to 8-byte in length)	
	3.6.3 TX Long Packet Write Command (Up to 1024-byte in length)	
	3.6.4 TX (Short) Packet Read Command	
	3.7 Parallel Input (RGB)	26
	3.7.1 Overview	
	3.7.2 Timing Diagrams for Video signals (Vsync and Hsync)	27
	3.7.3 Enable and Disable Parallel Input (Video)	
	3.8 I2C Slave Interface	
	3.8.1 Overview	
	3.8.2 I2C Write Access Translation	
	3.8.3 I2C Read Access Translation	
	3.9 SPI Slave Interface	
	3.9.1 Clocking Modes	
	3.9.1.1 Timing Diagram	
	3.9.1.2 Providing Register Address over SPI Interface	
	3.9.1.3 SPI Write Access Translation	
	3.9.1.4 SFI Read Access Harisfallori	
	3.9.2.1 Back-2-back writes	
	3.9.2.2 Back-2-back reads	
	3.9.2.3 Write-after-Read	
	3.9.2.4 Read-after-Write	36
	3.9.2.5 NOP-after-Read	37
4	Clock and System	38
•	4.1.1 Example of PLL Generated Clock Frequency	
	4.1.2 TC358768AXBG Power Up Procedure	
	4.1.3 TC358768AXBG Power Down Procedure	
_		
5		42
	5.1 Register Map	
	5.2 Register Description	44
	5.2.1 Chip and Revision ID (ChipID: 0x0000)	44
	5.2.2 System Control Register (SysCtl:0x0002)	
	5.2.3 Input Control Register (InputCtl: 0x0004)	44

Page 5 of 104

5.2.4	VSDly Register (VSDly: 0x0006)	.45
5.2.5	Data Format Control Register (DataFmt: 0x0008)	
5.2.6	GPIO Enable Register (GPIOEn: 0x000E)	
5.2.7	GPIO Direction Register (GPIODir: 0x0010)	
5.2.8	GPIO Pin Value Register (GPIOPin: 0x0012)	
	GPIO Output Value Register (GPIOOut: 0x0014)	
	PLL Control Register 0 (PLLCtl0: 0x0016)	
5.2.11	PLL Control Register 1 (PLLCtl1: 0x0018)	49
5.2.12	Parallel In Miscellaneous Register (PP_MISC: 0x0032)	50
	DSITX Data Type Register (DSITX_DT: 0x0050)	
5.2.14	FIFO Status Register (FIFOSTATUS: 0x00F8)	51
	Clock Lane DPHY TX Control register (CLW_DPHYCONTTX: 0x0100)	
	Data Lane 0 DPHY TX Control register (D0W_DPHYCONTTX:0x0104)	
	Data Lane 1 DPHY TX Control Register (D1W_DPHYCONTTX: 0x0108)	
	Data Lane 2 DPHY TX Control Register (D2W_DPHYCONTTX: 0x010C)	
	Data Lane 3 DPHY TX Control Register (D3W_DPHYCONTTX: 0x0110)	
	Clock Lane DPHY Control Register (CLW_CNTRL: 0x0140)	
	Data Lane 0 DPHY Control Register (D0W_CNTRL: 0x0144)	
	Data Lane 1 DPHY Control Register (D1W_CNTRL: 0x0148)	
	Data Lane 2 DPHY Control Register (D2W_CNTRL: 0x014C)	
	Data Lane 3 DPHY Control Register (D3W_CNTRL: 0x0150)	
	STARTCNTRL (STARTCNTRL: 0x0204)	
	STATUS (STATUS: 0x0208)	
	LINEINITCNT (LINEINITCNT: 0x0210)	
	LPTXTIMECNT (LPTXTIMECNT: 0x0214)	
	TCLK_HEADERCNT (TCLK_HEADERCNT: 0x0218)	
	TCLK_TRAILCNT (TCLK_TRAILCNT: 0x021C)	
	THS_HEADERCNT (THS_HEADERCNT: 0x0210)	
	TWAKEUP (TWAKEUP: 0x0224)	
	TCLK_POSTCNT (TCLK_POSTCNT: 0x0228)	
	THS_TRAILCNT (THS_TRAILCNT: 0x022C)	
	HSTXVREGCNT (HSTXVREGCNT: 0x0230)	
	HSTXVREGEN (HSTXVREGEN: 0x0234)	
5.2.30	TXOPTIONCNTRL (TXOPTIONCNTRL: 0x0238)	07
	BTACNTRL1 (BTACNTRL1: 0x023C)	
	DSI STATUS Register (DSI_STATUS: 0x0410)	
5.2.40	DSI_INT Register (DSI_INT: 0x0414)	ו / 72
5.2.41	DSI_INT_ENA Register (DSI_INT_ENA: 0x0418)	12 72
	DSI_INT_ENA Register (DSI_INT_ENA. 0x0416)	
5.2.44	DSI_ACKERR Register (DSI_ACKERR: 0x0434)	/ 4 75
5.2.45	DSI_ACKERR_INTENA Register (DSI_ACKERR_INTENA: 0x0438)	/5
	DSI_ACKERR_HALT Register (DSI_ACKERR_HALT: 0x043C)	
5.2.47	DSI_RXERR Register (DSI_RXERR: 0x0440)	/6
5.2.48	DSI_RXERR_INTENA Register (DSI_RXERR_INTENA: 0x0444)	//
5.2.49	DSI_RXERR_HALT Register (DSI_RXERR_HALT: 0x0448)	18
5.2.50	DSI_ERR Register (DSI_ERR: 0x044C)	/8
5.2.51	DSI_ERR_INTENA (DSI_ERR_INTENA: 0x0450) DSI_ERR_HALT_Register (DSI_ERR_HALT: 0x0454)	79
3/3/	LIGHTER THE REGISTER HAD TERR THE TUXU4541	OU

Page 6 of 104

	5.2.53 DSI Configuration Register (DSI_CONFW: 0x0500)	80
	5.2.54 DSI LP Command (DSI_LPCMD: 0x0500)	
	5.2.55 DSI_RESET_Register (DSI_RESET: 0x0504)	82
	5.2.56 DSI_INT_CLR Register (DSI_INT_CLR: 0x050C)	
	5.2.57 DSI START Register (DSI_START: 0x0518)	84
	5.2.58 DSI Command Packet Start Transmit Register (DSICMD_TX: 0x0600)	84
	5.2.59 DCS Command Type Register (DSICMD_TYPE: 0x0602)	
	5.2.60 DSI Command Packet Word Count Register (DSICMD_WC: 0x0604)	85
	5.2.61 DSI Command Packet Data Register 0 (DSICMD_WD0: 0x0610)	85
	5.2.62 DSI Command Packet Data Register 1 (DSICMD_WD1: 0x0612)	86
	5.2.63 DSI Command Packet Data Register 2 (DSICMD_WD2: 0x0614)	86
	5.2.64 DSI Command Packet Data Register 3 (DSICMD_WD3: 0x0616)	86
	5.2.65 DSI Event Mode Register (DSI_EVENT: 0x0620)	
	5.2.66 DSI Vsync Width Register 1 (DSI_VSW: 0x0622)	
	5.2.67 DSI VBPR Register (DSI_VBPR: 0x0624)	88
	5.2.68 DSI Vertical Active Register (DSI_VACT: 0x0626)	88
	5.2.69 DSI Hsync Width Register (DSI_HSW: 0x0628)	88
	5.2.70 DSI HBPR Register (DSI_HBPR: 0x062A)	89
	5.2.71 DSI Horizontal Active Register (DSI_HACT: 0x062C)	89
	5.2.72 VBuffer Control Register (VBufCtl: 0x00E0)	
	5.2.73 Debug Line Width Register (DBG_Width: 0x00E2)	90
	5.2.74 Debug Vertical Blank Line Count Register (DBG_VBlank: 0x00E4)	91
	5.2.75 Debug Video Data Register (DBG_Data: 0x00E8)	
	Package	00
ô		
7	Electrical Characteristics	94
	7.1 Absolute Maximum Ratings	
	7.2 Recommended Operating Condition	
	7.3 DC Electrical Specification	
\ 		
3		96
	8.1 MIPI – 2 Timings	96
	8.2 I2C Timings	99
	8.3 Parallel Port Input Timings	101
	8.4 SPI Input/Output Timings	103

力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787

J	nie of Figures	
	Figure 1-1 System Overview with TC358768AXBG in RGB to DSI-TX	
	Figure 3-1 TC358768AXBG 72-Pin Layout	
	Figure 3-2 TC358768AXBG Data/Controls Flow in RGB to DSI-TX	17
	Figure 3-3 DSI Short Command Packet Assembly	
	Figure 3-4 DSI Long Command Packet Assembly	22
	Figure 3-5 DSICMD_RXFIFO Data Arrangement	25
	Figure 3-6 VSYNC/HSYNC/DE Timing Diagram – Pulse mode	27
	Figure 3-7 VSYNC/HSYNC/DE Timing Diagram – Event mode	27
	Figure 3-8 I2C Write Transfers Translated to Register Write Accesses	29
	Figure 3-9 I2C Read Transfers to Register Read Accesses	30
	Figure 3-10 SPI basic operation	31
	Figure 3-11 SPI transfer	32
	Figure 3-12 Register Write Transfer over SPI (transfer size=32 bits)	33
	Figure 3-13 Register Write Transfer over SPI (transfer size=32 bits)	33
	Figure 3-14 Register Read (Normal) Transfer over SPI (transfer size=32 bits)	
	Figure 3-15 Back-2-Back Write Transfers over SPI	
	Figure 3-16 Back-2-Back Read Transfers over SPI	
	Figure 3-17 Write-after-Read Transfer over SPI	36
	Figure 3-18 Read-after-Write Transfer over SPI	
	Figure 3-19 NOP-after-Read Transfer over SPI	
	Figure 4-1 D-PHY PLL with its Clock Sources	38
	Figure 4-2 Power On Sequence With External RefClk Running	40
	Figure 4-3 Power On Sequence Without External RefClk Running	40
	Figure 4-4 Power Down Sequence	
	Figure 6-1 P-VFBGA72-0404-0.40A3 package	
	Figure 8-1 Signaling and voltage levels	96
	Figure 8-2 Input Glitch Rejection	97
	Figure 8-3 Data to clock timing reference	98
	Figure 8-4 Parallel Input timing	101
	Figure 8-5 Parallel Vertical timing	101
	Figure 8-6 Parallel Horinzontal timing	102
	Figure 8-7 SPI timing (data valid on second active clock edge)	

SI	t of lables	
	Table 3-1 TC358768AXBG Functional Signal List	.:14
	Table 3-2 BGA72 Pin Count Summary	15
	Table 3-3 Supports Data Types	18
	Table 3-4 24-bit Unpacked Data bus	26
	Table 3-5 SPI Clocking modes	32
	Table 4-1 Possible PLL parameters	38
	Table 4-2 Controllers' Operating Frequency	39
	Table 4-3 Power On Sequence Timing	
	Table 4-4 Power Down Sequence Timing	
	Table 5-1 Register Map	
	Table 5-2 Chip and Revision ID	
	Table 5-3 System Control Register	
	Table 5-4 Input Control Register	
	Table 5-5 VSDly Register	
	Table 5-6 Data Format Control Register	46
	Table 5-7 GPIO Direction Register	47
	Table 5-8 GPIO Direction Register	
	Table 5-9 GPIO Pin Value Register	
	Table 5-10 GPIO Output Value Register	
	Table 5-11 PLL Control Register 0	
	Table 5-12 PLL Control Register 1	
	Table 5-13 DSITX Data Type Register	50
	Table 5-14 DSITX Data Type Register	
	Table 5-15 FIFO Status Register	51
	Table 5-16 Clock Lane DPHY TX Control register	
	Table 5-17 Data Lane 0 DPHY TX Control register	
	Table 5-18 Data Lane 1 DPHY TX Control Register	
	Table 5-19 Data Lane 2 DPHY TX Control Register	
	Table 5-20 Data Lane 2 DPHY TX Control Register	
	Table 5-21 Clock Lane DPHY Control Register	
	Table 5-22 Data Lane 0 DPHY Control Register	
	Table 5-23 Data Lane 0 DPHY Control Register	
	Table 5-24 Data Lane 0 DPHY Control Register	
	Table 5-25 Data Lane 3 DPHY Control Register	
	Table 5-26 STARTCNTRL	
	Table 5-27 STATUS	60
	Table 5-28 LINEINITCNT	61
	Table 5-29 LPTXTIMECNT	61
	Table 5-30 TCLK HEADERCNT	
	Table 5-31 TCLK TRAILCNT	
	Table 5-32 THS HEADERCNT	
	Table 5-33 TWAKEUP	
	Table 5-34 TCLK_POSTCNT	65
	Table 5-35 THS TRAILCNT	66
	Table 5-36 HSTXVREGCNT	

Page 9 of 104

Table 5-37 HSTXVREGEN	67
Table 5-38 TXOPTIONCNTRL	68
Table 5-39 DSI Configuration Register	70
Table 5-40 DSI STATUS Register	72
Table 5-41 DSI_INT Register	72
Table 5-42 DSI_INT_ENA Register	
Table 5-43 DSI Command Read Data FIFO Register	
Table 5-44 DSI_ACKERR_INTENA Register	
Table 5-45 DSI_ACKERR_HALT Register	76
Table 5-46 DSI_RXERR_INTENA Register	
Table 5-47 DSI_RXERR_HALT Register	
Table 5-48 DSI_ERR_INTENA Register	79
Table 5-49 DSI_ERR_HALT Register	80
Table 5-50 DSI Configuration Write Register	
Table 5-51 DSI Configuration Write Register	82
Table 5-52 DSI_RESET Register	
Table 5-53 DSI_INT_CLR Register	
Table 5-54 DSI_START	
Table 5-55 DSI Command Packet Start Transmit Register	
Table 5-56 DSI Command Packet Type Register	
Table 5-57 DSI Command Packet Word Count Register	
Table 5-58 DSI Command Packet Data Register 0	
Table 5-59 DSI Command Packet Data Register 1	86
Table 5-60 DSI Command Packet Data Register 2	86
Table 5-61 DSI Command Packet Data Register 3	87
Table 5-62 DSI Event Mode Register	87
Table 5-63 DSI Vsync Width Register	87
Table 5-64 DSI VBPR Register	
Table 5-65 DSI VACT Register	
Table 5-66 DSI Hsync Width Register	89
Table 5-67 DSI HBPR Register	89
Table 5-68 DSI Horizontal Active Register	
Table 6-1 P-VFBGA72-0404-0.40A3 Mechanical Dimension	93
Table 8-1 DC specifications	
Table 8-2 High Speed AC specifications	
Table 8-3 Low Power AC characteristics	
Table 8-4 Data-Clock timing specification	
Table 8-5 Parallel Input timing	
Table 8-6 Parallel Vertical timing	
Table 8-7 Parallel Horizontal timing	102
Table 8-8 SPI timing	103

1 Overview

The Parallel Port to MIPI DSI (TC358768AXBG) is a bridge device that converts RGB to DSI. All internal registers can be access through I2C or SPI. .

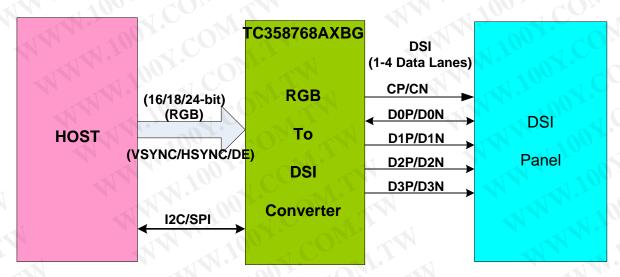


Figure 1-1 System Overview with TC358768AXBG in RGB to DSI-TX

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

2 Features

Below are the main features supported by TC358768AXBG.

DSI-TX Interface

- ♦ MIPI DSI compliant (Version 1.02.00 June 28, 2010)
 - Support DSI Video Mode data transfer
 - DCS Command for panel register access
- ♦ Supports up to 1 Gbps per data lane
- ♦ Supports 1,2,3 or 4 data lanes
- Supports video data formats
 - RGB888/666/565

RGB Interface

- Supports data formats
 - 24-bit data bus
 - ♦ RGB888/666/565 data formats
- ♦ Up to 166 MHz input clock
- ♦ Support VSYNC/HSYNC polarity option (default LOW)
- Support DE polarity option (default High)

I2C/SPI Slave Interface (Option to select either I2C or SPI interface)

- ♦ I2C Interface (when CS=L)
 - Support for normal (100KHz), fast mode (400 KHz) and Special mode (1 MHz)
 - Configure all TC358768AXBG internal registers
 - Writing to DCS registers will trigger DCS Command transmits over DSI
- ♦ SPI interface (when CS =H)
 - SPI interface support for up to 25 MHz operation.
 - Configure all TC358768AXBG internal registers
 - Writing to DCS registers will trigger DCS Command transmits over DSI

GPIO signals

- ♦ 2 GPIO signals
 - Two GPIO signals can be configured as SPI signals (SPI SS and SPI MISO)
 - Or One GPIO signal can be configured as Interrupt output signal (INT).

System

♦ Clock and power management support to achieve low power states.

Confidential

Page 12 of 104

Power supply inputs

Core and MIPI D-PHY: 1.2V

I/O: 1.8V - 3.3V

Power Consumption

720P @60fps: Pixel Clk: 74.25 MHz, DSIClk: 219.6 MHz → 52.4 mW 1080P @60fps: Pixel Clk: 148.5 MHz, DSIClk: 471.6 MHz → 91.3 mW

> 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

External Pins

TC358768AXBG Functional Spec

TC358768AXBG resides in BGA72 pin packages. The following table gives the signals of TC358768AXBG and their function.

Table 3-1 TC358768AXBG Functional Signal List

Group	Pin Name	I/O	Туре	Initial	Function	Note
	RESX	L	Sch		System reset input, active low	
	REFCLK		N	-	Reference clock input (6MHz – 40MHz)	UNIX.
System: Reset & Clock	MSEL	c'O	N	N. Carlotte	Mode Select 1'b0: Test mode 1'b1: Normal mode	CO
(4)	cs	10	N		Configuration Select - When CS=L, enable I2C interface - When CS=H, enable SPI interface	. C
	MIPI_CP	2	PHY		MIPI-DSI clock positive	2 2
	MIPI_CN	4	PHY	~ N .	MIPI-DSI clock negative	
	MIPI_D0P	UD	PHY	0)2	MIPI-DSI Data 0 positive	00 >
	MIPI DON		PHY		MIPI-DSI Data 0 negative	
MIPI-DSI	MIPI_D1P		PHY	40)	MIPI-DSI Data 1 positive	100
(10)	MIPI_D1N		PHY		MIPI-DSI Data 1 negative	
	MIPI_D2P		PHY		MIPI-DSI Data 2 positive	1
	MIPI_D2N		PHY		MIPI-DSI Data 2 negative	
	MIPI_D3P		PHY		MIPI-DSI Data 3 positive	
	MIPI_D3N		PHY		MIPI-DSI Data 3 negative	
I2C	I2C_SCL	OD	Sch	10 7.	I2C serial clock or SPI_SCLK	4mA
(2)	I2C_SDA	OD	Sch		I2C serial data or SPI_MOSI	4mA
Nr.	PD[23:0]		N	700	Parallel Port Input Data Note: PD[23:16] can be config to be GPIO[10:3]	NN
Parallel Port	VSYNC	1.1	N		Parallel port VSYNC signal	
(28)	HSYNC		N.	31.5	Parallel port HSYNC signal	
CO.	DE	ı	N	- 4	Parallel Port DE signal	.4
	PCLK	ı	N		Parallel Port Clock signal	
GPIOx (2)	GPI0[2:1]	I/O	N		GPIO[2:1] signals - (GPIO[1] option to become SPI_SS or INT signal) - (GPIO[2] option to become SPI_MISO signal)	4mA
1	VDDC (1.2V)	NA			VDD for Internal Core (3)	
POWER	VDDIO (1.8V – 3.3V)	NA			VDDIO is for IO power supply (4)	1
(9)	VDD_MIPI (1.2V)	NA			VDD for the MIPI (2)	
Ground (17)	vss	NA			Ground	

3.1 TC358768AXBG BGA72 Pin Count Summary

Table 3-2 BGA72 Pin Count Summary

Group Name	Pin Count	Notes
SYSTEM	4	1001
DSI IF	10	
I2C	2	100
GPIOx	2	
Parallel Port IF	28	100
POWER	9	IO, MIPI and Core Power
GROUND	17	10
TOTAL	72	

Pin Layout 3.2

A1	A2	A3	A4	A5	A6	A7	A8	A9
VSS	PD17	PD19	PD21	PD23	GPIO2	I2C_SCL	MSEL	VSS
B1	B2	В3	В4	B5	В6	B7	B8	В9
VDDC	PD16	PD18	PD20	PD22	GPIO1	I2C_SDA	RESX	VDDIO
C1	C2	C3	C4	C5	C6	C7	C8	C9
PD15	PD14	VSS	VSS	VSS	VSS	VDD_MIPI	MIPI_D3P	MIPI_D3N
D1	D2	D3) × (D7	D8	D9
PD13	PD12	VSS	ON	W		VSS	MIPI_D2P	MIPI_D2N
E1	E2	E3		1.7	- < 1	E7	E8	E9
VSS	VSS	VDDC	4 CO 2			VDD_MIPI	MIPI_CP	MIPI_CN
F1	F2	F3		Mr.		F7	F8	F9
VSS	VSS	VSS	1.0		1	VSS	MIPI_D1P	MIPI_D1N
G1	G2	G3	G4	G 5	G6	G7	G8	G9
PD11	PD10	VDDIO	VSS	VSS	VDDIO	VDDIO	MIPI_D0P	MIPI_D0N
H1	H2	Н3	H4	H5	H6	H7	Н8	Н9
VDDC	PD8	PD6	PD4	PD2	PD0	PCLK	DE	cs
J1	J2	J3	J4	J5	J6	J7	J8	J9
VSS	PD9	PD7	PD5	PD3	PD1	REFCLK	VSYNC	HSYNC

Figure 3-1 TC358768AXBG 72-Pin Layout

力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

3.3 System Overview

TC358768AXBG received the data/controls from RGB then transmits them out to MIPI DSI TX. Host uses I2C/SPI interface to configure all TC358768AXBG internal registers.

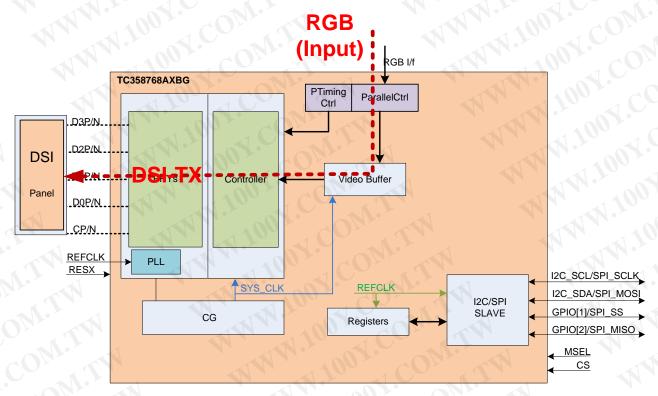


Figure 3-2 TC358768AXBG Data/Controls Flow in RGB to DSI-TX

DSI TX Protocol

Table below shows all the data types that supported in TC358768AXBG.

Table 3-3 Supports Data Types

Data Type	Description	Packet Size
0x01	Sync Event, V Sync Start	Short
0x11	Sync Event, V Sync End	Short
0x21	Sync Event, H Sync Start	Short
0x31	Sync Event, H Sync End	Short
0x08	End of Transmission packet (EoTp)	Short
0x02	Color Mode (CM) Off Command	Short
0x12	Color Mode (CM) On Command	Short
0x22	Shut Down Peripheral Command	Short
0x32	Turn On Peripheral Command	Short
0x03	Generic Short WRITE, no parameters	Short
0x13	Generic Short WRITE, 1 parameter	Short
0x23	Generic Short WRITE, 2 parameters	Short
0x04	Generic READ, no parameters	Short
0x14	Generic READ, 1 parameter	Short
0x24	Generic READ, 2 parameters	Short
0x05	DCS Short WRITE, no parameters	Short
0x15	DCS Short WRITE, 1 parameter	Short
0x06	DCS READ, no parameters	Short
0x37	Set Maximum Return Packet Size	Short
0x29	Generic Long Write (Max 8 byte for register access)	Long
0x39	DCS Long Write (Max 8 byte for register access)	Long
0x0E	Packed Pixel Stream, 16-bit RGB, 5-6-5 Format	Long
0x1E	Packed Pixel Stream, 18-bit RGB, 6-6-6 Format	Long
0x2E	Loosely Packed Pixel Stream, 18-bit RGB, 6-6-6 Format	Long
0x3E	Packed Pixel Stream, 24-bit RGB, 8-8-8 Format	Long

3.4.1 Video Mode Transmission

In Video mode, TC358768AXBG transmits all video timing events and pixel data in proper sequence and time. Video timing events are transmitted in these DSI short packets: VSYNC Start, VSYNC End, HSYNC Start, and HSYNC End. They are multiplexed with null (or blank) packets (or transitioned to LP idle cycle) and pixel data packets in the DSI serial link such that their reception at the chip will reflect in signal transition on VSYNC and HSYNC at proper timing for the receiving display panel. Pixel data is expected to be transmitted using Pixel Stream packet types (Data Type ID = 0x0E, 0x1E, 0x2E or 0x3E.).

VSYNC Start, VSYNC End, HSYNC Start and HSYNC End are trigger by RGB VSYNC and HSYNC pulse. Refer to Figure 3-6 for more information.

Video Line byte count must be configs into Word Count Register 1 (WordCnt1) before starting transfer video over RGB.

3.4.2 Pixel Format

The chip supports RGB-565, RGB-666 packed or loose, and RGB-888 pixel formats in video data packets.

In video mode transmission, pixel format is differentiated by the data type ID in the header of pixel stream packets received. Data type ID must be configured into DSITX_DT register before starting video transmission.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

3.5 DSI TX Video Packet Operation

Below describes the TC358768AXBG sequence for transmit out the video data onto DSI TX.

- 1) Configures all registers.
- 2) Enable Parallel Input port.
- 3) Detects VSYNC transition
 - a. If detect VSYNC transition from HIGH to LOW. Transmits VSYNC Start packet.
 - b. Detect HSYNC pulse (generate Hsync Start, Hsync End packets accordingly)
 - c. If detect VSYNC transition from LOW to HIGH. Transmits VSYNC End packet. Go to step "4"
- 4) Detect HSYNC pulse (generate Hsync Start, Hsync End packets accordingly). Once detect DE transition from LOW to HIGH then go to step "5".
- 5) Wait for the Video buffer reaches the programmable "FIFO Level" go to step "6"
- 6) Transmits Video packet (one line) then go to step "7"
- 7) Detects HSYNC pulse (generate Hsync Start, Hsync End packets accordingly). If detect DE transition from LOW to HIGH then go to step "5"
 - a. If detect VSYNC transition from HIGH to LOW. Transmits VSYNC Start packet, go to step "3"

Note: Assume VSYNC/HSYNC are active LOW.

3.6 DSI TX Command Packet Operation

Below describes the TC358768AXBG sequence for transmitting out DSI, including DCS, Command over DSI TX. Host can use either I2C or SPI interface to access to TC358768AXBG registers.

By programming the following registers, TC358768AXBG will generate/transmit DSI command packets. ECC and CRC are generated and attached automatically by the hardware.

- DSICMD_TX (Register 0x0600)
 - Contains DSI Command Packet Start Transmit bit.
- DSICMD_TYPE (Register 0x0602)
 - Contains DSI (short or long) CommandPacket Type
 - Contains DSI Packet Data ID
- DSICMD_WC (Register 0x0604)
 - Contains DSI Command Packet Word Count
- DSICMD_WD0, DSICMD_WD1, DSICMD_WD2, DSICMD_WD3 (0x0610 0x0616)
 - Contains DSI Command Packet Data Bytes (total 8 bytes)

3.6.1 TX Short Packet (DCS) Write Command

The relationship/assembly of a short DSI packet respect to the DSICMD_** registers are illustrated in Figure 3-3. The command code, either DCS command or Panel specific command is stored in Data Byte 0 while Data Byte1 contains either command parameter or "0x00".

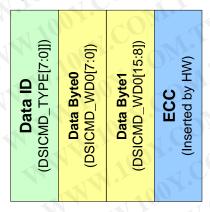


Figure 3-3 DSI Short Command Packet Assembly

The step-by-step procedure is listed below with two examples:

- 1 Set register DSICMD_TYPE[PkType] = 0x10 for DSI short packet.
- 2 Choose desired DCS Short Write Command in register DSICMD_TYPE[DATA_ID] = 0x05 or 0x15 for DCS Command without parameter or with 1 parameter, respectively.
- 3 Be sure to set 0x0000 in DSICMD_WC register.

- 4 Program DCS command code (as specified in MIPI DCS Command Spec in DSICMD_WD0[7:0].
- 5 If DSICMD_TYPE[DATA_ID] = 0x15, set DCS Command Parameter in DSICMD_WD0[15:8]. Otherwise set "0x00" in DSICMD_WD0[15:8].
- 6 Set DSICMD_TX = 0x01 to start DCS Write Short packet.

Example 1: TX DCS Short Command: Exit Sleep Mode (0x11), no parameter

```
0x0602 = 0x1005 (Short packet, Data ID = 0x05)

0x0604 = 0x0000 (WC1,WC0=0 for DSC short write)

0x0610 = 0x0011 (Data1= 0,DCS Command)

0x0600 = 0x0001 (Start transfer)
```

Example2: TX DCS Short Command: Set_Pixel_Format (0x3A), 1 parameter (RGB888

0x0602 = 0x1015 (Short packet, Data ID = 0x15) 0x0604 = 0x0000 (WC1,WC0=0 for DSC short write) 0x0610 = 0x703A (RGB888,DCS Command)

0x0600 = 0x0001 (Start transfer)

3.6.2 TX Long Packet Write Command (limited to 8-byte in length)

The relationship/assembly of a long DSI packet respect to the DSICMD_** registers are illustrated in Figure 3-4. The command code, either DCS command or Panel specific command, is stored in Data Byte 0 while Data Byte1 to Data 7contains either command parameters. The maximum word count for DSI Long Command is limited to 8 bytes. For a single byte command code, the maximum parameters length can be 7 bytes.

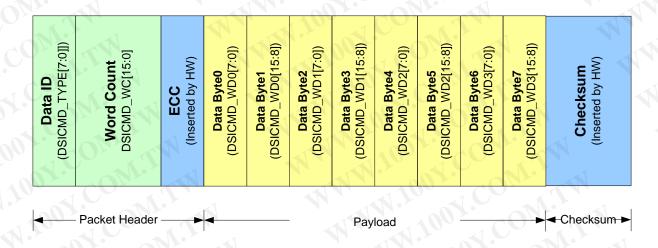


Figure 3-4 DSI Long Command Packet Assembly

The step-by-step procedure is listed below with an examples:

- 1 Set register DSICMD_TYPE[PkType] = 0x40 for DSI long packet.
- 2 Choose desired DSI Long Write Packet/Command, ex, 0x19 for Generate Long Write Packet, in register DSICMD_TYPE[DATA_ID] field.
- 3 Set DSICMD_WC register to the correct word count, number of data bytes in the packet.
- 4 Fill update to 8-bytes of data in registers DSICMD WD0, 1, 2 & 3 in sequence.
- 5 For DCS Long Write Command, the command code should be set at register DSICMD_WD0[7:0].
- 6 Set DSICMD TX = 0x01 to start DCS Write Short packet.

Example: TX Generic Long Write Packet with 4 bytes of Data: 0x12, 0x34, 0x56, 0x78

```
0x0602 = 0x4029 (DSI Long Command/Packet, Data ID = 0x29)

0x0604 = 0x0004 (WC1,WC0)

0x0610 = 0x3412 (Data1,Data0)

0x0612 = 0x7856 (Data3,data2)

0x0600 = 0x0001 (Start transfer)
```

3.6.3 TX Long Packet Write Command (Up to 1024-byte in length)

In order to support user defined DCS commands, which require more than 7 bytes of parameters. TC358768A provides a method to use its video buffer to store the command and its parameters before sending out via DSI link.

- Since video buffer is used to store the command and its parameters, these long commands
 can only be issued when there is no video data being transferred.
- Please make sure the number of "command plus parameters" are in multiple of 4-byte, padding with "0x00" at the end to achieve this requirement.

The step-by-step procedure is listed below with an examples:

1	0x0008 = 0x0001	(Use DataID specified in register 0x0050)
2	0x0050 = 0x0039	(DataID = 0x39)
3	0x026C = 0x000a	(10 bytes, 1-byte command + 9-byte param, to be sent)
4	0x00e0 = 0x8000	(Enable Write into video buffer via I2C/SPI bus)
5	0x00e8 = 0x00d5	(Command = $0xd5$, 1^{st} param = $0x00$)
6	0x00e8 = 0x7666	$(2^{nd} param = 0x66, 3^{rd} param = 0x76)$
7	0x00e8 = 0x0204	(4 th param = 0x04, 5 th param = 0x02)

TC358768AXBG Functional Spec

Confidential

Page 23 of 104

```
8 0x00e8 = 0x4202 (6<sup>th</sup> param = 0x02, 7<sup>th</sup> param = 0x42)
9 0x00e8 = 0x0302 (8<sup>th</sup> param = 0x02, 9<sup>th</sup> param = 0x03)
10 0x00e8 = 0x0000 (Padding to make 12 bytes total)
11 0x00e0 = 0xE000 (Start DSI Tx command transfer)
(wait for Command finishes by estimating the number of bytes to be transferred)
12 0x00e0 = 0x2000 (Keep Mask High to prevent short packets send out)
13 0x00e0 = 0x0000 (Stop DSI Tx command transfer)
```

3.6.4 TX (Short) Packet Read Command

All the DSI Read packet are short packets. After issuing any read command, TC358768A will automatically performs bus turn around and the data returned will be stored in register DSICMD_RDFIFO for Application Processor to read. DSICMD_RDFIFO is a 32 x 8 FIFO, which means TC35768 can accept up to 32 byte of data per DSI Read command. TC35768 is expected to send DSI "Set Maximum Return Packet Size" short packet (Data ID = 0x37) to the DSI Rx to indicate how many bytes it needs to read in the following read command(s). The sequence are:

1 Inform DSI Rx the desired bytes to read by sending "Maximum Return Packet Size" short packet

```
0x0602 = 0x1037 (Short packet, Data ID = 0x37)

0x0604 = 0x0000 (WC1,WC0=0 for Short Packet)

0x0610 = 0x0008 (Read 8-byte of Data, 2 parameters)

0x0600 = 0x0001 (Start transfer)
```

2 Issue a DCS Read Command get_power_mode (0x0A)

```
      0x0602 = 0x1006
      (Short packet, Data ID = 0x06, DCS Read, no parameter)

      0x0604 = 0x0000
      (WC1,WC0=0 for DSC Short Packet)

      0x0610 = 0x000A
      (Data1, DCS Command)

      0x0600 = 0x0001
      (Start transfer)
```

- 3 TC35768 performs Bus Turn Around (BTA) automatically to let DSI Rx to send one byte of data.
 - a. The received data will be pushed into DSICMD_RDFIFO (0x0430), where Host can read the data from
 - b. Host can monitor registers bit RDFIFO STATUS[5] when asserted data arrived.
 - c. Host needs to track the data which is read into DSICMD_RDFIFO if multiple read commands were issued before it fetch the data.

TC358768A does not extract data out of each LP packets received from DSIRx, a whole packet is stored into DSICMD_RXFIFO, packed into 32-bit boundary as shown in Figure 3-5 below. It is up to the Host to fetch and interpret the data.

Confidential

Page 24 of 104

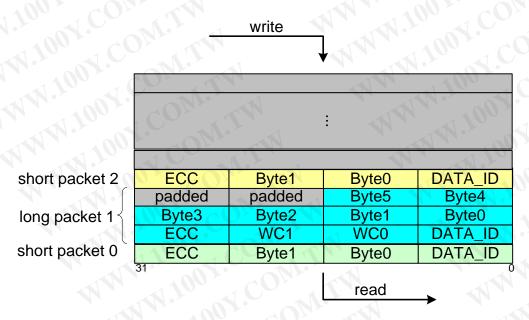


Figure 3-5 DSICMD_RXFIFO Data Arrangement

特力材料886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

3.7 Parallel Input (RGB)

3.7.1 Overview

24-bit parallel input interface is capable to transfer various types of data formats (RGB888/666/565). The signal connections for these types are shown in below Table.

Pin Usage Mode **Data Type** PD[23:0] Comment 0 {R[7:0],G[7:0],B[7:0]} 1 pixel/PClk **RGB888 RGB888** 1 {R[1:0]G[1:0],B[1:0],R[7:2],G[7:2],B[7:2]} 1 pixel/PClk {2'b0,R[5:0],2'b0,G[5:0],2'b0,B[5:0]} 1 pixel/PClk **RGB666** 0 **RGB666** 1 {6'b0,R[5:0],G[5:0],B[5:0]} 1 pixel/PClk {2'b0,R[4:0],3'b0,G[5:0],2'b0,B[4:0],1'b0} **RGB565** 0 1 pixel/PClk {3'b0,R[4:0],2'b0,G[5:0],3'b0,B[4:0]} 1 pixel/PClk **RGB565** 1 **RGB565** 2 1 pixel/PClk {8'b0,R[4:0],G[5:0],B[4:0]}

Table 3-4 24-bit Unpacked Data bus

The Parallel Input controller received the video data from external RGB transmitter. It then packed these into 32-bit data format then transfers the packed data into the Video buffer. The 32-bit data format is showed in Table 3-5.

Parallel Input controller is operated with PCLK only. All asynchronous logic is handled inside Video buffer Controller

3.7.2 Timing Diagrams for Video signals (Vsync and Hsync)

Below Figures show the timing relationship between HSYNC, VSYNC, DE and DSI-TX. Please note the leading edge of first Hsync is expected to lineup with that of VSync's.

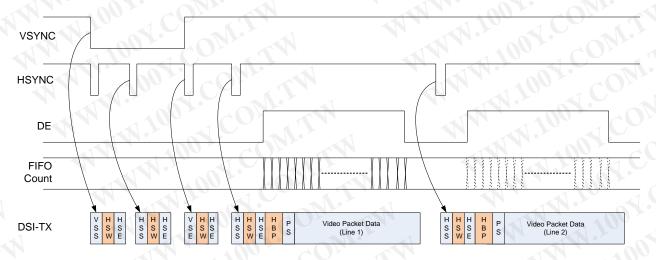


Figure 3-6 VSYNC/HSYNC/DE Timing Diagram - Pulse mode

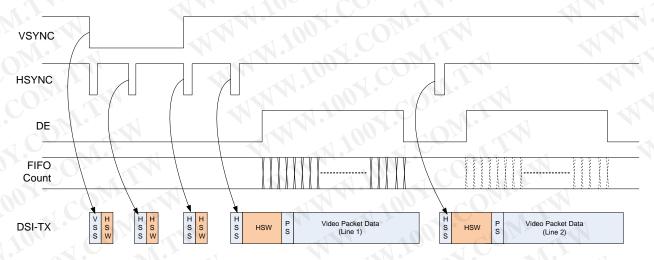


Figure 3-7 VSYNC/HSYNC/DE Timing Diagram - Event mode

3.7.3 Enable and Disable Parallel Input (Video)

While TC358768A is running, the following procedures need to perform in order to stop and restart video operation without reset. Otherwise, TC358768A might be hung, which needs to be reset.

Three registers bits, 0x0032[15] (FrmStop), 0x0032[14] (RstPtr) and 0x0004[6] (PP_En) needs to be programmed sequentially.

To stop TC358768A (video):

- 1 Set FrmStop to 1'b1, wait for at least one frame time for TC358768A to stop properly
- 2 Clear PP En to 1'b0
- 3 Set RstPtr to 1'b1
- 4 Stop Video to TC358768A (optional)

To re-start TC358768A (video):

- 1 Start Video to TC358768A
- 2 Clear RstPtr and FrmStop to 1'b0
- 3 Set PP_En to 1'b1

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

3.8 I2C Slave Interface

3.8.1 Overview

TC358768AXBG supports an I2C slave function. The I2C module supports the following features:

- Fail safe I2C pad operation
- Up to 400 KHz fast mode operation or 1MHz for special mode operation.
- Supports 7 bit slave addresses recognition (slave address=7'b0000_111X)
- No support for general call address
- Supports 16 bit index value for TC358768AXBG I2C slave access

The I2C slave function supports a fixed slave address only and does not support general call address. The I2C slave function does not require any programmable configuration parameters

3.8.2 I2C Write Access Translation

Registers in TC358768AXBG are 16 bit aligned. This implies that I2C accesses to registers should always be done on 16 bit boundaries. The I2C slave will update an internal 16-bit write data register indexed by the Isb of the internal address index. Write access to TC358768AXBG registers over the register interface is performed when a byte of data has been received and the internal address index has hit a 16-bit boundary. This mechanism allows 16-bit aligned registers to be updated simultaneously based on the register address value presented on the I2C bus interface. Note that data transferred on the I2C bus is sent MSB first.

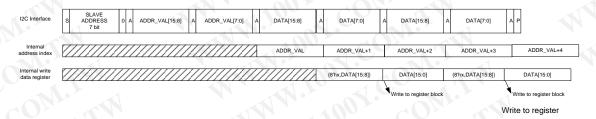


Figure 3-8 I2C Write Transfers Translated to Register Write Accesses

3.8.3 I2C Read Access Translation

Registers in TC358768AXBG are 16 bit aligned. This implies that I2C accesses to registers should always be done on 16 bit boundaries. The I2C slave will update an internal 16-bit read data register when it received the I2C read command or when a byte transfer has completed and the internal address index has hit a 16-bit boundary. Data from the internal read register indexed by the Isb of the internal address index is then transferred over the I2C bus. This mechanism allows 16-bit aligned registers to be read without any side effects. Note that data transferred on the I2C bus is sent MSB first.

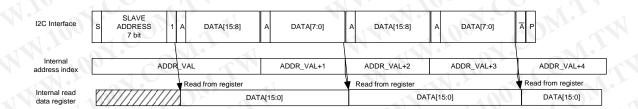


Figure 3-9 I2C Read Transfers to Register Read Accesses

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

3.9 SPI Slave Interface

The TC358768AXBG Bridge Chip incorporates a SPI Slave Interface port which Host can drive to configure registers in the chip.

The following features are supported:

- Slave select pin supported
- Clock Polarity and Phase selectable
- Transfer Frame size of 32 bits
- Slave speed is up to 25 MHz
- Supports 16 bit index value for TC358768AXBG SPI slave access

The basic operation of SPI interface is shown below where the standard 4-wire interface is used for transactions between the Host (SPI Master) and TC358768AXBG (SPI Slave).

The Host asserts (active low) the Slave Select signal (SPI_SS) when it wants to initiate a read or write transaction. This is followed by the Host sending 32 pulses on the SPI Clock signal (SPI_SCK). In this spec., the bit slots are assumed numbered 31 to 0 from left to right. Once the intended 16 bits (for TC358768AXBG register address and command) and the additional data bits have been transferred, the Host de-asserts the Slave Select signal (SPI_SS) to indicate end of frame transfer.

This is shown in a simplistic way in the figure below (16 bits transfer size shown in the figure).

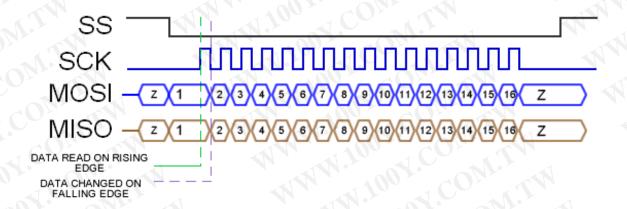


Figure 3-10 SPI basic operation

3.9.1 Clocking Modes

The SPI slave function supports one clocking mode which shown below.

Table 3-5 SPI Clocking modes

Mode	SPOL	SPHA	Drive Edge	Sample Edge	Comments
3	_ 1	1	negedge	posedge	Master/Slave drive first data on first active clock edge

3.9.1.1 Timing Diagram

In this transfer format, the first bit value is captured on the second clock edge. This will be on a rising edge. The levels on the MOSI and MISO signals always change with the inactive clock edges on SCLK. The inactive clock edge will be the falling edge. It will idle high.

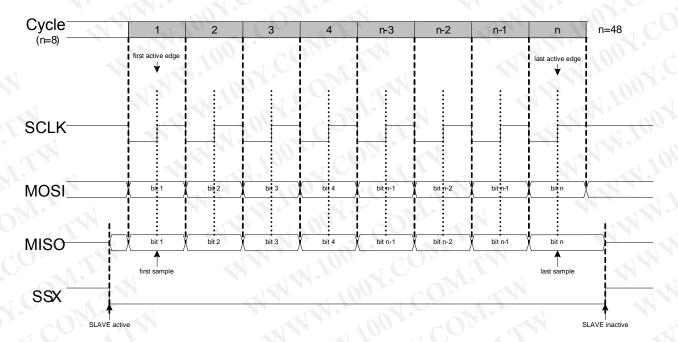


Figure 3-11 SPI transfer

3.9.1.2 Providing Register Address over SPI Interface

The SPI transactions are performed in 32 bits wide frames. The SPI master drives the command and address of the TC358768AXBG register to be accessed. The first 15 bits provide the register address bits 15 to 1. The 16th bit of a frame is the command: 0=Write / 1=Read. Meaning of rest of the bits is based on transaction type. This frame structure is shown in the figure below for a write transaction.

Confidential

Figure 3-12 Register Write Transfer over SPI (transfer size=32 bits)

CMD = Command: 1=Read / 0=Write

SPI slave function supports random write and read accesses.

3.9.1.3 SPI Write Access Translation

Registers in TC358768AXBG are 16 bit aligned. This implies that SPI accesses to registers should always be done on 16 bit boundaries. The SPI slave will update an internal 16-bit write data register indexed by the address in the SPI frame. The data in bit slots 15 to 0 (after the first 16 bits of address and command) on MOSI line is used as the write data for these writes. Write access to TC358768AXBG registers over the register interface is performed when a frame transfer is completed with command bit set to 0. During the write transaction, the data on the MISO line is not related to the write transaction. How to handle the data on MISO line during write transactions is discussed more in section on full-duplex mode.

Figure 3-13 Register Write Transfer over SPI (transfer size=32 bits)

3.9.1.4 SPI Read Access Translation

Registers in TC358768AXBG are 16 bit aligned. This implies that SPI accesses to registers should always be done on 16 bit boundaries. The SPI slave will access an internal 16-bit data register indexed by the address in the SPI frame.

Read access to TC358768AXBG registers is completed in two frames. The first frame is similar to a write frame (as shown above) but with the 16 bits of data on MOSI line ignored by TC358768AXBG. This step provides the 15 bits index address of the TC358768AXBG register to be accessed. The only difference in this step from Write frame is that the command bit is set to 1 (Read command). During the second frame period, the TC358768AXBG stuffs the read data into the bit slots 15 to 0 based on the data from the TC358768AXBG register indexed by the read command address in the first frame as shown below. Handling of MISO line during first frame period and MOSI line during the second frame period is discussed further in full-duplex mode section.

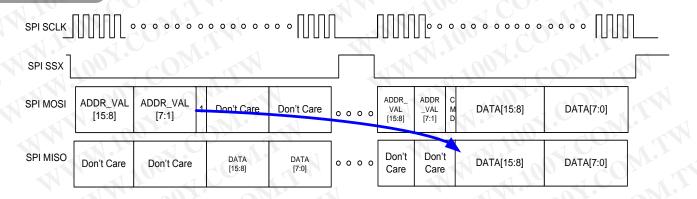


Figure 3-14 Register Read (Normal) Transfer over SPI (transfer size=32 bits)

3.9.2 Full Duplex

All above transactions are considered as full duplex by TC358768AXBG by default. During any frame, TC358768AXBG inserts the data from the TC358768AXBG register that was last addressed by the read command from the SPI master into the bit slots 15 to 0 of the frame on MISO line. During any frame, the bits on the MOSI line bit slots 31 to 17 are considered as the address with the bit slot 16 providing the command. Data on MOSI line during bit slots 15 to 0 are used as write data.

The data on MISO line during bit slots 15 to 0 always corresponds to the previous frame's read command and can be ignored by the SPI Master if the previous frame command was a read command.

The data on MOSI line during bit slots 31 to 17 always provides the address for the TC358768AXBG register for the current frame command.

The data on MOSI line during bit slots 15 to 0 will always be written into the TC358768AXBG register addressed by current frame's address bits (bit slots 31 to 17) if the command in the current frame is a write command.

Four scenarios are possible for back to back transactions as explained below.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

3.9.2.1 Back-2-back writes

In this case, the data on the MOSI line is always valid during both back-2-back frames and used for TC358768AXBG register writes. The data on the MISO line in first frame might correspond to a read command issued in the previous frame. Data on the MISO line in 2nd frame is redundant (corresponds to the TC358768AXBG register addressed by the last read command some frames ago).

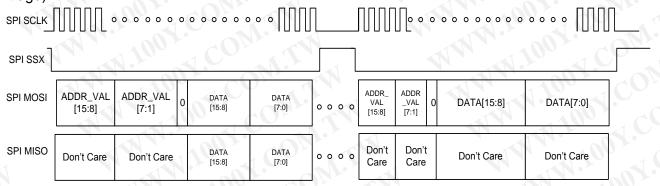


Figure 3-15 Back-2-Back Write Transfers over SPI

3.9.2.2 Back-2-back reads

In this case, the data on the MOSI line is always valid only during first 16 bits (bit slots 31 to 16) in both back-2-back frames and used for TC358768AXBG register reads. The data on the MISO line in first frame might correspond to a read command issued in the previous frame. Data on the MISO line in 2nd frame corresponds to the TC358768AXBG register addressed by the read command in 1st frame. The read data corresponding to the register addressed by the read command in 2nd frame shall be available in the next (3rd) frame on MISO line.

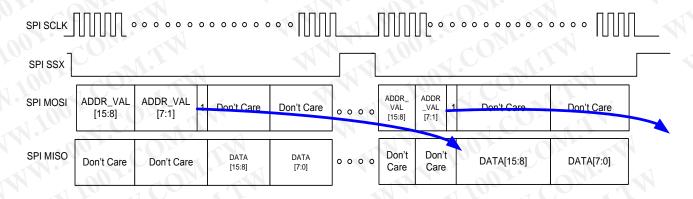


Figure 3-16 Back-2-Back Read Transfers over SPI

3.9.2.3 Write-after-Read

In this case, the handling of data on MISO and MOSI lines during first frame is similar to the "Back-to-Back reads" case. Data on the MOSI line during first 16 bits (bit slots 31 to 16) in 2nd frame provides the address and command for the write (write-after-read). Data on the MOSI line during bit slots 15 to 0 in 2nd frame provides the write data for the write command. Data on the MISO line in 2nd frame corresponds to the TC358768AXBG register addressed by the read command in 1st frame.

Figure 3-17 Write-after-Read Transfer over SPI

3.9.2.4 Read-after-Write

In this case, the handling of data on MISO and MOSI lines during first frame is similar to the "Back-to-Back writes" case. Data on the MOSI line during first 16 bits (bit slots 31 to 16) in 2nd frame provides the address and command for the read (read-after-write). Data on the MOSI line during bit slots 15 to 0 in 2nd frame is redundant. Data on the MISO line in 2nd frame is redundant. The read data corresponding to the register addressed by the read command in 2nd frame shall be available in the next (3rd) frame on MISO line.

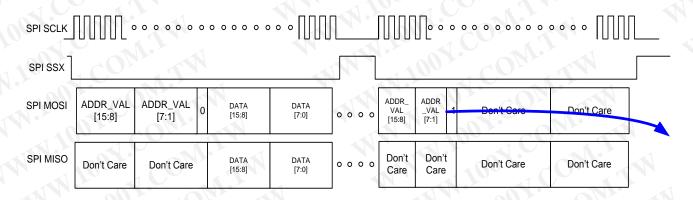


Figure 3-18 Read-after-Write Transfer over SPI

Confidential

Page 36 of 104

3.9.2.5 NOP-after-Read

In this case, where there is a read alone followed by no more immediate request, the handling of data on MISO and MOSI lines during first frame is similar to the "Back-to-Back reads" case. Data on the MOSI line during first 16 bits (bit slots 31 to 16) in 2nd frame should contain all 1's to point to a dummy address for SPI and command for the write. Data on the MOSI line during bit slots 15 to 0 in 2nd frame is redundant. Data on the MISO line in 2nd frame corresponds to the TC358768AXBG register addressed by the read command in 1st frame. The write on MOSI line in 2nd frame points to a dummy address (all 1's) and so redundant.

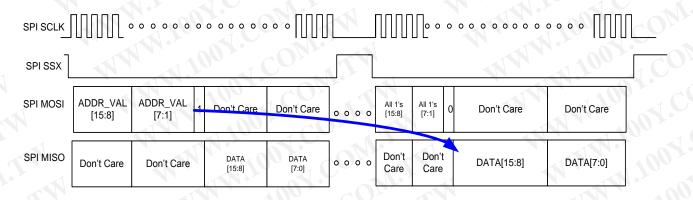


Figure 3-19 NOP-after-Read Transfer over SPI

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

4 Clock and System

The clock generation unit (CG) makes use of a single PLL. PLL Clock output frequency is same as DSITX Bit clock frequency. DSITX Byte clock will be used for DSITX controller and Video Buffer controller. PCLK input will be used for Parallel port input controller. Rest of the modules use either REFCLK or PCLK/4.

PLL uses either an external input clock REFCLK (6MHz to 40 MHz) or PCLK/4 to generate PLL Refclk as shown in Figure 4-1. After reset, if REFCLK is not present on the system, automatically TC358768AXBG will select PCLK/4 as the clock source. However, REFCLK needs to be toggle at least two cycles, Figure 4-3, a GPIO from host controller can be used to achieve this purpose.

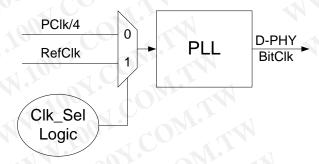


Figure 4-1 D-PHY PLL with its Clock Sources

4.1.1 Example of PLL Generated Clock Frequency

The possible clock frequencies generated from the PLL are achieved by varying the values in registers <u>PLLFBD</u> and <u>PLLDiv</u>.

$$pll_clk = RefClk * [(FBD + 1)/ (PRD + 1)] * [1 / (2^FRS)]$$

 or
 $pll_clk = (PCLK/4) * [(FBD + 1)/ (PRD + 1)] * [1 / (2^FRS)]$

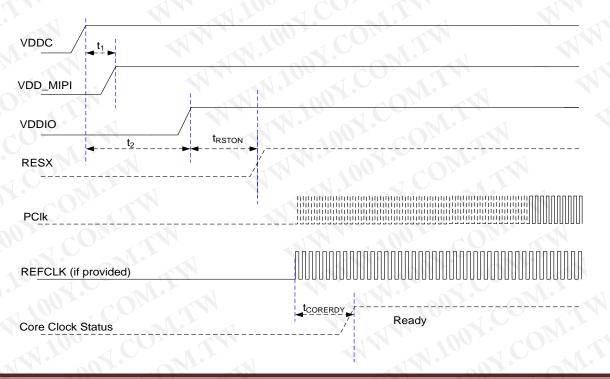
Table 4-1 provides possible frequencies that may be used in TC358768AXBG

Table 4-1 Possible PLL parameters

Reference clock (MHz) (REFCLK or PCLK/4)	FBD	PRD	FRS	pll_clk (MHz)
W. W.	255	7	1	265.60
16.6	319	5	2	221.33
100 x. COM.	319	6	2	189.71

Confidential

		2 N	_1	
	319	7	2	166.00


Table 4-2 Controllers' Operating Frequency

Controllers	Operating	Frequency	Source	
N. T. M	min (MHz)	max (MHz)	M. M.	
VB controller (Write port)	10	166	Input PCLK	
VB controller (Read port)		125	DSI Byte clock (PLL)	
Parallel Input controller		166	Input PCLK	
SPI/I2C controller	6	40	Input REFCLK	
Register module	6	40	Input REFCLK	

4.1.2 TC358768AXBG Power Up Procedure

The following sequence should happen before TC358768AXBG is able to operate properly:

- 1. Provide voltage and clock sources to TC358768AXBG.
- For voltage source, it is desired to turn on core power (1.2) source first, then Analog PHY and IO power as shown in Figure 4-2 Power On Sequence.
- 3. RefClk, PClk/4, clock source can be from 6 MHz to 40 MHz.
- 4. The timing parameters for Figure 4-2 are tabulated in Table 4-3.

TC358768AXBG Functional Spec

Confidential

Page 39 of 104

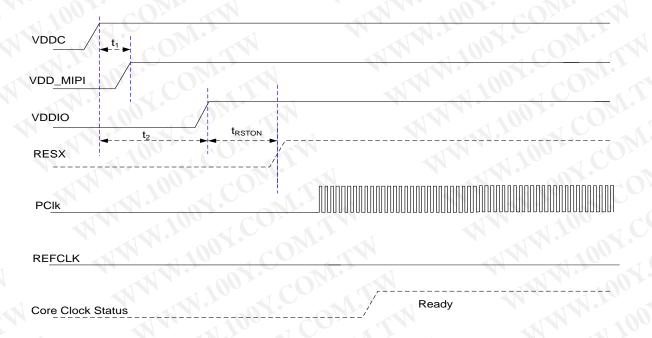


Figure 4-3 Power On Sequence Without External RefClk Running

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

Parameters	Description	Min.	Typ.	Max.	Units
RefClk	Reference clock frequency	6		40	MHz
t_1	VDD_MIPI on delay from VDDC.	0)	10	msec
t ₂	VDDIO on delay from VDDC	0	1	10	msec
t _{RSTON}	RESET width period	200	77-	(nsec
t _{CORERDY}	Period after reset de-assertion when TC358768AXBG clocks are stable (Dependent on REFCLK frequency)	.7	0	1	msec

4.1.3 TC358768AXBG Power Down Procedure

Figure 4-4 Power Down Sequence

Table 4-4 Power Down Sequence Timing

Parameters	Description	Min.	Тур.	Max.	Units
t_1	VDD_MIPI off delay from VDDIO off	0		10	msec
t_2	VDDC off delay from VDD_MIPL off	0		10	msec

5 RegFile Block

Host accesses TC358768AXBG RegFile block to read status and/or write control registers through the I2C or SPI slave interface.

Registers in Group Global and DSITX_CTL (Table 5-1) can be accessed as 16-bit registers. While the others have to be written as 32-bit registers, even if the upper 16-bits are all zeros.

5.1 Register Map

The control and status registers in TC358768AXBG is provided in Table 5-1.

Table 5-1 Register Map

Group	Address	Register	Description
-1	0x0000	ChipID	TC358768AXBG Chip and Revision ID
	0x0002	SysCtl	System Control Register
	0x0004	ConfCtl	Configuration Control Register
	0x0006	VSDly	Video Delay Register
	0x0008	DataFmt	Data Format Control Register
Global	0x000E	GPIOEn	GPIO Enable Control Register
	0x0010	GPIODir	GPIO Pin Direction Control Register
(16-bit	0x0012	GPIOIn	GPIO Input Pin Value
addressable)	0x0014	GPIOOut	GPIO Output Pin Value
-1	0x0016	PLLCtI0	PLL control Register 0
	0x0018	PLLCtl1	PLL control Register 1
	0x0032	PP_MISC	Parallel Input Port Miscellaneous Register
	0x0050	DSITX_DT	DSITX Data Type Register
	0x00F8	FiFoStatus	FiFo Underflow/Overflow Status
	0x0100	CLW DPHYCONTTX	Clock Lane DPHY Tx Control register
	0x0104	D0W_DPHYCONTTX	Data Lane0 DPHY Tx Control register
	0x0108	D1W_DPHYCONTTX	Data Lane1 DPHY Tx Control register
	0x010C	D2W_DPHYCONTTX	Data Lane2 DPHY Tx Control register
TX	0x0110	D3W_DPHYCONTTX	Data Lane3 DPHY Tx Control register
PHY	0x0114 -		
(32-bit	0x013F	Reserved	
addressable)	0x0140	CLW CNTRL	Clock Lane DPHY Control Register
addicssable)	0x0144	D0W_CNTRL	Data Lane 0 DPHY Control Register
	0x0148	D1W CNTRL	Data Lane 1 DPHY Control Register
V K	0x014C	D2W CNTRL	Data Lane 2 DPHY Control Register
	0x0150	D3W_CNTRL	Data Lane 3 DPHY Control Register
	0x0200	Reserved	
	0x0204	STARTCNTRL	DSITX Start Control Register
	0x0208	STATUS	DSITX Status Register
×1 U	0x020C	Reserved	
	0x0210	LINEINITCHT	DSITX Line Initialization Control Register
TV (1	0x0214	LPTXTIMECNT	SYSLPTX Timing Generation Counter
TX	0x0218	TCLK_HEADERCNT	TCLK_ZERO and TCLK_PREPARE Counter
PPI	0x021C	TCLK_TRAILCNT	TCLK_TRAIL Counter
(32-bit	0x0210	THS_HEADERCNT	THS_ZERO and THS_PREPARE Counter
addressable)	0x0224	TWAKEUP	TWAKEUP Counter
100	0x0228	TCLK_POSTCNT	TCLK_POST Counter
N. 1	0x022C	THS_TRAILCNT	THS TRAIL Counter
N	0x0220	HSTXVREGCNT	TX Voltage Regulator setup Wait Counter
1 100	0x0230	HSTXVREGEN	Voltage regulator enable for HSTX Data Lanes
	0x0234	TXOPTIONCNTRL	TX Option Control

TC358768AXBG Functional Spec

Confidential

Page 42 of 104

	0x023C	BTACNTRL1	BTA Control
100	0x0400- 0x0408	Reserved	21 14 , 1 100 , CO2, LA
	0x040C	DSI_CONTROL	DSI Configuration Read Register
1	0x0410	DSI STATUS	DSI Status Register
	0x0414	DSI INT	DSITX – Presents interrupts currently being held
	0x0418	DSI_INT_ENA	DSITX – Enables DSI_INT interrupt source
A1 1	0x0430	DSICMD RDFIFO	DSI Command Read Data FIFO
M.	0x0434	DSI_ACKERR	DSITX – acknowledge error packet
TX	0x0438	DSI_ACKERR_INTENA	DSITX – acknowledge error packet interrupt enable
CTRL	0x043C	DSI_ACKERR_HALT	DSITX – stop on error bit set in the DSI_ACKERR register
(32-bit	0x0440	DSI RXERR	DSITX – internal error while receiving by the previous BTA
addressable)	0x0444	DSI_RXERR_INTENA	DSITX – interrupt enable bits of the DSI_RXERR register
33333,0)	0x0448	DSI_RXERR_HALT	DSITX – stop on error bit set in the DSI_RXERR register
	0x044C	DSI_ERR	DSITX – transfer general errors
NA	0x0450	DSI ERR INTENA	DSITX – interrupt enable bits of the DSI_ERR register
	0x0454	DSI ERR HALT	DSITX – stop on error bit set in the DSI_ERR register
	0x0500	DSI CONFW	DSI TX Configure Write Register
	0x0504	DSI RESET	DSITX – reset he module and the Receive FIFO content
	0x050C	DSI_INT_CLR	DSITX – Clears particular bits of the DSI_INT register
	0x0518	DSI_START	DSI – Starts DSI-TX operation
	0x0600	DSICMD_TX	DSI Command Packet Start register
41	0x0602	DSICMD TYPE	DSI Command Packet Type register
	0x0604	DSICMD_WC	DSI Command Packet Word Count
		400	
	0x0610	DSICMD WD0	DSI Command Packet Data register 0
	0x0612	DSICMD WD1	DSI Command Packet Data register 1
DSITX	0x0614	DSICMD WD2	DSI Command Packet Data register 2
. ~	0x0616	DSICMD_WD3	DSI Command Packet Data register 3
CTRL(16-bit	-1		
addressable)	0x0620	DSI_EVENT	DSI Hsync Event Mode
	0x0622	DSI_VSW	DSI Vsync Width register
	0x0624	DSI VBPR	DSI Vsync Back Porch lines register
_1	0x0626	DSI_VACT	DSI Vsync Active lines register
	0x0628	DSI_HSW	DSI Hsync Width register
	0x062A	DSI HBPR	DSI Hsync Back Porch register
7.	0x062C	DSI_HACT	DSI Hsync Active Piels register
Dahaa	0x00e0	VBufCtl	VBuffer Control (ColorBar, or Command) Register
Debug	0x00e2	DBG_WIDTH	Debug Setting for Line Width
(16-bit	0x00e4	DBG VBlank	Debug Setting for Vertical Blank lines
addressable)	0x00e8	DBG Data	Debug Setting for Data Written into FIFO

特力材料886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

5.2 Register Description

The following sections provide a detailed description of the registers.

5.2.1 Chip and Revision ID (ChipID: 0x0000)

Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name	.1			Chipl	D	31 100	1	<i>y</i>
Туре				RO	4	1110		
Default	100	402		0x44	1			1) 2.
Bit	B7	B6	B5	B4	B3	B2	B1	B0
Name		~ (J)		RevII	D 🦽			
Type		x1 U		RO				1
Default		7	1/1/2	0x01	1			

Table 5-2 Chip and Revision ID

Register Field	Bit	Default	Description
ChipID	[15:8]	0x44	Chip ID Chip ID assigned for this device by Toshiba.
RevID	[7:0]	0x01	Revision ID Revision ID for this device assigned by Toshiba.

5.2.2 System Control Register (SysCtl:0x0002)

Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name				Res	erved			
Туре			11	21 R	0		<	
Default				0	x0			
Bit	B7	B6	B5	B4	B3	B2	B1	B0
Name				Reserved				SReset
Туре				RO	4 () E			R/W
Default	. 1			0x0			4	0x0

Table 5-3 System Control Register

Table 3-3 Gystem Control Register							
Register Field	Bit	Default	Description				
Reserved	[15:1]	0x0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
SReset	0	0x0	Software Reset (Active high) This bit is set to force TC358768AXBG logic to reset state except all configuration registers content (regFile) and I2C slave module. 0: Normal operation 1: Reset operation Software needs to clear SReset when set.				

5.2.3 Input Control Register (InputCtl: 0x0004)

Bit	B15	B14	B13	B12	B11	B10	B9	B8	
Name	Reser	Reserved INTEn2			Reserved			PDataF	
Туре	RC		R/W		RO	R/W			
Default	0xt)	0x0		0x0		0x0		
Bit	B7	B6	B5	B4 B3 B2		B2	B1	B1 B0	
Name	Reserved	PPEn	VsyncP	DEP	Reserved	Auto	Reserved		

TC358768AXBG Functional Spec

Confidential

Page 44 of 104

Copyright © 2005-2008 MIPI Alliance, Inc. All rights reserved. MIPI Alliance Member Confidential.

Type	RO	R/W	∠(R/W	R/W	RO	R/W	RO
Default	0x0	0x0	0x0	0x0	0x0	0x1	0x0

Table 5-4 Input Control Register

Register Field	Bit	Default	Description
Reserved	[15:14]	0x0	Reserved
INTEn2	13	0x0	INT Output Enable 2 0: Normal (Default to GPIO1 function) 1: Enable (output INT to GPIO1)
Reserved	[12:10]	0x0	Reserved
PDataF	[9:8]	0x0	Parallel Data Format Option 2'b00: Mode 0 2'b01: Mode 1 2'b10: Mode 2 2'b11: Reserved Note: See Table 3-4 for more information
Reserved	7	0x0	Reserved
PPEn	6	0x0	Parallel Port Enable 0: Parallel Port Disable 1: Parallel Port Enable
VsyncP	5	0x0	VSync Polarity Control 0: Active low 1: Active high Note: Hsync Polarity is defined in register bit 0x0032[0]
DEP	4	0x0	DE Polarity Control 0: Active high 1: Active low
Reserved	3	0x0	Reserved
Auto	2	0x1	I2C slave index increment 0: I2C address index does not increment on every data byte transfer 1: I2C address index increments on every data byte transfer Note: For I2C interface only
Reserved	[1:0]	0x0	Reserved

Note: All Reserved bits must program "0"

5.2.4 VSDIy Register (VSDIy: 0x0006)

B15	B14	B13	B12	B11	B10	B9	B8	
		Res	served	1.		VSD	ly[9:8]	
402		RO				R/W		
	10.	()x0			0x0		
B7	B6	B5	B4	B3	B2	B1	B0	
41 U			VSDIy	([7:0]	×1 U			
13.		RW						
			0x	1			4.4	
	CO	COMPAN	Res	Reserved RO 0x0 B7 B6 B5 B4 VSDly R/N	Reserved RO 0x0 B7 B6 B5 B4 B3 VSDly[7:0]	Reserved RO 0x0 B7 B6 B5 B4 B3 B2 VSDly[7:0] R/W	Reserved VSD RO	

Table 5-5 VSDly Register

	Register Field	Bit	Default	May 1	Description	Mr. L
Re	eserved	[15:10]	0x0	Reserved		-1/-

TC358768AXBG Functional Spec

Page 45 of 104

Confidential
Copyright © 2005-2008 MIPI Alliance, Inc. All rights reserved.
MIPI Alliance Member Confidential.

Register Field	Bit	Default	Description
VSDIy	[9:0]	0x1	V/HSync Delay Value This field determines Video Starts. After detecting VSync/HSync at parallel inputs, DSI Tx waits for the delay (counted in ByteClk) plus ~40 cycles (internal latency delay) before sending out VSS/HSS. Note: If this value is set too small, the chip will waits for data available in the video buffer before starting video output.

Data Format Control Register (DataFmt: 0x0008) 5.2.5

Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name		. 00 3		Res	erved		14.	0.7.
Type			41 C		RO		13	_1
Default)x0			
Bit	B7	B6	B5	B4	В3	B2	B1	B0
Name		PD	Format		spmode_en	rdswap_en	dsitx_en	txdt_en
Туре			R/W		R/W	R/W	R/W	R/W
Default			0x0		0x0	0x0	0x0	0x0

Table 5-6 Data Format Control Register

Register Field	Bit	Default	Description
Resserved	[15:8]	0x0	Reserved
PDFormat	[7:4]	0x0	Peripheral Data Format 0000: User Define 0001: Reserved 0010: Reserved 0011: RGB888 0100: RGB666 0101: RGB565 0110: Reserved 0111: Reserved 1000: Reserved 1001: Reserved 1001: Reserved 1001: Reserved 1001: Reserved 1011: Reserved 1010: Reserved 1010: Reserved
spmode_en	[3]	0x0	Special mode enable 0: Normal 1: RGB666: select Loosely pack Note: Only valid when rdswap_en=1
rdswap_en	[2]	0x0	RGB Swap R & B enable Note: Must program to "1"
dsitx_en	[1]	0x0	DSITX i/f enable 0: Disable 1: Enable
txdt_en	[0]	0x0	DSITX Data Type ID enable Must program to "1"

TC358768AXBG Functional Spec

Page 46 of 104

Register Field	Bit	Default	Description
			DSITX: Use Data Type ID defined in DSITX_DT register

5.2.6 GPIO Enable Register (GPIOEn: 0x000E)

Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name	101	7		GPIOE	n[10:3]		. 00 .	
type		21 (R/	W		13	1
Default		00 3.		0)	(0			
Bit	B7	B6	B5	B4	B3	B2	B1	B0
Name				Rese	erved			
type		1 100	-1	R	0		-1 N	1
Default		4.		0:	κ0			

Table 5-7 GPIO Direction Register

Register Field	Bit	Default	Description
GPIOEn	[15:8]	0x0	GPIO Enable 0: Disable (GPIOx function depend on mode of operation) 1: Enable (GPIOx function depend on GPIODir)
Resserved	[7:0]	0x0	Reserved

5.2.7 GPIO Direction Register (GPIODir: 0x0010)

Bit	B15	B14	B13	B12	B11	B10	B9	B8	
Name		<		GPIOD)ir[10:3]				
type				R	W				
Default		0xFF							
Bit	B7	B6	B5	B4	B3	B2	B1	B0	
Name			Reserved	41	1	GPIODir[2:1] Reserved			
type	M. S.	RW RW RA							
Default		0x1F							

Table 5-8 GPIO Direction Register

Register Field	Bit	Default	Description
GPIODir	[15:8]	0x0	GPIO[10:3] Pin Direction
Resserved	[7:3]	0x1F	Do not change default value
GPIODir	[2:1]	0x3	GPIO[2:1] Pin Direction 0: GPIO Pin is set to Output Mode 1: GPIO Pin is set to Input Mode
Resserved	[0]	0x1	Do not change default value

Confidential

5.2.8 GPIO Pin Value Register (GPIOPin: 0x0012)

Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name	70.7.			GPIO	n[10:3]			N. W.
type	-1			F	20	11100	1	
Default	003.			0>	(??	111.		
Bit	B7	B6	B5	B4	B3	B2	B1	B0
Name			Reserved	1		GPIO	In[2:1]	Reserved
type	1100		RO			R	10	RO
Default	M.		0x??	. 1		0x	(??	0x??

Table 5-9 GPIO Pin Value Register

Register Field	Bit	Default	DO TON	Description
GPIOPin	[15:8]	0x??	GPIO[10:3] Pin Value	
Reserved	[7:3]	0x??		
GPIOPin	[2:1]	0x??	GPIO[2:1] Pin Value	
Reserved	[0]	0x??		

5.2.9 GPIO Output Value Register (GPIOOut: 0x0014)

Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name			. 00	GPIOO	out[10:3]			
type		4N 4.	11	I R	W		AN	411
Default				0x	(00)			
Bit	B7	B6	B5	B4	B3	B2	B1	B0
Name	(Reserved		01/10	GPIOC	Out[2:1]	Reserved
type		- N	R/W	000		R/	W	R/W
Default			0x00		0:	x0	0x0	

Table 5-10 GPIO Output Value Register

Register Field	Bit	Default	Description
GPIOOut	[15:8]	0x0	GPIO[10:3] Output Register Value
Reserved	[7:3]	< 0x0	
GPIOOut	[2:1]	0x0	GPIO[2:1] Output Register Value
Reserved	[0]	0x0	

5.2.10 PLL Control Register 0 (PLLCtl0: 0x0016)

Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name		Р	LL_PRD			Reserved	d	PLL_FBD[8]
Туре		72	R/W			RO	7	R/W
Default			0x4			0x00	10	0x0
Bit	B7	B6	B5	B4	B3	B2	B1	B0
Name				1	PLL_FBD[7:	0]		
Туре	100 >				R/W		100 }	
Default		10			0x63		70	10

TC358768AXBG Functional Spec

Confidential

Page 48 of 104

Copyright © 2005-2008 MIPI Alliance, Inc. All rights reserved. MIPI Alliance Member Confidential.

Table 5-11 PLL Control Register 0

Register Field	Bit	Default	Description
PLL_PRD	[15:12]	0x4	Input divider setting Division ratio = (PRD30) + 1
Reserved	[11:9]	0x0	
PLL_FBD	[8:0]	0x063	Feedback divider setting Division ratio = (FBD80) + 1

5.2.11 PLL Control Register 1 (PLLCtl1: 0x0018)

Bit	B15 B14		B13	B12	B11	B10	B9	B8
Name		Rese	erved		PLI	L_FRS	PLL_LBWS	
Туре		R	0			R/W	R/W	
Default	ult 0x0		k0			0x1	0x	2
Bit	B7	B6	B5	B4	B3	B2	B1	B0
Name	Revsd	LFBREN	BYPCKEN	CKEN	Re	served	RESETB	PLL_EN
Туре	RO	R/W	R/W	R/W		RO	R/W	R/W
Default	0x0	0x0	0x0	0x0		0x0	0x0	0x0

Table 5-12 PLL Control Register 1

Register Field	Bit	Default	Description
Reserved	[15:12]	0x0	
PLL_FRS	[11:10]	0x1	Frequency range setting (post divider) for HSCK frequency 2'b00: 500MHz – 1GHz HSCK frequency 2'b01: 250MHz – 500MHz HSCK frequency 2'b10: 125 MHz – 250MHz HSCK frequency 2'b11: 62.5MHz – 125MHz HSCK frequency
PLL_LBWS	[9:8]	0x2	Loop bandwidth setting 2'b00: 25% of maximum loop bandwidth 2'b01: 33% of maximum loop bandwidth 2'b10: 50% of maximum loop bandwidth (default) 2'b11: maximum loop bandwidth
Reserved	[7]	0x0	
PLL_LFBREN	[6]	0x0	Lower Frequency Bound Removal Enable 1'b0: REFCLK toggling -> normal operation, REFCLK stops -> no oscillation 1'b1: REFCLK toggling -> normal operation, REFLCK stops -> free running PLL
PLL_BYPCKEN	[5]	0x0	Bypass clock enable 1'b0: Normal operation 1'b1: bypass mode, REFCLK is used instead of PLL_VCO output
PLL_CKEN	[4]	0x0	Clock enable 1'b0: clocks switched off (output LOW) 1'b1: clocks switched on
Reserved	[3:2]	0x0	
PLL_RESETB	[1]	0x0	PLL Reset 1'b0: Reset 1'b1: Normal operation

TC358768AXBG Functional Spec

Page 49 of 104

PLL_EN	[0]	0x0	PLL Enable 1'b0: PLL off	MAN 1004 COM. LA
			1'b1: PLL on	

5.2.12 Parallel In Miscellaneous Register (PP_MISC: 0x0032)

Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name	FrmStop	RstPtr	OZ	~~N	Rese	erved	. 00	
Type	R/W	R/W			R	10		41 C
Default	0x0	0x0	2014		0x	(00		17.
Bit	B7	B6	B5	B4	B3	B2	B1	B0
Name		. 00 7		Reserved				HsyncP
Туре		1 100	-1	RO			411	R/W
Default		14.		0x00			M.	0

Table 5-13 DSITX Data Type Register

Register Field	Bit	Default	Description
FrmStop	15	0x0	Frame Stop When this bit is asserted, TC358768A will stop outputting at the next Vsync
RstPtr	14	0x0	Reset Pointers When this bit is asserted, TC358768A resets its write/read pointers to Video Buffer
Reserved	[13:1]	0x00	
HsyncP	0	0x0	Hsync Polarity Control 0: Active low 1: Active high

Please refer to section 3.7.3 for the usage of bits [15:14].

5.2.13 DSITX Data Type Register (DSITX_DT: 0x0050)

Bit	B15	B14	B13	B12	B11	B10	B9	B8		
Name				Re	served	20/2/2				
Туре		RO								
Default	0x00									
Bit	B7	B6	B5	B4	B3	B2	B1	В0		
Name				dsitx	_dt[7:0]			A		
Type					R/W	1 ()				
Default		1	1	()x30			- 1		

Table 5-14 DSITX Data Type Register

Register Field	Bit	Default	Description
dsitx_dt	[7:0]	0x30	DSITX Data Type ID This field uses for DSITX Data Type ID when txdt_en = 1;

Confidential

Page 50 of 104

5.2.14 FIFO Status Register (FIFOSTATUS: 0x00F8)

Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name	7.	Mr.		Rese	erved	00.7.		
Туре	-1			R	0	100	1	
Default	007.			0x	00	00	1.0	
Bit	B7	B6	B5	B4	B3	B2	B1	В0
Name			Res	erved		M.	Vb_uflow	Vb_oflow
Туре	100		F	RO		1	RO	RO
Default			0)	k00			0x0	0x0

Table 5-15 FIFO Status Register

Register Field	Bit	Default	Descri	ption
Reserved	[15:2]	UN >		100 - 100
vb_uflow	1	0	VB Under Flow Status 0: Normal 1: Under flow Read this register will clear the status	MMM. 1001.C
vb_oflow	0	0	VB Over Flow Status 0: Normal 1: Over flow Read this register will clear the status	MANA 1002

5.2.15 Clock Lane DPHY TX Control register (CLW_DPHYCONTTX: 0x0100)

Bit	B15	B14	B13	B12	B11	B10	В9	B8
Name		41	Reserve		AO E		CLW_CAP1	CLW_CAP0
Туре	RO	RO	RO	RO	RO	RO	R/W	R/W
Default	0	0	0	0	0	0	. 1	0
Bit	B7	B6	B5	B4	В3	B2	B1	В0
Name	DLYCNTR L3	DLYCNTR L2	DLYCNTRL 1	DLYCNT RL0	Rese	rved	CLW_LPTXCU RR1EN	CLW_LPTX CURR0EN
Type	R/W	R/W	R/W	R/W	RO	RO	R/W	R/W
Default	0	0	0	0	0	0		0

Table 5-16 Clock Lane DPHY TX Control register

1	Register Field	Bit	Default	Description
	Reserved	[31:10]	0x0	W. M. ON.
1	CLW_CAP1	[9]	0x1	Selection bit 1 of different HSTX output capacitors for Clock Lane

Register Field	Bit	Default	Description					
CLW_CAP0	[8]	0x0	Selection bit 0 of different HSTX output capacitors for Clock Lane (CAP1,CAP0): = (00): 0 [pF] (CAP1,CAP0): = (01): 2.8 [pF] (CAP1,CAP0): = (10): 3.2 [pF] (CAP1,CAP0): = (11): 3.6 [pF]					
DLYCNTRL[3:0]	[7:4] 0x0		Tuning of transmit window position. The High Speed Clock output can be delayed according to the setting. The recommended value is determined by evaluating the LSI in which this module is implemented. Typical delay for rising/falling edge is about DLYCNTRL x 24ps/27ps. Rising edge: DLYCNTRL x 24ps, Falling edge: DLYCNTRL x 27ps.					
Reserved	[3:2]	0x0	011.					
CLW_LPTXCURR1EN	[1]	0x1	Selection bit-1 for LPTX output current (TRLP/TFLP tuning) for clock Lane.					
CLW_LPTXCURR0EN	[0]	0x0	Selection bit-0 for LPTX output current (TRLP/TFLP tuning) for clock Lane. 00: no additional output current 01: 25% additional output current 10: 25% additional output current 11: 50% additional output current The default value is "10". However, if "00" is set, the rise/fall time will become later and if "11" is set, the rise/fall time will become earlier.					

5.2.16 Data Lane 0 DPHY TX Control register (D0W_DPHYCONTTX:0x0104)

Bit	B15	B14	B13	B12	B11	B10	В9	B8
Name	1		Reserv	DOW_CAP1	D0W_CAP0			
Type	RO	RO	RO	RO	RO	RO	R/W	R/W
Defau					1	W		
lt 1	0	0	0	0	0	0	1 (0)	0
Bit	B7	В6	B5	B4	В3	B2	B1	В0
	DLYCNT	DLYCNT	DLYCNT	DLYCNT	Reserv	Reserv	DOW_LPTXCUR	DOW_LPTXCUR
Name	RL3	RL2	RL1	RL0	ed	ed	R1EN	ROEN
Type	R/W	R/W	R/W	R/W	RO	RO	R/W	R/W

TC358768AXBG Functional Spec

Page 52 of 104

Confidential
Copyright © 2005-2008 MIPI Alliance, Inc. All rights reserved.
MIPI Alliance Member Confidential.

Defau		01/10				M.		
lt	0 . (0	0	0	0	0	1	0

Table 5-17 Data Lane 0 DPHY TX Control register

Register Field	Bit	Default	Description
Reserved	[15:10]	0x0	200 COE C
DOW_CAP1	[9]	0x1	Selection bit 1 of different HSTX output capacitors for Data Lane 0.
DOW_CAPO	[8]	0x0	Selection bit 0 of different HSTX output capacitors for Data Lane 0. (CAP1,CAP0): = (00): 0 [pF] (CAP1,CAP0): = (01): 2.8 [pF] (CAP1,CAP0): = (10): 3.2 [pF] (CAP1,CAP0): = (11): 3.6 [pF]
DLYCNTRL[3:0]	[7:4]	0x0	Tuning of transmit window position. The High Speed Data output can be delayed according to the setting. The recommended value is determined by evaluating the LSI in which this module is implemented. Typical delay for rising/falling edge is about DLYCNTRL x 24ps/27ps. Rising edge: DLYCNTRL x 24ps, Falling edge: DLYCNTRL x 27ps.
Reserved	[3:2]	0x0	(00), CO), LAI
DOW_LPTXCURR1EN	[1]	0x1	Selection bit-1 for LPTX output current (TRLP/TFLP tuning) for Data Lane 0.
DOW_LPTXCURROEN	[0]	0x0	Selection bit-0 for LPTX output current (TRLP/TFLP tuning) for Data Lane 0. 00: no additional output current 01: 25% additional output current 10: 25% additional output current 11: 50% additional output current The default value is "10". However, if "00" is set, the rise/fall time will become later and if "11" is set, the rise/fall time will become earlier.

5.2.17 Data Lane 1 DPHY TX Control Register (D1W_DPHYCONTTX: 0x0108)

Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name	1		Reserv	ed	D1W_CAP1	D1W_CAP0		
Туре	RO	RO	RO	RO	RO	RO	R/W	R/W
Default	0	0	0	. 0	0	0	1	0

TC358768AXBG Functional Spec

Page 53 of 104

Bit	В7	B6	B5	B4	В3	B2	B1	В0
113	DLYCNT	DLYCNTR	DLYCNT	DLYCNTR		111	D1W_LPTXCU	D1W_LPTXCU
Name	RL3	L2	RL1	LO	Rese	erved	RR1EN	RROEN
Type	R/W	R/W	R/W	R/W	RO	RO	R/W	R/W
Default	0	0	0	0	0	0	1	0

Table 5-18 Data Lane 1 DPHY TX Control Register

Register Field	Bit	Default	Description
Reserved	[15:10]	0x0	-M 1001 - 00N
D1W_CAP1	[9]	0x1	Selection bit 1 of different HSTX output capacitors for Data Lane 1.
D1W_CAP0	[8]	0x0	Selection bit 0 of different HSTX output capacitors for Data Lane 1. (CAP1,CAP0): = (00): 0 [pF] (CAP1,CAP0): = (01): 2.8 [pF] (CAP1,CAP0): = (10): 3.2 [pF] (CAP1,CAP0): = (11): 3.6 [pF]
DLYCNTRL[3:0]	[7:4]	0x0	Tuning of transmit window position. The High Speed Clock output can be delayed according to the setting. The recommended value is determined by evaluating the LSI in which this module is implemented. Typical delay for rising/falling edge is about DLYCNTRL x 24ps/27ps. Rising edge: DLYCNTRL x 24ps, Falling edge: DLYCNTRL x 7ps.
Reserved	[3:2]	0x0	100, 00, 44
D1W_LPTXCURR1EN	[1]	0x1	Selection bit-1 for LPTX output current (TRLP/TFLP tuning) for Data Lane 1.
D1W_LPTXCURR0EN	[0]	0x0	Selection bit-0 for LPTX output current (TRLP/TFLP tuning) for Data Lane 1. 00: no additional output current 01: 25% additional output current 10: 25% additional output current 11: 50% additional output current The default value is "10". However, if "00" is set, the rise/fall time will become later and if "11" is set, the rise/fall time will become earlier.

5.2.18 Data Lane 2 DPHY TX Control Register (D2W_DPHYCONTTX: 0x010C)

A T								
D:+	D1F	D1/	D12	D13	D11	D10	DO	DO.
BIL	כום	B14	D 1.5	BIZ	BII	BIU	69	Dδ

TC358768AXBG Functional Spec

Confidential

Page 54 of 104

	4				- 7			
Name			Reserve	ed	N		D2W_CAP1	D2W_CAP0
Type	RO	RO	RO	RO	RO	RO	RO	R/W
Default	0	0	0	0	0	0	1	0
Bit	В7	В6	B5	B4	В3	B2	B1	В0
11	DLYCNT	DLYCNTRL	DLYCNTR	DLYCNT		N	D2W_LPTXC	D2W_LPTXCU
Name	RL3	2	L1	RLO	Rese	erved	URR1EN	RROEN
Туре	R/W	R/W	R/W	R/W	RO	RO	R/W	R/W
Default	0	0	0	0	0	0	1	0

Table 5-19 Data Lane 2 DPHY TX Control Register

Register Field	Bit	Default	Description
Reserved	[15:10]	0x0	12 12 14 100 x C
D2W_CAP1	[9]	0x1	Selection bit 1 of different HSTX output capacitors for Data Lane 2.
D2W_CAP0	[8]	0x0	Selection bit 0 of different HSTX output capacitors for Data Lane 2. (CAP1,CAP0): = (00): 0 [pF] (CAP1,CAP0): = (01): 2.8 [pF] (CAP1,CAP0): = (10): 3.2 [pF] (CAP1,CAP0): = (11): 3.6 [pF]
DLYCNTRL[3:0]	[7:4]	0x0	Tuning of transmit window position. The High Speed Clock output can be delayed according to the setting. The recommended value is determined by evaluating the LSI in which this module is implemented. Typical delay for rising/falling edge is about DLYCNTRL x 24ps/27ps. Rising edge: DLYCNTRL x 24ps, Falling edge: DLYCNTRL x 27ps.
Reserved	[3:2]	0x0	400 - Oby 40
D2W_LPTXCURR1EN	[1]	0x1	Selection bit-1 for LPTX output current (TRLP/TFLP tuning) for Data Lane 2.
D2W_LPTXCURR0EN	[0]	0x0	Selection bit-0 for LPTX output current (TRLP/TFLP tuning) for Data Lane 2. 00: no additional output current 01: 25% additional output current 10: 25% additional output current 11: 50% additional output current The default value is "10". However, if "00" is set, the rise/fall time will become later and if "11" is set, the rise/fall time will become earlier.

5.2.19 Data Lane 3 DPHY TX Control Register (D3W_DPHYCONTTX: 0x0110)

Di+	D1F	D1/	D12	D13	D11	D10	DΩ	DO.
BIL	B10	B14	B12	BIZ	BII	BIU	69	Þδ
							7 .5\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	400 600

TC358768AXBG Functional Spec

Page 55 of 104

Name			Reser	ved			D3W_CAP1	D3W_CAP0
Type	RO	RO	RO	RO	RO	RO	RO	R/W
Default	0	0	0	0	0	0	1	0
Bit	В7	В6	B5	B4	В3	B2	B1	В0
	DLYCNT	DLYCNTRL	DLYCNT	DLYCNTR		-11	D3W_LPTXC	D3W_LPTXCU
Name	RL3	2	RL1	LO	Reserv	ved	URR1EN	RROEN
Type	R/W	R/W	R/W	R/W	RO	RO	R/W	R/W
Default	0	0	0	0	0	0	1	0

Table 5-20 Data Lane 2 DPHY TX Control Register

Register Field	Bit	Default	Description
Reserved	[15:10]	0x0	11/1/1/10/1
D3W_CAP1	[9]	0x1	Selection bit 1 of different HSTX output capacitors for Data Lane 3.
D3W_CAP0	[8]	0x0	Selection bit 0 of different HSTX output capacitors for Data Lane 3. (CAP1,CAP0): = (00): 0 [pF] (CAP1,CAP0): = (01): 2.8 [pF] (CAP1,CAP0): = (10): 3.2 [pF] (CAP1,CAP0): = (11): 3.6 [pF]
DLYCNTRL[3:0]	[7:4]	0x0	Tuning of transmit window position. The High Speed Clock output can be delayed according to the setting. The recommended value is determined by evaluating the LSI in which this module is implemented. Typical delay for rising/falling edge is about DLYCNTRL x 24ps/27ps. Rising edge: DLYCNTRL x 24ps, Falling edge: DLYCNTRL x 27ps.
Reserved	[3:2]	0x0	
D3W_LPTXCURR1EN	[1]	0x1	Selection bit-1 for LPTX output current (TRLP/TFLP tuning) for Data Lane 3.

力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Register Field	Bit	Default	Description
D3W_LPTXCURR0EN	[0]	0x0	Selection bit-0 for LPTX output current (TRLP/TFLP tuning) for Data Lane 3. 00: no additional output current 01: 25% additional output current 10: 25% additional output current 11: 50% additional output current The default value is "10". However, if "00" is set, the rise/fall time will become later and if "11" is set, the rise/fall time will become earlier.

5.2.20 Clock Lane DPHY Control Register (CLW_CNTRL: 0x0140)

Bit	B15	B14	B13	B12	B11	B10	В9	B8
Name			100	1	Reserv	ved		
Туре			.00	7.	RO			11/1/11/11
Default			N.J.	1.0	0x00)	4	M. M. Jan
Bit	В7	В6	B5	B4	В3	B2	B1	В0
Name				Reserve	ed	1.		CLW_LaneDisable
Type				RO	Co			R/W
Default				0x00				0

Table 5-21 Clock Lane DPHY Control Register

Register Field	Bit	Default	Description
Reserved	[15:1]	0x0	M. F. C.
CLW_LaneDisable	[0]	0x0	Force Lane Disable for Clock Lane. 1'b1: Force Lane Disable 1'b0: Bypass Lane Enable from PPI Layer enable. When SCANTESTMODE=1, this register is disabled. When SCANMODE=0, this register is always enabled.

5.2.21 Data Lane 0 DPHY Control Register (D0W_CNTRL: 0x0144)

Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name			1		Reserv	ed		
Туре	RO RO							
Default	0x00							
Bit	B7	В6	B5	B4	В3	B2	B1	В0

TC358768AXBG Functional Spec

Confidential

Page 57 of 104

Name	Reserved	CLW_LaneDisable
Type	RO	R/W
Default	0x00	0

Table 5-22 Data Lane 0 DPHY Control Register

Register Field	Bit	Default	Description
Reserved	[15:1]	0x0	
D0W_LaneDisable	[0]	0x0	Force Lane Disable for Data Lane 0. 1'b1: Force Lane Disable 1'b0: Bypass Lane Enable from PPI Layer enable. When SCANTESTMODE=1, this register is disabled. When SCANMODE=0, this register is always enabled.

5.2.22 Data Lane 1 DPHY Control Register (D1W_CNTRL: 0x0148)

B15	B14	B13	B12	B11	B10	В9	B8	
				Reserv	ed			
		110	V	RO			100	
0x00								
В7	В6	B5	B4	В3	B2	B1	В0	
Reserved							D1W_LaneDisable	
RO							R/W	
		0						
		A A A A	MAN TO	B7 B6 B5 B4 Reserve	Reserved RO 0x000 B7 B6 B5 B4 B3 Reserved	Reserved RO 0x00 B7 B6 B5 B4 B3 B2 Reserved RO	Reserved RO 0x00 B7 B6 B5 B4 B3 B2 B1 Reserved RO RO	

Table 5-23 Data Lane 1 DPHY Control Register

Register Field	Bit	Default	Description
Reserved	[15:1]	0x0	AM. OD. OH.
D1W_LaneDisable	[0]	0x0	Force Lane Disable for Data Lane 0. 1'b1: Force Lane Disable 1'b0: Bypass Lane Enable from PPI Layer enable. When SCANTESTMODE=1, this register is disabled. When SCANMODE=0, this register is always enabled.

5.2.23 Data Lane 2 DPHY Control Register (D2W_CNTRL: 0x014C)

Bit	B15	B14	B13	B12	B11	B10	В9	B8	Wy.
Name			1.	KÍ	Reserv	ed	1.2		
Туре	700	1 CO'			RO		31 100	-1 CO'	

TC358768AXBG Functional Spec

Confidential

Page 58 of 104

Default					0x00)		
Bit	В7	B6	B5	B4	В3	B2	B1	В0
Name	10 2.	20 J.		Reserve	d		100,	D2W_LaneDisable
Туре				RO			1.1	R/W
Default	100	(0)		0x00			1100	0 0

Table 5-24 Data Lane 2 DPHY Control Register

Register Field	Bit	Default	Description
Reserved	[15:1]	0x0	M. 101.
D2W_LaneDisable	[0]	0x0	Force Lane Disable for Data Lane 2. 1'b1: Force Lane Disable 1'b0: Bypass Lane Enable from PPI Layer enable. When SCANTESTMODE=1, this register is disabled. When SCANMODE=0, this register is always enabled.

5.2.24 Data Lane 3 DPHY Control Register (D3W_CNTRL: 0x0150)

B10 ved	B9 B8	3					
		N.					
70 7							
B2	B1 B0						
10 h	D3W_Lan	eDisable					
RO							
0x00							

Table 5-25 Data Lane 3 DPHY Control Register

Register Field	Bit	Default	Description
Reserved	[15:1]	0x0	11/4 100 CON 21/4
D3W_LaneDisable	[0]	0x0	Force Lane Disable for Data Lane 3. 1'b1: Force Lane Disable 1'b0: Bypass Lane Enable from PPI Layer enable. When SCANTESTMODE=1, this register is disabled. When SCANMODE=0, this register is always enabled.

5.2.25 STARTCNTRL (STARTCNTRL: 0x0204)

Di+	D1E	D1/I	D10	D10	D11	P10	RΩ	DO
DIL	DIO	D14	DIO	DIZ	DIT	DIO	DE	DO

TC358768AXBG Functional Spec

Confidential

Page 59 of 104

Copyright © 2005-2008 MIPI Alliance, Inc. All rights reserved. MIPI Alliance Member Confidential.

Name	1.			Rese	ON.			
Type	RO	RO	RO	RO	RO	RO	RO	RO
Default	0	0	0	0	0	0	0	0
Bit	В7	В6	B5	B4	В3	B2	B1	В0
Name	100			Reserved		1100	(0)	START
Туре	RO	RO	RO	RO	RO	RO	RO	wo
Default	0	0	0	0	0	0	0	0

Table 5-26 STARTCNTRL

Register Field	Bit	Default	Description
Reserved	[15:1]	0x0	-0; LA -10, CO
START	[0]	0x0	START control bit of PPI-TX function. By writing 1 to this bit, PPI starts function. 0: Stop function. (default). Writing 0 is invalid and the bit can be set to zero by system reset only. 1: Start function. The following registers are set to appropriate value before starting any transmission by START bit in STARTCTRL register. Once START bit is set to high, the change of the register bits does not affect to function. In order to change the values, initialization by RESET_N is necessary.

5.2.26 STATUS (STATUS: 0x0208)

Bit	B15	B14	B13	B12	B11	B10	В9	B8
Name				Rese	rved			M,
Type	RO	RO	RO	RO	RO	RO	RO	RO
Default	0	0	0	0 0	0	0	0	0
Bit	В7	В6	B5	B4	В3	B2	B1	В0
Name				Reserved	10,2	(O)		BUSY
Туре	RO	RO	RO	RO	RO	RO	RO	R
Default	0	0	0	0	0	0	0	0

Table 5-27 STATUS

Register Field	Bit	Default	Description
Reserved	[15:1]	0x0	
BUSY	[0]	0x0	After writing 1 to the START bit in the STARTCNTRL register, this bit is set until RESET_N is asserted. 0: Not Busy. (default) 1: Busy.

TC358768AXBG Functional Spec

Page 60 of 104

Confidential
Copyright © 2005-2008 MIPI Alliance, Inc. All rights reserved.
MIPI Alliance Member Confidential.

5.2.27 LINEINITCNT (LINEINITCNT: 0x0210)

Bit	B15	B14	B13	B12	B11	B10	В9	B8		
Name	00,7.	20 Dive		LINEINIT	CNT[15:8]					
Type				R,	W W	11.T	1.0			
Default	0x20									
Bit	В7	В6	B5	B4	В3	B2	B1	В0		
Name	130	1 C		LINEINIT	CNT[7:0]		-1			
Туре		R/W								
Default		0x8E								

Table 5-28 LINEINITCNT

Register Field	Bit	Default	Description
Reserved	[31:16]	1100	(CO) (L) (100)
LINEINITCNT	[15:0]	0x208e	Line Initialization Wait Counter This counter is used for line initialization. Set this register before setting [STARTCNTRL].START = 1. MIPI specification requires that the slave device needs to observe LP- 11 for 100 us and ignore the received data before the period at initialization time. The count value depends on HFCLK and the value needs to be set to achieve more than 100 us. The counter starts after the START bit of the STARTCNTRL register is set. The Master device needs to output LP-11 for 100 us in order for the slave device to observe LP-11 for the period. For example, in order to set 100 us when the period of HFCLK is 12 ns, the counter value should be more than 8333.3 = 0x208D (100 us / 12 ns). Default is 0x208E.

5.2.28 LPTXTIMECNT (LPTXTIMECNT: 0x0214)

Bit	B15	B14	B13	B12	B11	B10	В9	B8	
Name			Reserved			LPT	KTIMECNT[1	0:8]	
Туре		1	RO	W		R/W			
Default	0x00 0x0						0x0	N	
Bit	В7	В6	B5	B4	В3	B2	B1	В0	
Name	-1 CO			LPTXTIM	ECNT[7:0]	1	0,		
Туре	0,4	O. J.		R,	W\	1007.	101		
Default				0>	:01			1	

Table 5-29 LPTXTIMECNT

TC358768AXBG Functional Spec

Confidential

Page 61 of 104

Register Field	Bit	Default	Description
Reserved	[15:11]	0x0	11 1 1 CO 1 1 T
LPTXTIMECNT	[10:0]	0x1	SYSLPTX Timing Generation Counter The counter generates a timing signal for the period of LPTX. This counter is counted using the HSByteClk (the Main Bus clock), and the value of (setting + 1) * HSByteClk Period becomes the period LPTX. Be sure to set the counter to a value greater than 50 ns.

Set this register before setting [STARTCNTRL].START = 1.

5.2.29 TCLK_HEADERCNT (TCLK_HEADERCNT: 0x0218)

Bit	B15	B14	B13	B12	B11	B10	В9	B8
Name				TCLK_ZER	OCNT[7:0]		M.	
Туре		N.J.	1	R,	/W			
Default		10	3 , (0>	(01	<u> </u>		100,2
Bit	В7	В6	B5	B4	B3	B2	B1	В0
Name	Reserved		1	TCLK	PREPARECN	T[6:0]		1100
Туре	RO		100 %		R/W			
Default	0				0x01	1		- N.J.

Table 5-30 TCLK_HEADERCNT

Register Field	Bit	Default	Description
TCLK_ZEROCNT	[15:8]	0x1	TCLK_ZERO Counter This counter is used for Clock Lane control in the Master mode. In order to satisfy the timing parameter TCLK-PREPARECNT + TCLK-ZERO for Clock Lane, this counter is used. This counter is counted by HSBYTECLk. Set this register in order to set the minimum time (TCLK-PREPARECNT + TCLK-ZERO) to a value greater than 300 ns. The actual value is ((1 to 2) + (TCLK_ZEROCNT + 1)) x HSByteClkCycle + (PHY output delay). The PHY output delay is about (0 to 1) x HSByteClkCycle in the ByteClk conversion performed during RTL simulation, and is about (2 to 3) x MIPIBitClk cycle in the BitClk conversion.
Reserved	[7]	0x0	144, 100, COM, LA

Register Field	Bit	Default	Description
TCLK_PREPARECNT	[6:0]	0x1	TCLK_PREPARE Counter This counter is used for Clock Lane control in the Master mode. In order to satisfy the timing parameter TCLK-PREPARE for Clock Lane, this counter is used. This counter is counted by HSBYTECLK. Set TCLK-PREPARE period that is greater than 38 ns but less than 95 ns. Calculating formula (TCLK_PREPARECNT + 1) x HSByteClkCycle

Set this register before setting [STARTCNTRL].START = 1.

5.2.30 TCLK_TRAILCNT (TCLK_TRAILCNT: 0x021C)

Bit	B15	B14	B13	B12	B11	B10	В9	B8
Name		, 100,	907	Rese	rved		1	03.
Туре	11	W.	1	R	0			
Default		110	1	0x	00	41		100
Bit	B7	В6	B5	B4	В3	B2	B1	В0
Name				TCLKTRAI	LCNT[7:0]	4		1.1
Туре			100	R/	W			100
Default			1.5	0x	01	1		
	•							

Table 5-31 TCLK TRAILCNT

Register Field	Bit	Default	Description
Reserved	[15:8]	0x0	A July Co. V.J.
TCLK_TRAILCNT	[7:0]	0x1	TCLK_TRAIL Counter This counter is used for Clock Lane control in Master mode. In order to satisfy the timing parameter about TCLK-TRAIL and TEOT for Clock Lane, this counter is used. This counter is counted by HSBYTECLK. Set this register in order to set TCLK-TRAIL to a value greater than 60 ns and TEOT to a value less than 105 ns + 12 x UI The actual value is (TCLK_TRAILCNT + (1 to 2)) x HSByteClkCycle + (2+(1 to 2)) * HSBYTECLKCycle - (PHY output delay). The PHY output delay is about (0 to 1) x HSByteClkCycle in the ByteClk conversion performed during RTL simulation, and is about (2 to 3) x MIPIBitClk cycle in the BitClk conversion.

Set this register before setting [STARTCNTRL].START = 1.

5.2.31 THS_HEADERCNT (THS_HEADERCNT: 0x0220)

1								
Bit	B15	B14	B13	B12	B11	B10	В9	B8

TC358768AXBG Functional Spec

Confidential

Page 63 of 104

Copyright © 2005-2008 MIPI Alliance, Inc. All rights reserved. MIPI Alliance Member Confidential.

	7									
Name	Reserved		THS_ZEROCNT[6:0]							
Type	RO				R/W	1				
Default	0	10/4			0x01	100,	40 Jan.			
Bit	B7	В6	B5	B4	В3	B2	B1	В0		
Name	Reserved	1 (1)		THS_	PREPARECNT	[6:0]	(0)			
Туре	RO	1.			R/W	M.				
Default	0	4		4	0x01	11.1	1 C			

Table 5-32 THS_HEADERCNT

Register Field	Bit	Default	Description
THS_ZEROCNT	[14:8]	0x1	THS_ZERO Counter This counter is used for Data Lane control in Master mode. In order to satisfy the timing parameter about THS-PREPARE + THS- ZERO for Data Lane, this counter is used. This counter is counted by HSBYTECLK. Set this register to set the (THS-PREPARE + THS-ZERO) period, which should be greater than (145 ns + 10 x UI) results. The actual value is ((1 to 2) + 1 + (TCLK_ZEROCNT + 1) + (3 to 4)) x ByteClk cycle + HSByteClk x (2+(1 to 2)) + (PHY delay). The PHY output delay is about (1 to 2) x HSByteClkCycle in the ByteClk conversion performed during RTL simulation, and is about (8+(5 to 6)) x MIPIBitClk cycle in BitClk conversion.
Reserved	[7]	0x0	100, CO, LA
THS_PREPARECNT	[6:0]	0x1	THS_PREPARE Counter This counter is used for Data Lane control in Master mode. In order to satisfy the timing parameter about THS-PREPARE for Data Lane, this counter is used. This counter is counted by HSBYTECLK. Set this register in order to set the THS-PREPARE period, which should be greater than (40 ns + 4xUI) and less than (8 5 ns + 6xUI) results. Calculating Formula: (THS_PREPARECNT + 1) x HSByteClkCycle

Set this register before setting [STARTCNTRL].START = 1.

5.2.32 TWAKEUP (TWAKEUP: 0x0224)

								4	
Bit	B15	B14	B13	B12	B11	B10	В9	B8	
Name			1	TWAKEUP	CNT[15:8]			. 41	
Type	-1	R/W							
Default	07.				4E	.007.			
Bit	B7	В6	B5	B4	В3	B2	B1	В0	
Name	100	40 h		TWAKEUI	TWAKEUPCNT[7:0]				
Type			R/W						

TC358768AXBG Functional Spec

Page 64 of 104

 ${\it Confidential} \\ {\it Copyright © 2005-2008 MIPI Alliance, Inc. All rights reserved.}$ MIPI Alliance Member Confidential.

	0.20	
Default	0x20	

Table 5-33 TWAKEUP

Register Field	Bit	Default	Description
Reserved	[31:16]		
TWAKEUPCNT	[15:0]	0x4e20	TWAKEUP Counter This counter is used to exit ULPS state. Ultra-Low Power State is exited by means of a Mark-1 state with a length TWAKEUP followed by a Stop state. This counter is counted by the unit of LPTXTIMECNT.

Set this register before setting [STARTCNTRL].START = 1.

5.2.33 TCLK_POSTCNT (TCLK_POSTCNT: 0x0228)

B15	B14	B13	B12	B11	B10	B9	B8		
	313	Reserved			TCLK	_POSTCNT[:	10:8]		
		RO		R/W	4003				
		0x00	0x2						
B7	В6	B5	B4	В3	B2	B1	В0		
	TCLK_POSTCNT[7:0]								
(R/W								
		N	0:	k00					
	4		Reserved RO 0x00	Reserved RO 0x00 B7 B6 B5 B4 TCLK_POS	Reserved RO 0x00 B7 B6 B5 B4 B3 TCLK_POSTCNT[7:0]	Reserved TCLK RO Ox00	Reserved TCLK_POSTCNT[: RO R/W 0x00 0x2 B7 B6 B5 B4 B3 B2 B1 TCLK_POSTCNT[7:0] R/W		

Table 5-34 TCLK_POSTCNT

Register Field	Bit	Default	Description
Reserved	[15:11]	0x0	The officer
TCLK_POSTCNT	[10:0]	0x200	TCLK_POST Counter This counter is used for Clock Lane control in Master mode. This counter is counted by the HSByteClk. Set a value greater than (60 ns + 52 x UI) results. The actual value is ((1 to 2) + (TCLK_POSTCNT + 1)) x HSByteClk cycle + (1) x HSBYTECLK cycle.

Set this register before setting [STARTCNTRL].START = 1.

5.2.34 THS_TRAILCNT (THS_TRAILCNT: 0x022C)

Bit	B15	B14	B13	B12	B11	B10	В9	B8	
Name	00,	0		Reserv	ed	400 7.	20 Mr.		
Type			1	RO					
Default	100	(CO)		0x00		1100	40)		

TC358768AXBG Functional Spec

Confidential

Page 65 of 104

Copyright © 2005-2008 MIPI Alliance, Inc. All rights reserved. MIPI Alliance Member Confidential.

Bit	B7	B6	B5	B4	В3	B2	B1	В0
Name	41 C	Rese	erved	THS_TRAILCNT[3:0]				
Туре	00,	R	10		R/	w/W		
Default		0:	x0		0	x2		

Table 5-35 THS_TRAILCNT

Register Field	Bit	Default	Description
Reserved	[15:4]	0x0	171
THS_TAILCNT	[3:0]	0x2	THS_TRAIL Counter This counter is used for Data Lane control in Master mode. This counter is counted by HSBYTECLK. Set a value greater 8 x UI or (60 ns + 4 x UI) and less than TEOT which is 105 ns + 12 x UI results. The actual value is (1 + THS_TRAILCNT) x ByteClk cycle + ((1 to 2) + 2) x HSBYTECLK cycle - (PHY output delay). The PHY output delay is about (1 to 2) x HSByteClkCycle in ByteClk conversion performed during RTL simulation and is about (8+(5 to 6)) x MIPIBitClk cycle in BitClk conversion.

Set this register before setting [STARTCNTRL].START = 1.

5.2.35 HSTXVREGCNT (HSTXVREGCNT: 0x0230)

B15	B14	B13	B12	B11	B10	B9	B8	
		1,1	HSTXVREGC	NT[15:8]		,		
			R/W		- 1			
	0x00							
В7	В6	B5	B4	В3	B2	B1	В0	
	HSTXVREGCNT[7:0]							
	R/W							
71.	0x20							
	1			B7 B6 B5 B4 HSTXVREGC R/W 0x00 B7 B6 B5 B4 HSTXVREGC R/W	HSTXVREGCNT[15:8] R/W 0x00 B7 B6 B5 B4 B3 HSTXVREGCNT[7:0] R/W	HSTXVREGCNT[15:8] R/W 0x00 B7 B6 B5 B4 B3 B2 HSTXVREGCNT[7:0] R/W	HSTXVREGCNT[15:8] R/W 0x00 B7 B6 B5 B4 B3 B2 B1 HSTXVREGCNT[7:0] R/W	

Table 5-36 HSTXVREGCNT

Register Field	Rit	Default	Description
Register Field	DIL	Delauit	Description

HSTXVREGCNT	[15:0]	0x0020	TX Voltage Regulator setup Wait Counter This counter is used for all lanes of HSTXVREG commonly. Counter value is counted by HFCLK. The counter starts when START bit is set. After the counter is counted up, PPI-TX can change the line from LP mode to HS mode. If the counter value is set to zero, there is no wait by the counter. Recommended counter value will be decided by evaluation. LINEINCNT is 100 us, so any value less than that will not affect the value of
AN IN I	, no 5	COR	LINEINCNT is 100 us, so any value less than that will not affect the value of this counter. The value 1 us is used in the example setting.

Set this register before setting [STARTCNTRL].START = 1.

5.2.36 HSTXVREGEN (HSTXVREGEN: 0x0234)

B15	B14	B13	B12	B11	B10	B9	B8
	1100	100	Res	erved		110	
RO	RO	RO	RO	RO	RO	RO	RO
0	0	0	0	0	0	0	0
B7	В6	B5	B4	В3	B2	B1	В0
	Reserved	1003	D3M_HSTX VREGEN	D2M_HSTX VREGEN	D1M_HST XVREGEN	DOM_HST XVREGEN	CLM_HST XVREGEN
RO	RO	RO	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0.4
	RO 0 B7 RO	RO RO 0 0 B7 B6 Reserved RO RO	RO RO RO 0 0 0 B7 B6 B5 Reserved RO RO RO	RO RO RO RO 0 0 0 0 B7 B6 B5 B4 Reserved D3M_HSTX VREGEN RO RO RO R/W	Reserved RO RO RO RO RO 0 0 0 0 0 B7 B6 B5 B4 B3 Reserved D3M_HSTX VREGEN D2M_HSTX VREGEN RO RO R/W R/W	Reserved RO RO <td>Reserved RO RO RO RO RO RO RO 0 0 0 0 0 0 0 0 B7 B6 B5 B4 B3 B2 B1 Reserved D3M_HSTX VREGEN D2M_HSTX VREGEN D1M_HST XVREGEN XVREGEN RO RO R/W R/W R/W R/W</td>	Reserved RO RO RO RO RO RO RO 0 0 0 0 0 0 0 0 B7 B6 B5 B4 B3 B2 B1 Reserved D3M_HSTX VREGEN D2M_HSTX VREGEN D1M_HST XVREGEN XVREGEN RO RO R/W R/W R/W R/W

Table 5-37 HSTXVREGEN

Register Field	Bit	Default	Description
Reserved	[15:5]	0x0	1, 100 CON THE
D3M_HSTXVREGEN	[4]	0x0	Voltage regulator enable for HSTX Data Lane 3. In order to reduce power consumption, set to be "disable" when PPI-TX is not used. 0: Disable (Default) 1: Enable
D2M_HSTXVREGEN	[3]	0x0	Voltage regulator enable for HSTX Data Lane 2. In order to reduce power consumption, set to be "disable" when PPI-TX is not used. 0: Disable (Default) 1: Enable
D1M_HSTXVREGEN	[2]	0x0	Voltage regulator enable for HSTX Data Lane 1. In order to reduce power consumption, set to be "disable" when PPI-TX is not used. 0: Disable (Default) 1: Enable

Register Field	Bit	Default	Description
DOM_HSTXVREGEN	[1]	0x0	Voltage regulator enable for HSTX Data Lane 0. In order to reduce power consumption, set to be "disable" when PPI-TX is not used. 0: Disable (Default) 1: Enable
CLM_HSTXVREGEN	[0]	0x0	Voltage regulator enable for HSTX Clock Lane. In order to reduce power consumption, set to be "disable" when PPI-TX is not used. 0: Disable (Default) 1: Enable

Set this register before setting [STARTCNTRL].START = 1.

5.2.37 TXOPTIONCNTRL (TXOPTIONCNTRL: 0x0238)

Bit	B15	B14	B13	B12	B11	B10	В9	B8
Name				Rese	erved			.1
Type	RO	RO	RO	RO	RO	RO	RO	RO
Default	0	0	0	0	0	0	0	0
Bit	В7	В6	B5	B4	B3	B2	B1	В0
Name		WW	W.100	Reserved		.1	N	CONTCLK MODE
Type	RO	RO	RO	RO	RO	RO	RO	R/W
Default	0	0	0	0	0	0	0	0

Table 5-38 TXOPTIONCNTRL

Register Field	Bit	Default	Description
Reserved	[15:1]	0x0	N, My
OA. COM	TW		Set Continuous Clock Mode Writing "1" to this bit will set the Clock Lane to the Continuous Clock mode regardless of the PPI interface signal and will maintain
CONTCLKMODE	[0]	0x0	the Clock Lane output. 0: Non-continuous clock mode. Transitions into the LP11 state in coordination with the Data Lane operation.
1.100 Z.C	Or		1: Continuous clock mode. Maintains the Clock Lane output regardless of the Data Lane operation.

This bit can be rewritten when [STATUS].BUSY is set.

Set this register before setting [STARTCNTRL].START = 1. Do not change this register after START = 1 is set.

5.2.38 BTACNTRL1 (BTACNTRL1: 0x023C)

Bit	B31	B30	B29	B28	B27	B26	B25	B24
Name		$O_{N_{*}}$	Reserved	.4		TX	TAGOCNT[10	0:8]
Type	RO	RO	RO	RO	RO	R/W	R/W	R/W
Default	0	0	0	0	0	0	0	0
Bit	B23	B22	B21	B20	B19	B18	B17	B16
Name	N.Y	1.0		TXTAGO	CNT[7:0]	JAN.		
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Default	0	0	0	0	1	0	0	0
Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name		400 x	Reserved			RXT	ASURECNT[2	10:8]
Туре	RO	RO	RO	RO	RO	R/W	R/W	R/W
Default	0	0	0	0	0	0	0	0
Bit	B7	В6	B5	B4	B3	B2	B1	В0
Name		11.70	41.0	RXTASURI	CNT[7:0]			10
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Default	0	0	0	0	1	0	0	0
								1

Table 6-29 BTACNTRL1

Register Field	Bit	Default	Description
Reserved	[31:27]	0x0	TIME TO THE
TXTAGOCNT	[26:16]	0x8	The TTA-GO period (LP-00 drive period) when drive privileges are released by BTA is set by the setting of this counter. The period for driving LP-00 for the TTA-GO period is 4 x (TXTAGOCNT + 1) x (HSByteClk cycle). Set so that the TTA-GO period (4 x TLPX) described in the MIPI D-PHY specifications results.
Reserved	[15:11]	0x0	
RXTASURECNT	[10:0]	0x8	The timing for starting driving of LP-00 in the TTA-SURE period when drive privileges are obtained by BTA is set by the setting of this counter. The drive start timing is (RXTASURECNT + (3 or 2)) x (HSByteClk cycle) cycle. Set so as to be within the TTA-SURE period (Min TLPX, Max 2 x TLPX) range described in the MIPI D-PHY specifications.

Set this register before setting [STARTCNTRL].START = 1.

5.2.39 DSI Control Register (DSI_CONTROL: 0x040C)

Bit	B15	B14	B13	B12	B11	B10	В9	B8
Name	dsi_mode	Reserved	PrToEn	TaToEn	LrxToEn	HtxToEn	CntDis	EccDis
Туре	RO	RO	RO	RO	RO	RO	RO	RO

TC358768AXBG Functional Spec

Page 69 of 104

Confidential
Copyright © 2005-2008 MIPI Alliance, Inc. All rights reserved.
MIPI Alliance Member Confidential.

Default	1	0	1	1	1	1	1	0
Bit	В7	B6	B5	B4	В3	B2	B1	В0
Name	TxMd	CrcDis	HsCkMd	Res	erved	NOL[1:0]		EoTDis
Туре	RO	RO	RO	RO	RO	RO	RO	RO
Default	0	0	0	0	0	. 0	0	0

Table 5-39 DSI Configuration Register

Register Field	Bit	Default	Description
dsi_mode	15	0x1	DSI Mode Selection 0: DSI Mode 1: Reserved
PrToEn	13	0x1	PR_TO_EN 0: Disables the PR_TO timer. 1: Enables the PR_TO timer.
TaToEn	12	0x1	TA_TO_EN 0: Disables the TA_TO timer. 1: Enables the TA_TO timer.
LrxToEn	11	0x1	LPRX_TO_EN 0: Disables the LRX-H_TO timer. 1: Enables the LRX-H_TO timer.
HtxToEn	10	0x1	HSTX_TO_EN 0: Disables the HTX_TO timer. 1: Enables the HTX_TO timer.
CntDis	9	0x1	CONTENTION_DIS This bit disables contention detection.
ON.TV	TH	N	ECC_DISABLE This bit sets operation for when there are multiple-bit ECC errors in the received data. If multiple-bit ECC errors are detected, the ECC Error multi bit (bit 9) bit of the DSI_RXERR register is asserted to "1" regardless of this bit's setting. In the case of ECC single-bit errors, the setting of this bit has no effect on the operation. Single-bit errors can be corrected, so the corrected data can be stored in the Receive FIFO regardless of this bit's setting. At this time, the ECC Error single bit (bit 8) bit of the DSI_RXERR is asserted to "1", and the settings of the DSI_ERR_HALT, and DSI_ERR_INTENA registers are valid.
EccDis		0x0	0: If there are multiple-bit ECC errors in the received data, subsequent processes including the fetching of data from the peripheral interface are terminated and wait for the LP Stop state. Loading to the Receive FIFO of the corresponding packets is not performed. 1: Even if multiple-bit ECC errors are detected in the received data, subsequent processes including the fetching of data from the peripheral interface continue. Either the packet in which multiple bit ECC errors were detected is loaded into the Receive FIFO or the corresponding package waits for a valid Data Type. If the Data Type is invalid, the DSI Data Type no recognized (bit 11) bit of the DSI_RXERR register is set to "1" and the packet is discarded. If a valid Data Type is recognized, the packet is stored

Page 70 of 104

1007	COM	TW	in the Receive FIFO. In the case of a long packet, processing continues up to the reception of the data payload.
TxMd	1.7	0x0	TXMODE 0: Low power transfer is performed to Tx. 1: High-Speed data transfer is performed to Tx.
CrcDis	6	0x0	CRC_DISABLE Operation for when a CRC error was found in the received data is set. (For long packets only) 0: CRC checking of received long packets is performed. If CRC errors exist in the received data, the CRC Error bit (bit 10) of the DSI_RXERR register is asserted to "1". Transfers to the Receive FIFO for the received data are performed. 1: CRC checking of received long packets is not performed. Even if there are CRC errors in the received data, no notification is made to the DSI_RXERR register. The CRC errors are ignored and transfers to the Receive FIFO for the received data are performed.
HsCkMd	5	0x0	HSCLOCKMODE 0: Operation is in the discontinuous clock mode. 1: Operation is in the continuous clock mode.
Reserved	[4:3]	0x0	A. CALL M. M. MAY. TO CALL
NOL	[2:1]	0x0	NOL This field specifies the number of HS lanes. This field is also used as the LP Lane Enable setting. Data Lane 0 is used as the Enable for LP communication and ULPS. Data Lane 1 or higher is used as the Enable for ULPS. This setting can only be made during initial setup or during reset.
MIN		NA	00: Only Data Lane 0 is used. 01: Data Lanes 0 and 1 are used. 10: Data Lanes from 0 to 2 are used. 11: Data Lanes 0 to 3 are used.
EoTDis	0	0x0	EOT_DISABLE 0: The EOT packet is automatically granted at the end of HS transfer then is transmitted. 1: The EOT packet is not automatically granted at the end of HS transfer and is not transmitted.

Only indirect writing, i.e. write to DSI_CONFW with [Addr] = 0x03.

5.2.40 DSI STATUS Register (DSI_STATUS: 0x0410)

Bit	B15	B14	B13	B12	B11	B10	В9	B8
Name			Rese	rved	11100	1 (0)	TxAct	RxAct
Туре	100	RO RO						
Default	1.0		0x	0xX			0	0
Bit	B7	В6	B5	B4	B3	B2	B1	В0
Name	RxAF	RxAE	RxEm			Hlt		
Туре	RO	RO	RO		RO			
Default	0	1	0		0			

Page 71 of 104

Table 5-40 DSI STATUS Register

Register Field Bit Default		Default	Description		
Reserved	[15:10]	X	W 100 CON TAN		
TxAct	9	0	Transmitter Active This bit indicates that the DSI-TX module is in the Transmit mode.		
RxAct	8	0	Receiver Active This bit indicates that the DSI-TX module is in the Receive mode.		
RxAF	107)	0x0	FIFO_ALMOSTFULL This bit indicates that the Receive FIFO is almost full (has less than 3 empty slots).		
RxAE	600	0x1	FIFO ALMOST EMPTY This bit indicates that the Receive FIFO is almost empty (has less than 2 entries).		
RxEm	5	0x0	FIFO EMPTYn This bit indicates that the Receive FIFO is not empty.		
Reserved	[4:1]	X	ON. THE STATE OF STAT		
Hlt	0	0	Halted The DSI-TX module is stopped by either an error or a pause request.		

5.2.41 DSI_INT Register (DSI_INT: 0x0414)

Bit	B31	B30	B29	B28	B27	B26	B25	B24	
Name			No.	Res	Reserved				
Туре	100			RO					
Default				0x00					
Bit	B23	B22	B21	B20	B19	B18	B17	B16	
Name	Reserved			100,	90 h	IntAck		Reserved	
Туре	RO			RO			RO		
Default	0x00			11100	0 0:			:00	
Bit	B15	B14	B13	B12	B11	B10	В9	B8	
Name		.1		Res	erved		-1		
Туре					RO	OB			
Default	0x00								
Bit	В7	В6	B5	B4	В3	B2	B1	В0	
Name	Reserved				IntHlt	IntEr	IntRxEr	IntAkEr	
Туре		RO			RO	RO	RO	RO	
Default	1 CO 2	0x00			.01	0	0	0	

Table 5-41 DSI_INT Register

Register Field	Bit	Default	Description	400, 4 Ta, 4 Co, 4 Lu
Reserved	[31:19]	0x0		111/11 10 1 10 N
IntAk	18	0x0	INT_ACK	M. Wite of Contin

TC358768AXBG Functional Spec

Page 72 of 104

Confidential
Copyright © 2005-2008 MIPI Alliance, Inc. All rights reserved.
MIPI Alliance Member Confidential.

Register Field	Bit	Default	Description
313			This bit indicates that the Acknowledge trigger has been received.
Reserved	[17:4]	0x0	71/4, 100 r. COM. 21/4
IntHlt	3	0x0	INT_HALTED The DSI-TX module was stopped by an error or a pause request.
IntEr	2	0x0	INT_DSI_ERR An interrupt was requested by a DSI_ERR register error.
IntRxEr	1	0x0	INT_DSI_RXERR An interrupt was requested by a DSI_RXERR register error.
IntAkEr	0	0x0	INT_DSI_ACKERR An interrupt was requested by a DSI_ACKERR register error.

Each bit can indirectly clear a register value either when "1" is written to the bit of each corresponding DSI_INT_CLR register.

5.2.42 DSI_INT_ENA Register (DSI_INT_ENA: 0x0418)

Bit	B31	B30	B29	B28	B27	B26	B25	B24
Name		111	1 C	Res	erved			100
Туре	-1		00,	i i	20			. 00
Default				0:	x00	,		11.7
Bit	B23	B22	B21	B20	B19	B18	B17	B16
Name			Reserved		1	IEnAk	Rese	erved
Type			RO	21 C		RO	P	10
Default	0x00		0x00	0,	O	0	0x0	
Bit	B15	B14	B13	B12	B11	B10	В9	B8
Name				Res	erved			
Туре	-KN			l on F	30	·		
Default				0:	x00			
Bit	В7	В6	B5	B4	В3	B2	B1	В0
Name	1.	Rese	erved		lEnHlt	IEnEr	IEnRxEr	IEnAkEi
Type		R	10	411	RO	RO	RO	RO
Default	JAI.	0	x0	ALW.	0	0	0	0

Table 5-42 DSI INT ENA Register

Register Field	Bit	Default	Description
Reserved	[31:19]	0x0	W. Mir M. C. Will
IEnAk	18	0x0	INTENA_ACK This bit enables interrupt notification by INT_ACK sources.
Reserved	[17:4]	0x0	
IEnHlt	3	0x0	INTENA_HALTED This bit enables interrupt notification by INT_HALTED sources.
IEnEr	2	0x0	INTENA_DSI_ERR This bit enables interrupt notification by INT_DSI_ERR sources.

TC358768AXBG Functional Spec

Page 73 of 104

Confidential
Copyright © 2005-2008 MIPI Alliance, Inc. All rights reserved.
MIPI Alliance Member Confidential.

Register Field	Bit	Default	Description
IEnRxEr	1	0x0	INTENA_DSI_RXERR This bit enables interrupt notification by INT_DSI_RXERR sources.
IEnAkEr	1 0	0x0	INTENA_DSI_ACKERR This bit enables interrupt notification by INT_DSI_ACKERR sources.

Only indirect writing, i.e. write to DSI_CONFW with [Addr] = 0x06.

5.2.43 DSI Command Read Data FIFO Register (DSICMD_RDFIFO: 0x0430)

Bit	B31	B30	B29	B28	B27	B26	B25	B24
Name	11.70	10		RDDAT	A[31:24]		1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO
Default	0	0	0	0	0	0	0	0
Bit	B23	B22	B21	B20	B19	B18	B17	B16
Name			1.	RDDAT	A[23:16]		111.	
Туре	RO	RO	RO	RO	RO	RO	RO	RO
Default	0	0	0 ~	0	0	0	0	0
Bit	B15	B14	B13	B12	B11	B10	В9	B8
Name			1	RDDAT	A[15:8]	•		1 100
Туре	RO	RO	RO	RO	RO	RO	RO	RO
Default	0	0	0	0	0	0	0	0
Bit	В7	В6	B5	B4	В3	B2	B1	В0
Name				RDDA	TA[7:0]			
Туре	RO	RO	RO	RO	RO	RO	RO	RO
Default	0	0	0	0	0	0	0	0

Table 5-43 DSI Command Read Data FIFO Register

Register Field	Bit	Default	Description
RDDATA	[31:0]	0x0	RDDATA Data received from the peripheral interface via the DSI link is written to this register.

The data received via a DSI link was written to this register.

5.2.44 DSI_ACKERR Register (DSI_ACKERR: 0x0434)

Bit	B15	B14	B13	B12	B11	B10	В9	B8		
Name	~0			ACKERR_RE	PORT[15:8]	00,7	OFFE			
Туре	RO	RO	RO	RO	RO	RO	RO	RO		
Default	0	0 (0	0	0	0	0	0		
Bit	B7	В6	B5	B4	В3	B2	B1	В0		
Name	1	ACKERR_REPORT[7:0]								

TC358768AXBG Functional Spec

Confidential

Page 74 of 104

Туре	RO	RO	RO	RO	RO	RO	RO	RO
Default	0	0	0	0	0	0 1	0	0

Table 6-29 ACKERR_REPORT Register

Register Field	Bit	Default	Description
Reserved	[31:16]	0x0	(A) 100 CON CO
ACKERR_REPORT	[15:0]	0x0	ACKERR_REPORT The content of the Acknowledge packet with report of the last error received is held.

The content of the DSI_ACKERR register is cleared when the register is read.

5.2.45 DSI_ACKERR_INTENA Register (DSI_ACKERR_INTENA: 0x0438)

Bit	B15	B14	B13	B12	B11	B10	В9	B8
Name		110		SI_ACKERR	INTENA[15	:8]		100
Туре	RO	RO	RO	RO	RO	RO	RO	RO
Default	0	0	0 1	0	0	0 .	0	0
Bit	В7	В6	B5	B4	В3	B2	B1	В0
Name			1.1.	DSI_ACKERF	_INTENA[7:	0]		
Type	RO	RO	RO	RO	RO	RO	RO	RO
Default	0	0	0	0	0	0	0	0

Table 5-44 DSI_ACKERR_INTENA Register

Register Field	Bit	Default	Description
Reserved	[31:16]	0x0	Nije of Co Will
DSI_ACKERR_INTENA	[15:0]	0x0	DSI_ACKERR_INTENA This field sets the generation of interrupts when an acknowledge packet with error report is received. Setting each bit in this field enables generation of the DSI_ACKERR_INT interrupt which corresponds to the DSI_ACKERR register error.

Only indirect writing, i.e. write to DSI_CONFW with [Addr] = 0x0E.

5.2.46 DSI_ACKERR_HALT Register (DSI_ACKERR_HALT: 0x043C)

Bit	B15	B14	B13	B12	B11	B10	В9	B8			
Name	7.			DSI_ACKERR	_HALT[15:8]	0	O.J.	No.			
Туре	RO	RO	RO	RO	RO	RO	RO	RO			
Default	0 0	0	0	0	0	0	0	0			
Bit	В7	В6	B5	B4	В3	B2	B1	В0			
Name	100	DSI_ACKERR_HALT[7:0]									

TC358768AXBG Functional Spec

Confidential

Page 75 of 104

Copyright © 2005-2008 MIPI Alliance, Inc. All rights reserved. MIPI Alliance Member Confidential.

Туре	RO	RO	RO	RO	RO	RO	RO	RO
Default	0	0	0	0	0	0 1	0	0

Table 5-45 DSI_ACKERR_HALT Register

Register Field	Bit	Default	Description
Reserved	[31:16]	0x0	W. 100, CO. L.
DSI_ACKERR_HALT	[15:0]	0x0	DSI_ACKERR_HALT This field controls operation of the DSI-TX module when an acknowledge packet with error report is received. The DSI-TX module halts command processes when an error is received for which the corresponding bit in the DSI_ACKERR_INTENA and DSI_ACKERR_HALT registers is set.

Only indirect writing, i.e. write to DSI_CONFW with [Addr] = 0x0F.

5.2.47 DSI_RXERR Register (DSI_RXERR: 0x0440)

Bit	B23	B22	B21	B20	B19	B18	B17	B16
Name		Reserved	100	TATo	RxHTo	Reserved	FOvrFlw	Reserved
Туре		RO	. 003.	RO	RO	RO	RO	RO
Default		0	1.70	0	0	0	0	0
Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name	Rese	rved	InCmplTx	Reserved	DTErr	CRCErr	ECCSErr	ECCMErr
Type	R	0	RO	RO	RO	RO	RO	RO
Default)	0	0	0	0	0	0
Bit	В7	В6	B5	B4	B3	B2	B1	В0
Name	Reserved	LPCtlErr	Reserved	LPSyncErr	EscErr		Reserved	
Туре	RO	RO	RO	RO	RO		RO	
Default	0	0	0	0	0		0	

Table 6-29 DSI_RXERR Register

Register Field	Bit	Default	Description
Reserved	[31:21]	0x0	MA, 100 r. COMP. LAN
ТАТо	20	0x0	TA_TO This bit indicates direction change acknowledgement timeouts.
RxHTo	19	0x0	LRX-H_TO This bit indicates LP-RX host processor timeouts.
Reserved	18	0x0	
FOvrFlw	17	0x0	FIFO_OVERFLOW This bit indicates Receive FIFO overflows.
Reserved	[16:14]	0x0	
InCmplTx	13		Incomplete Tx

TC358768AXBG Functional Spec

Page 76 of 104

Reserved	12	0x0	
DTErr	11		DSI packet Data Type is not reconized
CRCErr	10		CRC Error
ECCSErr	9	. 41	ECC Error, Single bit
ECCMErr	8		ECC Error, Multi- bits
Reserved	7	0x0	M. W. W. W.
CtlErr	6		False Control Error
Reserved	5		1/4 100 CON
LPSyncErr	4		LP Sync Error
EscErr	3		Escape Mode Entry Error
Reserved	[2:0]	0x0	-4N - 4N - 00 - 01

The content of the DSI_RXERR register is cleared when the register is read.

5.2.48 DSI_RXERR_INTENA Register (DSI_RXERR_INTENA: 0x0444)

B31	B30	B29	B28	B27	B26	B25	B24
		003.	Reser	ved			
RO	RO	RO	RO	RO	RO	RO	RO
0	0	. 0	0	0	0	0	0
B23	B22	B21	B20	B19	B18	B17	B16
	Reserved	1100	1005	DSI_R	CERR_INTEN	A[20:16]	-1
RO	RO	RO	RO	RO	RO	RO	RO
0	0	0	0	0	0	0	0
B15	B14	B13	B12	B11	B10	В9	B8
			DSI_RXERR_IN	NTENA[15:8	3]	•	
RO	RO	RO	RO	RO	RO	RO	RO
0	0	0	0	0	0	0	0
B7	В6	B5	B4	В3	B2	B1	В0
			DSI_RXERR_I	NTENA[7:0			
RO	RO	RO	RO	RO	RO	RO	RO
				A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0	0
	RO 0 B23 RO 0 B15 RO 0 B7	RO RO 0 0 B23 B22 Reserved RO RO 0 0 B15 B14 RO RO 0 0 B7 B6	RO RO RO 0 0 0 B23 B22 B21 Reserved RO RO RO 0 0 0 B15 B14 B13 RO RO RO 0 0 0 B7 B6 B5	Reser RO RO RO RO RO 0 0 0 0 0 B23 B22 B21 B20 Reserved RO RO RO RO 0 0 0 0 B15 B14 B13 B12 DSI_RXERR_IN RO RO RO RO 0 0 0 0 B7 B6 B5 B4 DSI_RXERR_I	RO RO RO RO RO 0 0 0 0 0 823 822 821 820 819 RO RO RO RO RO 0 0 0 0 0 0 0 0 0 0 815 814 813 812 811 DSI_RXERR_INTENA[15:8 RO RO RO RO 0 0 0 0 0 0 0 0 B7 86 85 84 83 DSI_RXERR_INTENA[7:0 DSI_RXERR_INTENA[7:0 DSI_RXERR_INTENA[7:0	Reserved RO RO RO RO RO 0 0 0 0 0 0 0 0 0 0 0 0 0 B23 B22 B21 B20 B19 B18 B18 B18 B18 B18 B18 B18 B18 B18 B10 B0 RO RO RO RO RO RO RO RO B15 B14 B13 B12 B11 B10 B10 B15 B14 B13 B12 B11 B10 B10 B15 B0 B0 RO B0 D0 D0	Reserved RO RO RO RO RO RO 0 0 0 0 0 0 0 0 0 0 0 0 B23 B22 B21 B20 B19 B18 B17 Reserved DSI_RXERR_INTENA[20:16] RO RO RO RO RO RO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B15 B14 B13 B12 B11 B10 B9 B9 DSI_RXERR_INTENA[15:8] RO B0 B0 B0 B1 B1

Table 5-46 DSI_RXERR_INTENA Register

Register Field	Bit	Default	Description
Reserved	[31:21]	0x0	1M, 100, COM, LM
DSI_RXERR_INTENA	[20:0]	0x0	DSI_RXERR_INTENA This field controls generation of interrupts when the DSI_RXERR register is notified of an error. Each bit in this field enables generation of the DSI_RXERR_INT interrupt which corresponds to the DSI_RXERR register error.

TC358768AXBG Functional Spec

Page 77 of 104

Only indirect writing, i.e. write to DSI_CONFW with [Addr] = 0x11.

5.2.49 DSI_RXERR_HALT Register (DSI_RXERR_HALT: 0x0448)

Bit	B31	B30	B29	B28	B27	B26	B25	B24
Name	70			Res	erved	11.70	41 CO.	
Type	RO	RO	RO	RO	RO	RO	RO	RO
Default	0	0	0	d 0	0	0	0	0
Bit	B23	B22	B21	B20	B19	B18	B17	B16
Name		Reserved			DSI_RX	(ERR_HALT	[20:16]	
Type	RO	RO	RO	RO	RO <	RO	RO	RO
Default	0	0	0	0	0	0	0	0
Bit	B15	B14	B13	B12	B11	B10	В9	B8
Name		100	-1 CO'	DSI_RXERF	R_HALT[15:8]		411	.1
Type	RO	RO	RO	RO	RO	RO	RO	RO
Default	0	0	0	0	0	0	0	0
Bit	B7	В6	B5	B4	В3	B2	B1	В0
Name				DSI_RXER	R_HALT[7:0]		-41	N.
Туре	RO	RO	RO	RO	RO	RO	RO	RO
Default	0	0	0	0	0	0	0	0

Table 5-47 DSI_RXERR_HALT Register

Register Field	Bit	Default	Description
Reserved	[31:21]	0x0	M. T. O. M. T.
DSI_RXERR_HALT	[20:0]	0x0	DSI_RXERR_HALT This field controls DSI-TX operation for when an error has been reported to the DSI_RXERR register. The DSI-TX module stops command processing when it receives an error corresponding to the set bits in the DSI_RXERR_INTENA and DSI_RXERR_HALT registers.

Only indirect writing, i.e. write to DSI_CONFW with [Addr] = 0x12.

5.2.50 DSI_ERR Register (DSI_ERR: 0x044C)

Bit	B15	B14	B13	B12	B11	B10	В9	B8
Name	1.		Rese	erved		007.	InEr	WCEr
Туре	41.0		RO	RO				
Default	10 2	0,5	0>	(00		100,	0	0
Bit	В7	В6	B5	B4	В3	B2	B1	В0
Name	SynTo	RxFRdEr	TeEr	QUnk	QWrEr	HTxTo	HTxBrk	Cntn

TC358768AXBG Functional Spec

Confidential

Page 78 of 104

Туре	RO	RO	RO	RO	RO	RO	RO	RO
Default	0	0	0	0	0	0.1	0	0

Table 6-29 DSI_ERR Register

Register Field	Bit	Default	Description
Reserved	[31:10]	0x0	4M 100 COM
InEr	9	0x0	INTERNAL_ERROR This bit indicates that another internal error occurred.
WCEr	8	0x0	WC_ERROR This bit indicates that more bytes than expected were received from the PDIF. Because distinguishing the current data from the next payload data of continuous transfers is difficult when the last payload data is 4-byte aligned, this error is not detected.
SynTo	7	0x0	SYNC_TO This bit indicates that a synchronous wait timeout occurred.
RxFRdEr	6	0x0	RXFIFO_RDERR This bit indicates that an empty Receive FIFO was read.
TeEr	5	0x0	TE_ERROR This bit indicates that the peripheral interface did not transmit the tearing trigger the DSI-TX module is expecting.
QUnk	4	0x0	CQ_UNKNOWN This bit indicates that an unknown command or incorrect parameter was detected by the command queue.
QWrEr	3	0x0	CQ_WRERR This bit indicates that Write access to a full command queue occurred.
НТхТо	2	0x0	HTX_TO This bit indicates that a High-Speed TX timeout occurred.
HTxBrk	1	0x0	HSTX_BROKEN This bit indicates that the byte stream was disrupted during High-Speed transfer.
Cntn	0	0x0	CONTENTION This bit indicates that a contention was detected during lower power transfer.

The content of the DSI_ERR register is cleared by reading it out.

5.2.51 DSI_ERR_INTENA (DSI_ERR_INTENA: 0x0450)

Bit	B15	B14	B13	B12	B11	B10	В9	B8		
Name		-N	Rese	erved			DSI_ERR_I	NTENA[9:8]		
Туре		RO						RO		
Default	40 A	0x00						0		
Bit	B7	В6	B5	B4	В3	B2	B1	В0		
Name	1 (0)			DSI_ERR_	INTENA[7:0]	10				
Туре	7.	RO								
Default	4		.1	0	x00					

Table 5-48 DSI_ERR_INTENA Register

Register Field	Bit	Default	Description

TC358768AXBG Functional Spec

Page 79 of 104

Confidential
Copyright © 2005-2008 MIPI Alliance, Inc. All rights reserved.
MIPI Alliance Member Confidential.

Reserved	[31:10]	0x0	A TALLY TOOL OF COLUMN
DSI_ERR_INTENA	[9:0]	0x0 (??)	DSI_ERR_INTENA This field controls interrupt generation for when an error has been reported to the DSI_ERR register. Generation of the DSI_ERR_INT interrupt which corresponds to the DSI_ERR register error is enabled.

Only indirect writing, i.e. write to DSI CONFW with [Addr] = 0x14.

5.2.52 DSI_ERR_HALT Register (DSI_ERR_HALT: 0x0454)

Bit	B15	B14	B13	B12	B11	B10	В9	B8	
Name		003.	Rese	DSI_ERR_HALT[9:8]					
Туре		RO						RO	
Default		100,	0x00				1000		
Bit	B7	В6	B5	B4	В3	B2	B1	В0	
Name		111	1 CO'	DSI_ERR_	HALT[7:0]			11 C	
Type				1007.					
Default			0x00						

Table 5-49 DSI ERR HALT Register

Register Field	Bit	Default	Description
Reserved	[31:10]	0x0	So Co The
DSI_ERR_HALT	[9:0]	0x0 (??)	DSI_ERR_HALT This field controls DSI-TX operation for when an error is reported to the DSI_ERR register. The DSI-TX module stops command processing when it receives an error corresponding to the set bits in the DSI_ERR_INTENA and DSI_ERR_HALT registers. (??)

Only indirect writing, i.e. write to DSI CONFW with [Addr] = 0x15.

5.2.53 DSI Configuration Register (DSI_CONFW: 0x0500)

Bit	B31	B30	B29	B28	B27	B26	B25	B24
Name	Distr.	MODE			100,4	Address		
Type	WO	WO	wo	wo	wo	wo	wo	WO
Default	0	0	0	0	. 0	0	0	0
Bit	B23	B22	B21	B20	B19	B18	B17	B16
Name	10			Reserve	d[23:16]	∡1 C		
Type	WO	wo	wo	wo	wo	wo	wo	wo
Default	0	0	0	0	0	0	0	0
Bit	B15	B14	B13	B12	B11	B10	В9	B8
Name	.00%			DATA	[15:8]	N. O		1.
Туре	wo	WO	wo	WO	wo	WO	WO	WO

TC358768AXBG Functional Spec

Page 80 of 104

 ${\it Confidential} \\ {\it Copyright © 2005-2008 MIPI Alliance, Inc. All rights reserved.}$ MIPI Alliance Member Confidential.

Default	0	0	0	0	0	0	0	0
Bit	B7	В6	B5	B4	В3	B2	B1	В0
Name	10 2.	0		DATA	A[7:0]	100 y.	40/2	
Туре	wo	WO	WO	wo	wo	wo	wo	wo
Default	0	0	0	0	0	0	0	0

Table 5-50 DSI Configuration Write Register

Register Field	Bit	Default	Description
MODE [31:29] 0x0		0x0	Set or Clear AddrReg (register specified in Address field) Bits 3'b101: Set Register Bits in AddReg as indicated in DATA field 3'b110: Clear Register Bits in AddReg as indicated in DATA field Others: Reserved
Address	[28:24]	0x0	Address Field 0x03: DSI_Control, 0x040C, Register 0x06: DSI_INT_ENA, 0418, Register 0x0E: DSI_ACKERR_INTENA, 0x0438, Register 0x0F: DSI_ACKERR_HALT, 0x043C, Register 0x11: DSI_RXERR_INTENA, 0x0444 Register 0x12: DSI_RXERR_ HALT, 0x0448, Register 0x14: DSI_ERR_INTENA, 0x0450, Register 0x15: DSI_ERR_ HALT, 0x0454, Register 0x16: DSI_ERR_ HALT, 0x0454, Register 0x17: DSI_ERR_ HALT, 0x0454, Register
Reserved	[23:16]	0x0	
DATA	[15:0]	0x0	DATA Field When location DATA[n] is set to '1', the corresponding bit at AddrReg [n] will be cleared or set depending on MODE bits described above. Multiples bits can be set simultaneously

Note: Write to DSI_CONFW Register results to changes in corresponding bit changed in Addressed Register.

5.2.54 DSI LP Command (DSI_LPCMD: 0x0500)

Bit	B31	B30	B29	B28	B27	B26	B25	B24		
Name				LP Cor	nmand	ON.	AN			
Туре	WO	WO	wo	wo	wo	WO	wo	WO		
Default	0 (0	1	1	0	0	0	0		
Bit	B23	B22	B21	B20	B19	B18	B17	B16		
Name	C		•	Reserve	d[23:16]	21 C		•		
Туре	~O)A	WO WO								
Default	1.0		<1	0x	XX	31.0		×1		
Bit	B15	B14	B13	B12	B11	B10	B9	B8		
Name				Reserve	ed[15:8]	00.3.				
Туре	2 C			V	/ 0	170	10			
Default	100,	40 ja.		0x	XX	100	40)	1		
Bit	В7	В6	B5	B4	В3	B2	B1	В0		

TC358768AXBG Functional Spec

Page 81 of 104

Confidential
Copyright © 2005-2008 MIPI Alliance, Inc. All rights reserved.
MIPI Alliance Member Confidential.

Name	1.		LANE_ENA		M.	LP_Code
Type	wo	WO	WO	wo	wo	wo
Default	0	0	0	0	0	0

Note: This command share the same register as DSI_CONFW. It is in LP command mode when [31:24] = 0x

Table 5-51 DSI Configuration Write Register

Register Field	Bit	Default	Description
LPCommand	[31:24]	0x0	LP Command Mode Selection 8'h30: Set Register Bits to this value to enable LP Command mode Others: Reserved
Reserved	[23:8]	0x0	Reserved
LANE_ENA	[7:3]	0x0	LANE Enable Field This Lane Enable is only used by LPC_CODE 000 (ULPS transition) and 001 (LP Stop transition). Select the following Lanes within the range of Lanes set to "Enable" by DSI_CONTROL[NOL]. Do not set ULPS transition and LP Stop transition for Lanes that have not been set to "Enable" by the NOL bit. LANE_ENA[3]: Select Clock Lanes LANE_ENA[4]: Select Lane 0 LANE_ENA[5]: Select Lane 1 LANE_ENA[6]: Select Lane 2 LANE_ENA[7]: Select Lane 3
LP_CODE	[2:0]	0x0	 000: The Lane indicated by LANE_ENA transitions to ULPS (the ultra low power state). 001: The Lane indicated by LANE_ENA transitions to the LP stop state. 010: A remote application reset trigger is transmitted to Lane 0. Then, Lane 0 returns to the LP stop state. The state of other Lanes is not affected. 011: Bus direction change (BTA) is executed on Lane 0. After BTA, Lane 0 returns to the LP Stop state. Other Lanes are not affected. Others: Reserved

Note: Setting 0x0500 = 0x300000F8 will put the clock lane and all the data lanes into ULPS mode. While sending any packet during ULPS mode will cause DSI link to exit ULPS mode.

5.2.55 DSI_RESET Register (DSI_RESET: 0x0504)

Bit	В7	В6	B5	B4	В3	B2	B1	В0
Name		Reserved		RstRxF	Rese	erved	RstCnf	RstMdl
Type		RO		R/W	RO		R/W	R/W
Default		0		0	100 2.	0	0	0

Table 5-52 DSI_RESET Register

Register Field	Bit	Default	Description
Reserved	[31:5]	0x0	M. M. W. W.
RstRxF	4	0x0	RST_RXFIFO 0: Operation is not affected. 1: The Receive FIFO is reset.
Reserved	[3:2]	0x0	Reserved
RstCnf	10	0x0	RST_CONF 0: Operation is not affected.

TC358768AXBG Functional Spec

Confidential

Page 82 of 104

Copyright © 2005-2008 MIPI Alliance, Inc. All rights reserved. MIPI Alliance Member Confidential.

4.			1: The setting register is reset.
M. 100X.			RST_MODULE Do not set this bit to "1". Perform a hardware reset when a DSITX block reset is necessary.
RstMdl	A CC	0x0	Use this bit when resetting the sub modules inside this block (DSI layer). The PHY layer or the application layer blocks are not reset. 0: Operation is not affected. 1: Modules inside the DSI layer are reset.

5.2.56 DSI_INT_CLR Register (DSI_INT_CLR: 0x050C)

Bit	B31	B30	B29	B28	B27	B26	B25	B24
Name		V 230			erved	520	1 100	
Туре					RO		1	
		100					411	-1
Default		1.		U)	k00		1110	
Bit	B23	B22	B21	B20	B19	B18	B17	B16
Name		111.	Reserved			ICrAk	Rese	erved
Туре		11.10	RO			wo	R	10
Default	-1		0x00	10/2		0	0	x0 0x
Bit	B15	B14	B13	B12	B11	B10	В9	B8
Name			1100	Res	erved			110
Type				F	RO			M.
Default			11.70	0)	k 00	4		
Bit	В7	В6	B5	B4	В3	B2	B1	В0
Name	*I	Rese	erved		ICrHlt	ICrEr	ICrRxEr	ICrAkEr
Туре		F	RO	100	wo	wo	WO	wo
Default		0	x0	.003	0	0	0	0

Table 5-53 DSI_INT_CLR Register

Register Field	Bit	Default	Description
Reserved	[23:19]	0x0	W. This of the solid
ICrAk	18	0x0	INTCLR_ACK 0: Operation is not affected. 1: The INT_ACK interrupt is cleared.
Reserved	[17:4]	0x0	Reserved
ICrHlt	3	0x0	INTCLR_HALTED 0: Operation is not affected. 1: The INT_HALTED interrupt is cleared.
ICrEr	2	0x0	INTCLR_DSI_ERR 0: Operation is not affected. 1: The INT_DSI_ERR interrupt is cleared.
ICrRxEr	1	0x0	INTCLR_DSI_RXERR 0: Operation is not affected. 1: The INT_DSI_RXERR interrupt is cleared.

TC358768AXBG Functional Spec

Page 83 of 104

Register Field	Bit	Default	Description			
41 1			INTCLR_DSI_ACKERR			
ICrAkEr	0	0x0	0: Operation is not affected.			
M , 100	()) y		1: The INT_DSI_ACKERR interrupt is cleared.			

5.2.57 DSI START Register (DSI_START: 0x0518)

Bit	B15	B14	B13	B12	B11	B10	В9	B8
Name	400	7		Reserve	ed[15:8]		00,7.	
Туре	RO	RO	RO	RO	RO	RO	RO	RO
Default	0	0	0 0	0	0	0	0	0
Bit	B7	В6	B5	B4	В3	B2	B1	В0
Name		1.30	R	Reserved[7:1]			Strt
Туре	RO	RO	RO	RO	RO	RO	RO	wo
Default	0	0	0	0	. 0	0	0	0

Table 5-54 DSI_START

Register Field	Bit	Default	Description
Reserved	[15:1]	0x0	in Co. T.L.
Strt	0	0x0	DSI_START 0: The clock is not supplied to modules other than CONIF. 1: The clock is supplied to all modules. When "1" is written to this bit, the clock is supplied to modules other than the DSI-TX CONIF. To start DSI-TX operation, set this bit to "1" after a reset is performed. This bit must be set to "1" even when accessing registers other than DSI_START. Once this bit is set to "1", writing of "0" is

5.2.58 DSI Command Packet Start Transmit Register (DSICMD_TX: 0x0600)

Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name	-17	. 1		Rese	erved		. 1	•
type	O.S.			R	0 100	40)		\
Default		1	4	0:	k 0			4
Bit	B7	B6	B5	B4	B3	B2	B1	B0
Name				Reserved	11	-1		dc_start
type		RO						R/W
Default				0x0	11			0x0

Table 5-55 DSI Command Packet Start Transmit Register

		1 0.510 0	oo bor oommana raenet	Otart Transmit Regions.
Register Field	Bit	Default		Description
Reserved	[15:1]	0x0	Reserved	
dc_start	[0]	0x0	DCS Command Start 1'b0: Idle	MM, M100, A CO. 17

TC358768AXBG Functional Spec

Confidential

Page 84 of 104

Copyright © 2005-2008 MIPI Alliance, Inc. All rights reserved. MIPI Alliance Member Confidential.

Register Field	Bit	Default	Description			
			1'b1: Start DCS Command transfer			
10		())))	Note: This bit will be reset after DCS command send out to DSITX			

5.2.59 DCS Command Type Register (DSICMD_TYPE: 0x0602)

Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name		21		PktT	ype		41	K
type				R/	W			
Default	41	1		0>	(0		1100	100
Bit	B7	B6	B5	B4	B3	B2	B1	B0
Name		100	40°	Data	a ID		100	
type				R/	W			
Default		1 00 °		0>	(0			

Table 5-56 DSI Command Packet Type Register

Register Field	Bit	Default	Description	
PktType	[15:8]	0x0	DSI Short or Long Packet Type There are only two valid values: 0x10: DSI Short Packet 0x40: DSI Long Packet Others: Reserved	MAN. 100
DataID	[7:0]	0x0	DSI Packet Data ID Please refer to MIPI DSI specification	

5.2.60 DSI Command Packet Word Count Register (DSICMD_WC: 0x0604)

Bit	B15	B14	B13	B12	B11	B10	B9	B8	
Name	- 1	Reserved							
type				R	0 4) >				
Default	-1			0>	(0		4		
Bit	B7	B6	B5	B4	B3	B2	B1	B0	
Name		Res	erved		dc_wc				
type		R	20	R/W					
Default		0x0 0x0							

Table 5-57 DSI Command Packet Word Count Register

Register Field	Bit	Default	Description
Reserved	[15:4]	0x0	
dc_wc	[3:0]	0x0	DSI Command Packet Word Count

5.2.61 DSI Command Packet Data Register 0 (DSICMD_WD0: 0x0610)

Bit	B15	B14	B13	B12	B11	B10	B9	B8	
Name				dc_w	ord1	. 00	10/4		
type	21 U		RW						
Default	007.		0x0					1.0	
Bit	B7	B6	B5	B4	B3	B2	B1	B0	
Name				dc_w	ord0			- 10/10/2	
type	100	RW							
Default		0x0							

TC358768AXBG Functional Spec

Confidential

Page 85 of 104

Copyright © 2005-2008 MIPI Alliance, Inc. All rights reserved. MIPI Alliance Member Confidential. Table 5-58 DSI Command Packet Data Register 0

Register Field	Bit	Default	Description
dc_word1	[15:8]	0x0	Word 1 - DSI Command Packet Data Byte 1
dc_word0	[7:0]	0x0	Word 0 - DSI Command Packet Data Byte 0 Word 0 = {Byte1, Byte0}

5.2.62 DSI Command Packet Data Register 1 (DSICMD_WD1: 0x0612)

Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name		. 00 7.		dc_w	ord3		00	
type	41	R/W					1100	
Default				0)	0x0			
Bit	B7	B6	B5	B4	B3	B2	B1	B0
Name		N. Y		dc_w	ord2			
type		100		R/	W	.4		. 000 >
Default			21	0)	(O			1

Table 5-59 DSI Command Packet Data Register 1

Register Field	Bit	Default	Description	
dc_word3	[15:8]	0x0	Word 3 - DSI Command Packet Data Byte 3	
dc_word2	[7:0]	0x0	Word 2 - DSI Command Packet Data Byte 2	

5.2.63 DSI Command Packet Data Register 2 (DSICMD_WD2: 0x0614)

Bit	B15	B14	B13	B12	B11	B10	B9	B8		
Name	41	dc word5								
type		RW N								
Default	-	0x0								
Bit	B7	B6	B5	B4	B3	B2	B1	B0		
Name				dc_w	ord4					
type										
Default				0)	(0	O'				

Table 5-60 DSI Command Packet Data Register 2

Register Field	Bit	Default	Description
dc_word5	[15:8]	0x0	Word 5 - DSI Command Packet Data Byte 5
dc_word4	[7:0]	0x0	Word 4 - DSI Command Packet Data Byte 4

5.2.64 DSI Command Packet Data Register 3 (DSICMD_WD3: 0x0616)

Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name		40 E		dc_w	~()			
type			RW					
Default	. 00 -			0:	(0			
Bit	B7	B6	B5	B4	B3	B1	B0	
Name	00	1.	dc_word6					ONT.

TC358768AXBG Functional Spec

Confidential

Page 86 of 104

Copyright © 2005-2008 MIPI Alliance, Inc. All rights reserved. MIPI Alliance Member Confidential.

All rights reserved. This material is reprinted with the permission of the MIPI Alliance, Inc. No part(s) of this document may be disclosed, reproduced or used for any purpose other than as needed to support the use of the products of Toshiba America Electronic Components, Inc.

type	RW	41
Default	0x0	

Table 5-61 DSI Command Packet Data Register 3

Register Field	Bit	Default	Description	
dc_word7	[15:8]	0x0	Word 7 - DSI Command Packet Data Byte 7	
dc_word6	[7:0]	0x0	Word 6 - DSI Command Packet Data Byte 6	. 00 7.

5.2.65 DSI Event Mode Register (DSI_EVENT: 0x0620)

Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name		400	407	Rese	rved	-1	40	10
type			1	R	0			41
Default		00		0x	(0			00.7.
Bit	B7	B6	B5	B4	B3	B2	B1	B0
Name				Reserved				tx_msel
type				RO				R/W
Default				0x0	1			0x0

Table 5-62 DSI Event Mode Register

Register Field	Bit	Default	Description	
Reserved	[15:1]	0x0	A. 100 F. 10 Jan 241	
tx_msel	[0]	0x0	DSI Hsync Tx Mode select 0: Pulse mode 1: Event mode	NIN

5.2.66 DSI Vsync Width Register 1 (DSI_VSW: 0x0622)

Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name	. 41		Res	erved			tx_	_VSW
type			F	RO	10	O E	R	./W
Default	. 1	-1	0	x0			0)x0
Bit	B7	B6	B5	B4	B3	B2	B1	B0
Name				tx_	vsw			
type				R/	W		1	
Default				0:	x0			
						71.0/	-	

Table 5-63 DSI Vsync Width Register

Register Field	Bit	Default	Description
Reserved	[15:10]	0x0	
tx_vsw	[9:0]	0x0	Blank Line during Vertical blank 0: illegal 1: 1 blank line Note: if enable Event mode, this blank includes Vertical Back porch

TC358768AXBG Functional Spec Confidential

Page 87 of 104

5.2.67 DSI VBPR Register (DSI_VBPR: 0x0624)

Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name	00.7.		Res	erved			tx_	vbp
type		RO RW						W
Default		0x0				0	x0	
Bit	B7	B6	B5	B4	B3	B2	B1	B0
Name				tx_	vbp			
type		7		R/	W		000	70
Default		41 U		0:	(0		-1	

Table 5-64 DSI VBPR Register

Register Field	Bit	Default	Description
Reserved	[15:10]	0x0	
tx_vbp	[9:0]	0x0	Vertical Blank Back Porch in Pulse Mode 0: 0 blank line 1: 1 blank line Note: In Event mode, VBPR is included DSI_VSW register, this register is not used

5.2.68 DSI Vertical Active Register (DSI_VACT: 0x0626)

D'4	D45	D44	D40	D40	544	D40	DO	
Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name		Res	erved			tx_	val	
type		RO R/W						
Default		C)x0			0)	(0	
Bit	B7	B6	B5	B4	B3	B2	B1	B0
Name	-1			tx_	val			
type				R/	W			
Default	0x0							

Table 5-65 DSI VACT Register

Register Field	Bit	Default	Description	n	
Reserved	[15:12]	0x0			
tx_val	[11:0]	0x0	Vertical Active Line 0: illegal 1: 1 active line	勝 特 力 材 料 886-3-5753	
		-1		胜特力电子(上海) 86-21-3497	06

胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

5.2.69 DSI Hsync Width Register (DSI_HSW: 0x0628)

Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name		707		tx_	hsw			
Type	_1			R	W	<1 1	.1	
Default				0x	:01	Mo.		101.
Bit	B7	B6	B5	B4	B3	B2	B1	B0
Name				a tx	hsw			

TC358768AXBG Functional Spec

Confidential

Page 88 of 104

Copyright © 2005-2008 MIPI Alliance, Inc. All rights reserved. MIPI Alliance Member Confidential.

Type	R/W	41
Default	0x00	

Table 5-66 DSI Hsync Width Register

Register Field	Bit	Default	Description
tx_hsw	[15:0]	0x0	Horizontal Blank Width Count tx_hsw = INT{ ((hsw in pixel * ByteClk_freq) / PCLK_freq) * DSI #Data lane} Note: In Event mode, this count includes Horizontal Back porch

5.2.70 DSI HBPR Register (DSI_HBPR: 0x062A)

Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name		1100	(0)	tx_l	nbp			
Туре	1	No.		R/	W			
Default		100		0x	01	-1		100
Bit	B7	B6	B5	B4	B3	B2	B1	B0
Name				tx_l	nbp			
Type		411	1	R/	W			1110
Default				0>	(0		1	110

Table 5-67 DSI HBPR Register

			Table 6 of Bol HBI K Register
Register Field	Bit	Default	Description
			Horizontal Back Porch Count in Pulse Mode
tx hbp	[15:0]	0x0	tx_hbp = INT{ ((hbp in pixel * HSByteCLK_freq) / PClk_freq) * DSI #Data lane}
tx_ribp	[13.0]	OXO	Note: In Event mode, HBPR is included DSI_HSW register, this
			register is not used

5.2.71 DSI Horizontal Active Register (DSI_HACT: 0x062C)

Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name				tx	_hal			
type					R/W	0		
Default	N.	4 1			0x0	-11.	41	
Bit	B7	B6	B5	B4	B3	B2	B1	B0
Name		.1		tx	_hal			
type					R/W			
Default					0x0	.1		

Table 5-68 DSI Horizontal Active Register

Register Field	Bit	Default	Description
11.		1	Horizontal Active Line Word Count
tx_hal	[15:0]	0x0	tx_hal = (hal in pixel * #byte per pixel)
11100			Note: tx_hal indicates byte count (count by HS Byte clock)

Note: 768 output number of bytes depending on values programmed in this register.

e.g. To transfer 1366-pixel RGB666 input with "packed" RGB666 video packets, please program 1368*18/8 = 3078 = 0x0C06 for 768 to send out 1368 pixels/line with the last two dummy pixels

TC358768AXBG Functional Spec Confidential

Page 89 of 104

Copyright © 2005-2008 MIPI Alliance, Inc. All rights reserved. MIPI Alliance Member Confidential.

5.2.72 VBuffer Control Register (VBufCtl: 0x00E0)

Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name	VBuf_en	Tx_en	mask		Reserved		alcr	nt[9:8]
Type	R/W	R/W	R/W		RO	. 00	R	W
Default	0x0	0x0	0x0		0x0	313	_1 0)x1
Bit	B7	B6	B5	B4	B3	B2	B1	B0
Name	100			alcn	t[7:0]	110		
Туре			N.	R	W	1111		
Default	1110		7	0	x0	M .		4())

Debug Active Video Line Count Register

Register Field	Bit	Description
VBuf_en	[15]	Enable Video Buffer for I2C/SPI Write 0: normal 1: enable I2C/SPI write to VB sram
Tx_en	[14]	Transmit Enable 0: Normal mode 1: Enable Tx logic
mask	[13]	Short Packets Mask Bit 0: Normal mode 1: Mask Out Short Pkt, such FS, FE generation for Command Mode Operation
Reserved	[12:10]	
alcnt	[9:0]	Active Line Count 10'h0: 1 line 10'h1: 2 line 10'h3FF: 1024 line

5.2.73 Debug Line Width Register (DBG_Width: 0x00E2)

Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name		Re	served	11		Db_wid	lth[11:8]	
Туре		RO			RW			
Default		0x0			0x1			
Bit	B7	B6	B5	B4	B3	B2	B1	B0
Name				Db_a	wcnt[7:0]			
Туре					₹/W	1		
Default	1	0x0						

Debug Video Line Word Count Register

Register Field	Bit	Description
Reserved	[15:12]	LA. 100, CO. LA.
Db_width	[11:0]	Debug Total byte count in a line (include blank period) 12'h0: 1 byte 12'h1: 2 bytes 12'hFFE: 4095 bytes

TC358768AXBG Functional Spec

Confidential

Page 90 of 104

Copyright © 2005-2008 MIPI Alliance, Inc. All rights reserved. MIPI Alliance Member Confidential.

Register Field	Bit	Descrip	tion	1. ~O	Mr. LA	
No.		12'hFFF: Reserved, Do not use	1.2			1

5.2.74 Debug Vertical Blank Line Count Register (DBG_VBlank: 0x00E4)

Bit	B15	B14	B13	B12	B11	B10	B9	B8
Name	. 00	~ (1)		Re	eserved			
Type		1			RO	317	-1	
Default					0x0		007.	
Bit	B7	B6	B5	B4	В3	B2	B1	B0
Name	Reserved				Db_vb[6:0]			
Туре	RO		CO>		R/W		100	
Default	0x0			. 1	0x10			

Debug Vertical Blank Register

Register Field	Bit	Description	MAN 100 x
Reserved	[15:7]	1003. 1033	
Db_vb	[6:0]	Debug Vertical Blank line 7'h0: 1 line 7'h1: 2 line 7'7F:128 line	WALL TOO

5.2.75 Debug Video Data Register (DBG_Data: 0x00E8)

B15	B14	B13	B12	B11	B10	B9	B8
	<		Db_d	ata[15:8]			
				WO		1	
			100	0xX			<1
B7	B6	B5	B4	B3	B2	B1	B0
			Db_c	data[7:0]			·
	_			WO 1			
				0xX			
				B7 B6 B5 B4 Db_c	Db_data[15:8] WO 0xX	Db_data[15:8] WO	Db_data[15:8] WO 0xX B7 B6 B5 B4 B3 B2 B1 Db_data[7:0] WO

Debug Video Data Register

Register Field	Bit	Description
Db_data	[15:0]	Data will be written into Video FIFO in continuous. Note: must be in multiple of 4 bytes

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Confidential

Page 91 of 104

Package

The packages for TC358768AXBG are described in the figures below

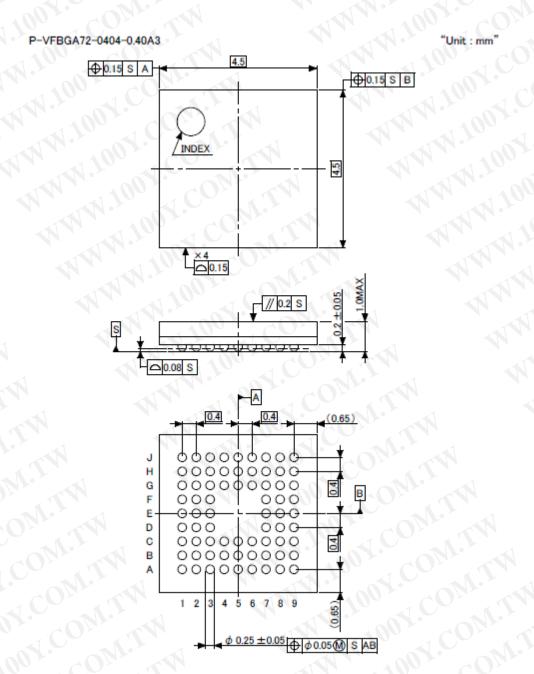


Figure 6-1 P-VFBGA72-0404-0.40A3 package

Table 6-1 P-VFBGA72-0404-0.40A3 Mechanical Dimension

Dimension	Min.	Тур.	Max.
Solder ball pitch		0.4 mm	A ()
Solder ball height	0.15 mm	0.2 mm	0.205 mm
Package dimension		4.5 x 4.5 mm ²	(A)
Package height			1.0 mm

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

7 Electrical Characteristics

7.1 Absolute Maximum Ratings

VSS= 0V reference

Parameter	Symbol	Rating	Unit
Supply voltage (1.8V - Digital IO)	VDDIO	-0.3 ~ +3.9	OACON
Supply voltage (1.2V – Digital Core)	VDDC	-0.3 ~ +1.8	vo. com
Supply voltage (1.2V – MIPI PHY)	VDD_MIPI	-0.3 ~ +1.8	V 007 CO
Input voltage (DSI IO)	V _{IN_DSI}	-0.3 ~ VDD_MIPI+0.3	V 100
Output voltage (DSI IO)	V _{OUT_DSI}	-0.3 ~ VDD_MIPI+0.3	VN. 1003
Input voltage (Digital IO)	V _{IN_IO}	-0.3 ~ VDDIO+0.3	V
Output voltage (Digital IO)	V _{OUT_IO}	-0.3 ~ VDDIO+0.3	V
Juntion temperature	Ţj.	125	°C
Storage temperature	Tstg	-40 ~ +125	°C

7.2 Recommended Operating Condition

VSS= 0V reference

Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply voltage (1.8V – Digital IO)	VDDIO	1.65	1.8	1.95	V
Supply voltage (3.3V – Digital IO)	VDDIO	3.0	3.3	3.6	V
Supply voltage (1.2V – Digital Core)	VDDC	1.1	1.2	1.3	V
Supply voltage (1.2V – MIPI PHY)	VDD_MIPI	1.1	1.2	1.3	V
Operating temperature (ambient temperature with voltage applied)	Та	-30	+25	+85	°C
Supply Noise Voltage	V _{SN}	1.100	C	100	mV_{pp}

7.3 DC Electrical Specification

Parameter	Symbol	Min.	Тур.	Max.	Unit
Input voltage, High level input Note1	V_{IH}	0.7 VDDIO		VDDIO	V
Input voltage, Low level input Note1	V_{IL}	0	1100	0.3 VDDIO	V
Input voltage High level CMOS Schmitt Trigger Note1,2	V _{IHS}	0.7 VDDIO	W.	VDDIO	V
Input voltage Low level CMOS Schmitt Trigger Note1,2	V _{ILS}	0	MN.	0.3 VDDIO	V

Output voltage High level Note1, Note2 (Condition: I _{OH} = -0.4mA)	V _{OH}	0.8 VDDIO	100	VDDIO	V
Output voltage Low level Note1, Note2 (Condition: IOL = 2mA)	V _{OL}	0	11.	0.2 VDDIO	V
Input leak current, High level (Normal IO or Pull-up IO) (Condition: V _{IN} = +VDDIO, VDDIO = 3.6V)	I _{ILH1} Note3	-10	NA:	10 0	uA
Input leak current, High level (Pulldown IO) (Condition: V _{IN} = +VDDIO, VDDIO = 3.6V)	I _{ILH2} Note3	-		100	uA
Input leak current, Low level (Normal IO or Pull-down IO) (Condition: $V_{IN} = 0V$, VDDIO = 3.6V)	I _{ILL1} Note4	-10		10	uA
Input leak current, Low level (Pull- up IO) (Condition: $V_{IN} = 0V$, VDDIO = 3.6V)	I _{ILL2} Note4		- 1	200	uA

Note1: Each power source is operating within recommended operation condition.

Note2 : Current output value is specified to each IO buffer individually. Output voltage changes with output current value.

Note3: Normal pin or Pull-up IO pin applied VDDIO supply voltage to Vin (input voltage)

Note4: Normal pin or Pull-down IO pin applied VSSIO (0V) to Vin (input voltage)

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

8 Timing Definitions

8.1 MIPI - 2 Timings

Timing specification below has been ported from Draft MIPI Alliance specification for D-PHY version 0.91.00 r0.01. Timing defined in Draft MIPI Alliance specification for D-PHY version 0.91.00 r0.01 has precedence over timing described in the sections below.

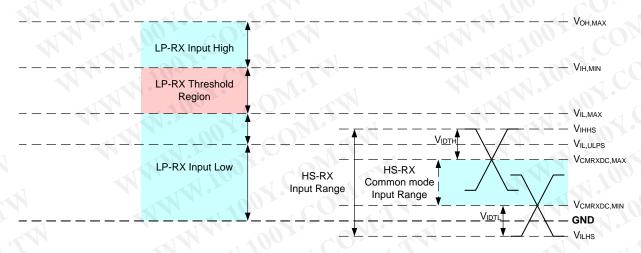


Figure 8-1 Signaling and voltage levels

Table 8-1	DC	specifications

Parameter	Description	Min	Nom	Max	Units	Notes
V_{PIN}	Pin signal voltage range	-50	10	1350	mV	
V _{PIN(absmax)}	Transient pin voltage	-0.15		1.45	V	-1
T _{VPIN(absmax)}	Maximum transient time above V _{PIN(absmax)} or below V _{PIN(absmax)} .	N.Y	001	20	ns	3
V _{OH}	Thevenin output high level	1.1	1.2	1.3	V	
V _{IH}	Logic 1 input voltage	880			mV	×1
V _{IL}	Logic 0 input voltage, not in ULP State	N	W.10	550	mV	
V _{IL-ULPS}	Logic 0 input voltage, ULP State			300	mV	
V _{CMRX(DC)}	Common-mode voltage HS receiver mode	70		330	mV	1,2
V _{IDTH}	Differential input high threshold			70	mV	
V _{IDTL}	Differential input low threshold	-70			mV	N.T.
V _{IHHS}	Single-ended input high voltage			460	mV	1

TC358768AXBG Functional Spec

Confidential

Page 96 of 104

V _{ILHS}	Single-ended input low	-40	1.	mV	1
1100	voltage		110		

Notes:

- 1. Excluding possible additional RF interference of 100mV peak sine wave beyond 450MHz.
- 2. This table value included a ground difference of 50mV between the transmitter and the receiver, the static common-mode level tolerance and variations below 450MHz.
- 3. The voltage undershoot or overshoot beyond V_{PIN} is only allowed during a single 20 ns window after any LP-0 LP-1 transition or vice versa. For all other situations it must stay within the V_{PIN} range.

Table 8-2 High Speed AC specifications

Parameter	Description	Min	Nom	Max	Units	Notes
$\Delta V_{\text{CMRX(HF)}}$	Common-mode interference beyond 450MHz			100	mV	2
$\Delta V_{\text{CMRX(LF)}}$	Common-mode interference 50MHz- 450MHz	-50		50	mV	1,3

Notes:

- Excluding `static' ground shift of 50mV
- 2. $\Delta V_{CMRX(HF)}$ is the peak amplitude of a sine wave superimposed on the receiver inputs
- 3. Voltage difference compared to the DC average common-mode potential.

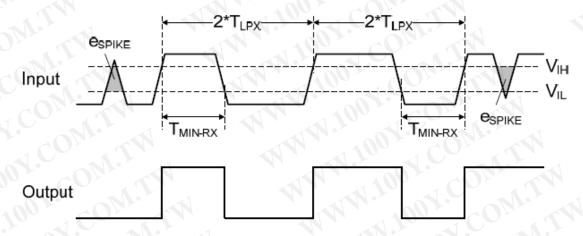


Figure 8-2 Input Glitch Rejection

Table 8-3 Low Power AC characteristics

Parameter	Description	Min	Nom	Max	Units	Notes
e _{SPIKE}	Input pulse rejection			300	V.ps	1,2,3
T _{MIN-RX}	Minimum pulse width response	20			ns	4

TC358768AXBG Functional Spec

Confidential

Page 97 of 104

V_{INT}	Peak interference amplitude		141.	200	mV	
F _{INT}	Interference frequency	450	41		MHz	
T_{LPX}	Length of any Low Power state period	50		100	ns	DIN. TA

Notes:

- 1. Time-voltage integration of a spike above V_{IL} when being in LP-0 or below V_{IH} when being in LP-1 state.
- 2. An impulse less than this will not change the receiver state.
- 3. In addition to the required glitch rejection, implementers shall ensure rejection of known RF-interferers.
- 4. An input pulse greater than this shall toggle the output.

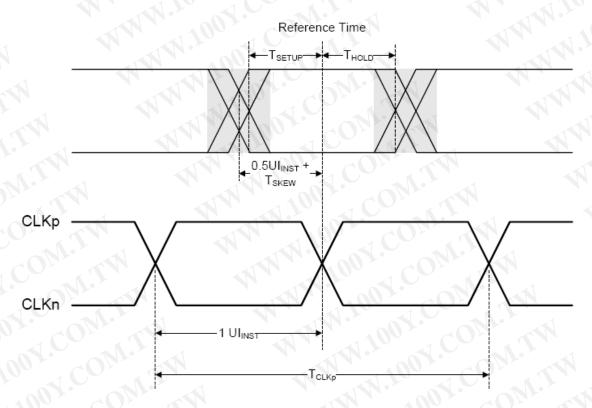
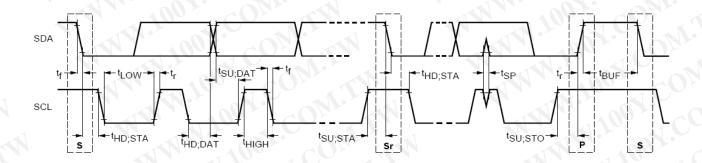


Figure 8-3 Data to clock timing reference

Table 8-4 Data-Clock timing specification

Parameter	Description	Min	Nom	Max	Units	Notes
T _{SKEW}	Data to clock skew measured at the transmitter	-0.15		0.15	UI _{INST}	
T _{SETUP}	Data to clock setup time at	0.15			UI _{INST}	


TC358768AXBG Functional Spec

Confidential

Page 98 of 104

M	receiver		11110			
T _{HOLD}	clock to data hold time at receiver	0.15		100	UI _{INST}	MIT
UI _{INST}	1 Data bit time (instantaneous)			12.5	ns	
T_{CLKp}	Period of dual data rate clock	2	2	2	UI _{INST}	

I2C Timings 8.2

ltem	Symbol	Min	Max	Unit
SCL clock frequency	f_{SCL}	0	400	kHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated	t _{HD;STA}	0.6	Ñ -	μѕ
LOW period of the SCL clock	t_{Low}	1.3		μs
HIGH period of the SCL clock	t _{HIGH}	0.6		μs
Set-up time for a repeated START condition	t _{SU;STA}	0.6	-	μs
Data hold time: for I2C-bus devices	t _{HD;DAT}	3000 C	0.9	μs
Data set-up time	t _{SU;DAT}	100	<u>-</u> -C	ns
Rise time of both SDA and SCL signals	t _r	20+0.1Cb	300	ns
Fall time of both SDA and SCL signals	t_{f}	20+0.1Cb	300	ns

Page 99 of 104

TC358768AXBG Functional Specification

Rev 0.3

t _{su;sto}	0.6	<u>-</u> C	μs
t _{BUF}	1.3		μs
		1.0	1.0

Note: Cb = Capacitive load for each bus line (400pF max.)

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

8.3 Parallel Port Input Timings

Table 8-5 Parallel Input timing

Parameter	Description		Min.	Тур.	Max.	Units
$T_{pd:SU}$	Setup time of data		2	067	-0	ns
T _{pd:HD}	Hold time of data		1	-	1	ns
T _{pd:CLK}	Clock period	- T	6	A-0.0	- ~	ns

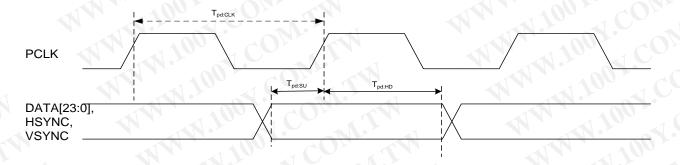


Figure 8-4 Parallel Input timing

Table 8-6 Parallel Vertical timing

Parameter	Description	Min.	Тур.	Max.	Units
T _{VP}	Vertical Sync Period	2	1 -	-	Lines
T_{VBP}	Vertical Back Porch	2	-	-	Lines
T _{VAFP}	Vertical Active Frame Period	16		4096	Lines
T_{VFP}	Vertical Front Porch	2		-	Lines

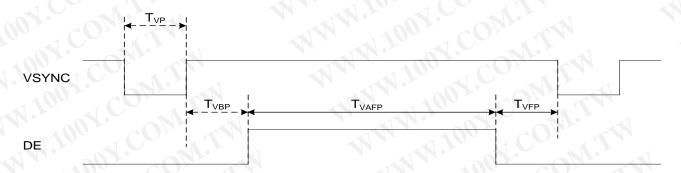


Figure 8-5 Parallel Vertical timing

Table 8-7 Parallel Horizontal timing	1 able 8-1	Parallel	Horizontai	tımına
--------------------------------------	------------	----------	------------	--------

Parameter	Description	Min.	Тур.	Max.	Units
T _{HP}	Horizontal Sync Period	2	-1	C.	PCLK
T _{HBP}	Horizontal Back Porch	2	003	ā0	PCLK
T _{HAFP}	Horizontal Active Line Period	16		1920	PCLK
T _{HFP}	Horizontal Front Porch	2	1-07	- 0	PCLK

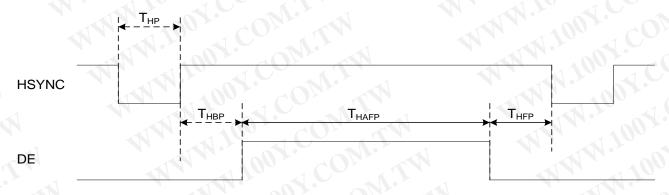


Figure 8-6 Parallel Horinzontal timing

特力材料886-3-5753170 胜特力电子(上海) 86-21-34970699 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

8.4 SPI Input/Output Timings

Table 8-8 SPI timing

Parameter	Symbol	Min	Тур	Max	Unit
SPI Clock Frequency	f _{SEIS}	-1		25	MHz
Clock to Data (MISO) Valid Time	t _{SOD}	_		15	ns
Clock to Data (MISO) Invalid Time	t _{SOH}	0			ns
Data in (MOSI) Setup Time	t _{SIS}	5	4	400	ns
Data in (MOSI) Hold Time	t _{SIH}	5	11		ns
Slave Select to Data (MISO) Valid Time	t _{SSDV}		-17	25 ¹	ns
Slave Select to Clock	t _{SSTC}	3/f _{SYS}	377	4	ns
Consecutive Transfer Delay Time	t _{CTDT}	1/f _{SEIS}			ns
Load on SEI Interface Signals	C _{IF}	 		10	pF

Notes: Maximum loading of MISO is 10pF

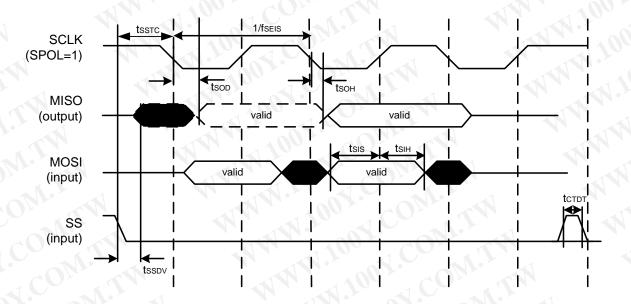


Figure 8-7 SPI timing (data valid on second active clock edge)

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE
 EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH
 MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT
 ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without
 limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for
 automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions,
 safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE
 PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your
 TOSHIBA sales representative.
- · Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
 applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
 FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
 WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
 LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
 LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO
 SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
 FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
 Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.